mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-20 06:12:07 +00:00
enable dbrx remove some unused code
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
This commit is contained in:
parent
2cde30de24
commit
2074d0516b
@ -77,6 +77,11 @@ class PositionRotaryEmbedding(nn.Module):
|
||||
inv_freq = _create_inv_freq(dim, base, device)
|
||||
scaling_factor = None
|
||||
rope_scaling = _get_rope_config(config)
|
||||
if not hasattr(config, "max_position_embeddings") and hasattr(
|
||||
config, "max_seq_len"
|
||||
):
|
||||
# handling for dbrx
|
||||
config.max_position_embeddings = config.max_seq_len
|
||||
if rope_scaling is not None:
|
||||
# `rope_type` is now standard in transformers, but some existing models
|
||||
# have `type` instead.
|
||||
|
@ -286,16 +286,6 @@ class ModelType(enum.Enum):
|
||||
"name": "Qwen 2.5 VL",
|
||||
"url": "https://huggingface.co/collections/Qwen/qwen25-66e81a666513e518adb90d9e",
|
||||
}
|
||||
OPT = {
|
||||
"type": "opt",
|
||||
"name": "Opt",
|
||||
"url": "https://huggingface.co/facebook/opt-6.7b",
|
||||
}
|
||||
T5 = {
|
||||
"type": "t5",
|
||||
"name": "T5",
|
||||
"url": "https://huggingface.co/google/flan-t5-xxl",
|
||||
}
|
||||
GALACTICA = {
|
||||
"type": "galactica",
|
||||
"name": "Galactica",
|
||||
@ -306,16 +296,6 @@ class ModelType(enum.Enum):
|
||||
"name": "SantaCoder",
|
||||
"url": "https://huggingface.co/bigcode/santacoder",
|
||||
}
|
||||
BLOOM = {
|
||||
"type": "bloom",
|
||||
"name": "Bloom",
|
||||
"url": "https://huggingface.co/bigscience/bloom-560m",
|
||||
}
|
||||
MPT = {
|
||||
"type": "mpt",
|
||||
"name": "Mpt",
|
||||
"url": "https://huggingface.co/mosaicml/mpt-7b-instruct",
|
||||
}
|
||||
GPT2 = {
|
||||
"type": "gpt2",
|
||||
"name": "Gpt2",
|
||||
|
@ -43,9 +43,7 @@ from text_generation_server.layers.rotary import (
|
||||
from text_generation_server.layers.layernorm import (
|
||||
FastLayerNorm,
|
||||
)
|
||||
|
||||
|
||||
moe_kernels = None
|
||||
from vllm_hpu_extension.ops import DynamicFusedMOE
|
||||
|
||||
|
||||
class DbrxAttentionConfig(PretrainedConfig):
|
||||
@ -497,19 +495,15 @@ class BlockSparseMoE(nn.Module):
|
||||
|
||||
self.process_group = weights.process_group
|
||||
|
||||
self.hpu_fused_moe = DynamicFusedMOE(self.num_experts)
|
||||
for i in range(self.num_experts):
|
||||
self.hpu_fused_moe.MoeOp.w13_list[i].set_weight(self.wv1[i])
|
||||
self.hpu_fused_moe.MoeOp.w2_list[i].set_weight(self.w2[i])
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
# router_logits: (num_tokens, n_experts)
|
||||
router_logits = self.gate(x)
|
||||
|
||||
out = moe_kernels.fused_moe(
|
||||
x,
|
||||
self.wv1,
|
||||
self.w2,
|
||||
router_logits,
|
||||
self.top_k,
|
||||
renormalize=self.moe_normalize_expert_weights,
|
||||
inplace=True,
|
||||
)
|
||||
out = self.hpu_fused_moe(x, router_logits, self.top_k)
|
||||
|
||||
# Reduce sum
|
||||
if self.process_group.size() > 1:
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,796 +0,0 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" PyTorch GPTNeoX model."""
