mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-11 20:34:54 +00:00
add: support for falcon-10B architecture.
This commit is contained in:
parent
80ba799c88
commit
22c005fac3
@ -7,8 +7,7 @@ from transformers.configuration_utils import PretrainedConfig
|
|||||||
from transformers.modeling_utils import PreTrainedModel
|
from transformers.modeling_utils import PreTrainedModel
|
||||||
|
|
||||||
from text_generation_server.utils import paged_attention, flash_attn
|
from text_generation_server.utils import paged_attention, flash_attn
|
||||||
from text_generation_server.utils.flash_attn import attention
|
from text_generation_server.utils.layers import (
|
||||||
from text_generation_server.layers import (
|
|
||||||
TensorParallelRowLinear,
|
TensorParallelRowLinear,
|
||||||
TensorParallelColumnLinear,
|
TensorParallelColumnLinear,
|
||||||
TensorParallelEmbedding,
|
TensorParallelEmbedding,
|
||||||
@ -139,10 +138,7 @@ class FlashRWAttention(torch.nn.Module):
|
|||||||
self.rope_theta = config.rope_theta
|
self.rope_theta = config.rope_theta
|
||||||
|
|
||||||
self.rotary_emb = PositionRotaryEmbedding.static(
|
self.rotary_emb = PositionRotaryEmbedding.static(
|
||||||
config=config,
|
config=config, dim=self.head_size, base=self.rope_theta, device=weights.device
|
||||||
dim=self.head_size,
|
|
||||||
base=self.rope_theta,
|
|
||||||
device=weights.device,
|
|
||||||
)
|
)
|
||||||
self.softmax_scale = self.head_size ** (-0.5)
|
self.softmax_scale = self.head_size ** (-0.5)
|
||||||
|
|
||||||
@ -480,6 +476,44 @@ class FlashRWLayer(nn.Module):
|
|||||||
|
|
||||||
return mlp_output, residual
|
return mlp_output, residual
|
||||||
|
|
||||||
|
class FlashRWLayerNorm(nn.Module):
|
||||||
|
def __init__(self, config, prefix, weights):
|
||||||
|
super().__init__()
|
||||||
|
self.num_ln = config.num_ln_in_parallel_attn
|
||||||
|
|
||||||
|
if self.num_ln == 1:
|
||||||
|
self.input_ln = FastLayerNorm.load(
|
||||||
|
prefix=f"{prefix}.input_layernorm",
|
||||||
|
weights=weights,
|
||||||
|
eps=config.layer_norm_epsilon,
|
||||||
|
)
|
||||||
|
elif self.num_ln == 2:
|
||||||
|
self.ln_attn = FastLayerNorm.load(
|
||||||
|
prefix=f"{prefix}.ln_attn",
|
||||||
|
weights=weights,
|
||||||
|
eps=config.layer_norm_epsilon,
|
||||||
|
)
|
||||||
|
self.ln_mlp = FastLayerNorm.load(
|
||||||
|
prefix=f"{prefix}.ln_mlp",
|
||||||
|
weights=weights,
|
||||||
|
eps=config.layer_norm_epsilon,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError("Number of layer norms can either be 1 or 2.")
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
hidden_states,
|
||||||
|
residual,
|
||||||
|
):
|
||||||
|
if self.num_ln == 1:
|
||||||
|
ln_hidden_states, residual = self.input_ln(hidden_states, residual)
|
||||||
|
return ln_hidden_states, ln_hidden_states, residual
|
||||||
|
elif self.num_ln == 2:
|
||||||
|
ln_attn, residual = self.ln_attn(hidden_states, residual)
|
||||||
|
ln_mlp, _ = self.ln_mlp(residual)
|
||||||
|
return ln_attn, ln_mlp, residual
|
||||||
|
|
||||||
|
|
||||||
class FlashRWLayerNorm(nn.Module):
|
class FlashRWLayerNorm(nn.Module):
|
||||||
def __init__(self, config, prefix, weights):
|
def __init__(self, config, prefix, weights):
|
||||||
|
Loading…
Reference in New Issue
Block a user