|
||||
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import os
|
||||
import torch
|
||||
import torch.distributed
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_outputs import (
|
||||
BaseModelOutputWithPast,
|
||||
CausalLMOutputWithPast,
|
||||
)
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from text_generation_server.layers import (
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
SpeculativeHead,
|
||||
)
|
||||
|
||||
|
||||
CUSTOM_KERNELS_ENABLED = False
|
||||
if (
|
||||
torch.cuda.is_available()
|
||||
and not os.environ.get("DISABLE_CUSTOM_KERNELS", "False") == "True"
|
||||
):
|
||||
try:
|
||||
from custom_kernels import fused_attention_cuda
|
||||
|
||||
CUSTOM_KERNELS_ENABLED = True
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
|
||||
def make_causal_mask(
|
||||
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
|
||||
) -> torch.BoolTensor:
|
||||
"""
|
||||
Make causal mask used for self-attention.
|
||||
"""
|
||||
batch_size, target_length = input_ids_shape
|
||||
mask = torch.ones(
|
||||
(target_length, target_length + past_key_values_length),
|
||||
dtype=torch.bool,
|
||||
device=device,
|
||||
)
|
||||
mask = mask.triu(1 + past_key_values_length)
|
||||
|
||||
expanded_mask = mask.unsqueeze(0).expand(
|
||||
batch_size, target_length, target_length + past_key_values_length
|
||||
)
|
||||
return expanded_mask
|
||||
|
||||
|
||||
def expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
|
||||
"""
|
||||
Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
|
||||
"""
|
||||
batch_size, src_length = mask.shape
|
||||
tgt_length = tgt_length if tgt_length is not None else src_length
|
||||
|
||||
expanded_mask = ~(mask[:, None, :].to(torch.bool))
|
||||
return expanded_mask.expand(batch_size, tgt_length, src_length)
|
||||
|
||||
|
||||
def prepare_attn_mask(
|
||||
attention_mask: torch.Tensor,
|
||||
input_shape: Tuple[int, int],
|
||||
past_key_values_length: int,
|
||||
) -> torch.BoolTensor:
|
||||
# create causal mask
|
||||
# [batch_size, seq_length] -> [batch_size, tgt_length, src_length]
|
||||
combined_attention_mask = None
|
||||
device = attention_mask.device
|
||||
_, src_length = input_shape
|
||||
|
||||
if src_length > 1:
|
||||
combined_attention_mask = make_causal_mask(
|
||||
input_shape, device=device, past_key_values_length=past_key_values_length
|
||||
)
|
||||
|
||||
# [batch_size, seq_length] -> [batch_size, tgt_length, src_length]
|
||||
expanded_attn_mask = expand_mask(attention_mask, tgt_length=src_length)
|
||||
combined_attention_mask = (
|
||||
expanded_attn_mask
|
||||
if combined_attention_mask is None
|
||||
else expanded_attn_mask | combined_attention_mask
|
||||
)
|
||||
|
||||
return combined_attention_mask
|
||||
|
||||
|
||||
class GPTNeoXPreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
|
||||
class GPTNeoXAttention(nn.Module):
|
||||
def __init__(self, config, prefix, weights):
|
||||
super().__init__()
|
||||
self.num_attention_heads = config.num_attention_heads
|
||||
self.hidden_size = config.hidden_size
|
||||
self.head_size = self.hidden_size // self.num_attention_heads
|
||||
self.rotary_ndims = int(self.head_size * config.rotary_pct)
|
||||
# ??? TODO
|
||||
# self.register_buffer(
|
||||
# "bias",
|
||||
# torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
||||
# 1, 1, max_positions, max_positions
|
||||
# ),
|
||||
# )
|
||||
# self.register_buffer("masked_bias", torch.tensor(-1e9))
|
||||
self.rotary_emb = RotaryEmbedding(
|
||||
self.rotary_ndims,
|
||||
config.max_position_embeddings,
|
||||
base=config.rotary_emb_base,
|
||||
)
|
||||
self.rotary_emb.inv_freq = nn.Parameter(
|
||||
weights.get_tensor(f"{prefix}.rotary_emb.inv_freq")
|
||||
)
|
||||
self.inv_norm_factor = 1.0 / torch.sqrt(
|
||||
torch.tensor(self.head_size, dtype=torch.float32)
|
||||
).to(torch.get_default_dtype())
|
||||
|
||||
if self.num_attention_heads % weights.process_group.size() != 0:
|
||||
raise ValueError(
|
||||
f"`num_attention_heads` must be divisible by `num_shards` "
|
||||
f"(got `num_attention_heads`: {self.num_attention_heads} "
|
||||
f"and `num_shards`: {weights.process_group.size()}"
|
||||
)
|
||||
self.num_attention_heads = (
|
||||
self.num_attention_heads // weights.process_group.size()
|
||||
)
|
||||
self.query_key_value = TensorParallelColumnLinear.load(
|
||||
config, prefix=f"{prefix}.query_key_value", weights=weights, bias=True
|
||||
)
|
||||
self.dense = TensorParallelRowLinear.load(
|
||||
config, prefix=f"{prefix}.dense", weights=weights, bias=True
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
position_ids,
|
||||
attention_mask,
|
||||
head_mask=None,
|
||||
layer_past=None,
|
||||
use_cache=False,
|
||||
output_attentions=False,
|
||||
):
|
||||
has_layer_past = layer_past is not None
|
||||
|
||||
# Compute QKV
|
||||
# Attention heads [batch, seq_len, hidden_size]
|
||||
# --> [batch, seq_len, (np * 3 * head_size)]
|
||||
qkv = self.query_key_value(hidden_states)
|
||||
|
||||
# [batch, seq_len, (num_heads * 3 * head_size)]
|
||||
# --> [batch, seq_len, num_heads, 3 * head_size]
|
||||
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
|
||||
qkv = qkv.view(*new_qkv_shape).permute(0, 2, 1, 3)
|
||||
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
|
||||
query, key, value = qkv.split(self.head_size, -1)
|
||||
|
||||
# Compute token offset for rotary embeddings (when decoding)
|
||||
seq_len = key.shape[-2]
|
||||
if has_layer_past:
|
||||
seq_len += layer_past[0].shape[-2]
|
||||
|
||||
# Compute rotary embeddings on rotary_ndims
|
||||
query_rot = query[..., : self.rotary_ndims]
|
||||
key_rot = key[..., : self.rotary_ndims]
|
||||
|
||||
query_rot, key_rot = self.rotary_emb(query_rot, key_rot, position_ids, seq_len)
|
||||
|
||||
query[..., : self.rotary_ndims] = query_rot
|
||||
key[..., : self.rotary_ndims] = key_rot
|
||||
|
||||
if CUSTOM_KERNELS_ENABLED:
|
||||
attn_output, present, attn_weights = fused_attention_cuda.forward(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
layer_past,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
self.inv_norm_factor,
|
||||
self.num_attention_heads,
|
||||
use_cache,
|
||||
)
|
||||
else:
|
||||
# Cache QKV values
|
||||
if has_layer_past:
|
||||
past_key = layer_past[0]
|
||||
past_value = layer_past[1]
|
||||
key = torch.cat((past_key, key), dim=-2)
|
||||
value = torch.cat((past_value, value), dim=-2)
|
||||
present = (key, value) if use_cache else None
|
||||
|
||||
# Compute attention
|
||||
attn_output, attn_weights = self._attn(
|
||||
query, key, value, attention_mask, head_mask
|
||||
)
|
||||
|
||||
# Reshape outputs
|
||||
attn_output = self._merge_heads(
|
||||
attn_output, self.num_attention_heads, self.head_size
|
||||
)
|
||||
|
||||
attn_output = self.dense(attn_output)
|
||||
|
||||
outputs = (attn_output, present)
|
||||
if output_attentions:
|
||||
outputs += (attn_weights,)
|
||||
|
||||
return outputs
|
||||
|
||||
@classmethod
|
||||
def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
|
||||
"""
|
||||
Splits hidden dim into attn_head_size and num_attention_heads
|
||||
"""
|
||||
# tensor: [bs, seq_len, hidden_size]
|
||||
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
|
||||
# -> [bs, seq_len, num_attention_heads, attn_head_size]
|
||||
tensor = tensor.view(new_shape)
|
||||
# -> [bs, num_attention_heads, seq_len, attn_head_size]
|
||||
tensor = tensor.permute(0, 2, 1, 3)
|
||||
return tensor
|
||||
|
||||
@classmethod
|
||||
def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
|
||||
"""
|
||||
Merges attn_head_size dim and num_attn_heads dim into hidden dim
|
||||
"""
|
||||
# tensor [bs, num_attention_heads, seq_len, attn_head_size]
|
||||
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
||||
# -> [bs, seq_len, num_attention_heads, attn_head_size]
|
||||
tensor = tensor.view(
|
||||
tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size
|
||||
)
|
||||
# -> [bs, seq_len, hidden_size]
|
||||
return tensor
|
||||
|
||||
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
||||
# q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
|
||||
# compute causal mask from causal mask buffer
|
||||
batch_size, num_attention_heads, query_length, attn_head_size = query.size()
|
||||
key_length = key.size(-2)
|
||||
|
||||
query = query.reshape(
|
||||
batch_size * num_attention_heads, query_length, attn_head_size
|
||||
)
|
||||
key = key.reshape(batch_size * num_attention_heads, key_length, attn_head_size)
|
||||
attn_scores = torch.zeros(
|
||||
1,
|
||||
dtype=query.dtype,
|
||||
device=key.device,
|
||||
).expand(batch_size * num_attention_heads, query_length, key_length)
|
||||
attn_scores = torch.baddbmm(
|
||||
attn_scores,
|
||||
query,
|
||||
key.transpose(1, 2),
|
||||
beta=1.0,
|
||||
alpha=self.inv_norm_factor,
|
||||
)
|
||||
|
||||
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
|
||||
input_dtype = attn_scores.dtype
|
||||
if input_dtype in [torch.float16, torch.bfloat16]:
|
||||
attn_scores = attn_scores.to(torch.float)
|
||||
attn_scores = torch.where(
|
||||
attention_mask, torch.finfo(attn_scores.dtype).min, attn_scores
|
||||
)
|
||||
attn_scores = attn_scores.view(
|
||||
batch_size, num_attention_heads, query_length, key_length
|
||||
)
|
||||
|
||||
attn_weights = nn.functional.softmax(attn_scores, dim=-1)
|
||||
attn_weights = attn_weights.to(value.dtype)
|
||||
|
||||
# Mask heads if we want to
|
||||
if head_mask is not None:
|
||||
attn_weights = attn_weights * head_mask
|
||||
|
||||
attn_output = torch.matmul(attn_weights, value)
|
||||
return attn_output, attn_weights
|
||||
|
||||
|
||||
class RotaryEmbedding(torch.nn.Module):
|
||||
def __init__(self, dim, max_position_embeddings, base=10000, device=None):
|
||||
super().__init__()
|
||||
self.true_inv_freq = 1.0 / (
|
||||
base ** (torch.arange(0, dim, 2).float().to(device) / dim)
|
||||
)
|
||||
self.register_buffer("inv_freq", self.true_inv_freq)
|
||||
|
||||
# Build here to make `torch.jit.trace` work.
|
||||
self.max_seq_len_cached = max_position_embeddings
|
||||
self.cos_cached = None
|
||||
self.sin_cached = None
|
||||
|
||||
@staticmethod
|
||||
def rotate_half(x):
|
||||
"""Rotates half the hidden dims of the input."""
|
||||
x1 = x[..., : x.shape[-1] // 2]
|
||||
x2 = x[..., x.shape[-1] // 2 :]
|
||||
return torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
@staticmethod
|
||||
def _create_cos_sin(inv_freq, max_position_embeddings, dtype, device):
|
||||
t = torch.arange(
|
||||
max_position_embeddings, device=inv_freq.device, dtype=inv_freq.dtype
|
||||
)
|
||||
freqs = torch.einsum("i,j->ij", t, inv_freq)
|
||||
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
return emb.cos().to(device).to(dtype), emb.sin().to(device).to(dtype)
|
||||
|
||||
def forward(self, q, k, position_ids, seq_len=None):
|
||||
# x: [bs, num_attention_heads, seq_len, head_size]
|
||||
if (
|
||||
seq_len > self.max_seq_len_cached
|
||||
or self.cos_cached is None
|
||||
or self.sin_cached is None
|
||||
):
|
||||
if seq_len > self.max_seq_len_cached:
|
||||
self.max_seq_len_cached = seq_len
|
||||
self.cos_cached, self.sin_cached = self._create_cos_sin(
|
||||
self.true_inv_freq, self.max_seq_len_cached, q.dtype, q.device
|
||||
)
|
||||
return rotary_forward(q, k, self.cos_cached, self.sin_cached, position_ids)
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def rotary_forward(q, k, cos, sin, position_ids):
|
||||
cos = cos[position_ids].unsqueeze(1)
|
||||
sin = sin[position_ids].unsqueeze(1)
|
||||
|
||||
chunk_size = q.shape[-1] // 2
|
||||
q1, q2 = q.split(chunk_size, -1)
|
||||
q_rotated = torch.cat((-q2, q1), dim=-1)
|
||||
k1, k2 = k.split(chunk_size, -1)
|
||||
k_rotated = torch.cat((-k2, k1), dim=-1)
|
||||
|
||||
q_embed = (q * cos) + (q_rotated * sin)
|
||||
k_embed = (k * cos) + (k_rotated * sin)
|
||||
return q_embed, k_embed
|
||||
|
||||
|
||||
class GPTNeoXMLP(nn.Module):
|
||||
def __init__(self, config, prefix, weights):
|
||||
super().__init__()
|
||||
self.act = (
|
||||
ACT2FN[config.hidden_act]
|
||||
if "gelu_fast" not in config.hidden_act
|
||||
else lambda x: torch.nn.functional.gelu(x, approximate="tanh")
|
||||
)
|
||||
|
||||
self.dense_h_to_4h = TensorParallelColumnLinear.load(
|
||||
config, prefix=f"{prefix}.dense_h_to_4h", weights=weights, bias=True
|
||||
)
|
||||
self.dense_4h_to_h = TensorParallelRowLinear.load(
|
||||
config, prefix=f"{prefix}.dense_4h_to_h", weights=weights, bias=True
|
||||
)
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.dense_h_to_4h(hidden_states)
|
||||
hidden_states = self.act(hidden_states)
|
||||
hidden_states = self.dense_4h_to_h(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class GPTNeoXLayer(nn.Module):
|
||||
def __init__(self, layer_id, prefix: str, config, weights):
|
||||
super().__init__()
|
||||
self.use_parallel_residual = config.use_parallel_residual
|
||||
self.input_layernorm = nn.LayerNorm.load(
|
||||
prefix=f"{prefix}.layers.{layer_id}.input_layernorm",
|
||||
weights=weights,
|
||||
eps=config.layer_norm_eps,
|
||||
)
|
||||
self.post_attention_layernorm = nn.LayerNorm.load(
|
||||
prefix=f"{prefix}.layers.{layer_id}.post_attention_layernorm",
|
||||
weights=weights,
|
||||
eps=config.layer_norm_eps,
|
||||
)
|
||||
self.attention = GPTNeoXAttention(
|
||||
config, prefix=f"{prefix}.layers.{layer_id}.attention", weights=weights
|
||||
)
|
||||
self.mlp = GPTNeoXMLP(
|
||||
config, prefix=f"{prefix}.layers.{layer_id}.mlp", weights=weights
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
position_ids,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
use_cache=False,
|
||||
layer_past=None,
|
||||
output_attentions=False,
|
||||
):
|
||||
attention_layer_outputs = self.attention(
|
||||
self.input_layernorm(hidden_states),
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
layer_past=layer_past,
|
||||
head_mask=head_mask,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
attn_output = attention_layer_outputs[
|
||||
0
|
||||
] # output_attn: attn_output, present, (attn_weights)
|
||||
outputs = attention_layer_outputs[1:]
|
||||
|
||||
if self.use_parallel_residual:
|
||||
# pseudocode:
|
||||
# x = x + attn(ln1(x)) + mlp(ln2(x))
|
||||
mlp_output = self.mlp(self.post_attention_layernorm(hidden_states))
|
||||
hidden_states = mlp_output + attn_output + hidden_states
|
||||
else:
|
||||
# pseudocode:
|
||||
# x = x + attn(ln1(x))
|
||||
# x = x + mlp(ln2(x))
|
||||
attn_output = attn_output + hidden_states
|
||||
mlp_output = self.mlp(self.post_attention_layernorm(attn_output))
|
||||
hidden_states = mlp_output + attn_output
|
||||
|
||||
if use_cache:
|
||||
outputs = (
|
||||
hidden_states,
|
||||
) + outputs # hidden_states, present, (attn_weights)
|
||||
else:
|
||||
outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
class GPTNeoXModel(GPTNeoXPreTrainedModel):
|
||||
def __init__(self, prefix: str, config, weights):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
|
||||
self.num_attention_heads = config.num_attention_heads
|
||||
|
||||
self.embed_in = TensorParallelEmbedding(
|
||||
prefix=f"{prefix}.embed_in", weights=weights
|
||||
)
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
GPTNeoXLayer(layer_id, prefix, config, weights)
|
||||
for layer_id in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
self.final_layer_norm = nn.LayerNorm.load(
|
||||
prefix=f"{prefix}.final_layer_norm",
|
||||
weights=weights,
|
||||
eps=config.layer_norm_eps,
|
||||
)
|
||||
self.tp_world_size = weights.process_group.size()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
position_ids=None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
r"""
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
||||
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||||
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||||
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
"""
|
||||
output_attentions = (
|
||||
output_attentions
|
||||
if output_attentions is not None
|
||||
else self.config.output_attentions
|
||||
)
|
||||
output_hidden_states = (
|
||||
output_hidden_states
|
||||
if output_hidden_states is not None
|
||||
else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = (
|
||||
return_dict if return_dict is not None else self.config.use_return_dict
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError(
|
||||
"You cannot specify both input_ids and inputs_embeds at the same time"
|
||||
)
|
||||
elif input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
elif inputs_embeds is not None:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
batch_size, seq_length = input_shape
|
||||
|
||||
if past_key_values is None:
|
||||
past_length = 0
|
||||
past_key_values = tuple([None] * self.config.num_hidden_layers)
|
||||
else:
|
||||
past_length = past_key_values[0][0].size(-2)
|
||||
|
||||
if position_ids is None:
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
position_ids = torch.arange(
|
||||
past_length, seq_length + past_length, dtype=torch.long, device=device
|
||||
)
|
||||
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
||||
else:
|
||||
position_ids = position_ids.view(-1, seq_length).long()
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_in(input_ids)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
# Attention mask.
|
||||
seq_length_with_past = seq_length
|
||||
past_key_values_length = 0
|
||||
if past_key_values[0] is not None:
|
||||
past_key_values_length = past_key_values[0][0].shape[-1]
|
||||
seq_length_with_past = seq_length_with_past + past_key_values_length
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(
|
||||
(batch_size, seq_length_with_past), device=hidden_states.device
|
||||
)
|
||||
else:
|
||||
attention_mask = attention_mask.to(hidden_states.device)
|
||||
|
||||
causal_mask = prepare_attn_mask(
|
||||
attention_mask,
|
||||
input_shape=(batch_size, seq_length),
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
|
||||
assert self.num_attention_heads % self.tp_world_size == 0
|
||||
block_size = self.num_attention_heads // self.tp_world_size
|
||||
causal_mask = torch.repeat_interleave(causal_mask, block_size, dim=0)
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape bsz x n_heads x N x N
|
||||
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||||
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||||
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||||
|
||||
presents = () if use_cache else None
|
||||
all_attentions = () if output_attentions else None
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
outputs = layer(
|
||||
hidden_states,
|
||||
position_ids=position_ids,
|
||||
attention_mask=causal_mask,
|
||||
head_mask=head_mask[i],
|
||||
layer_past=layer_past,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
hidden_states = outputs[0]
|
||||
if use_cache is True:
|
||||
presents = presents + (outputs[1],)
|
||||
if output_attentions:
|
||||
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
|
||||
|
||||
hidden_states = self.final_layer_norm(hidden_states)
|
||||
# Add last hidden state
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(
|
||||
v
|
||||
for v in [hidden_states, presents, all_hidden_states, all_attentions]
|
||||
if v is not None
|
||||
)
|
||||
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=presents,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_attentions,
|
||||
)
|
||||
|
||||
|
||||
class GPTNeoxForCausalLM(GPTNeoXPreTrainedModel):
|
||||
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
||||
|
||||
def __init__(self, prefix: str, config, weights):
|
||||
super().__init__(config)
|
||||
|
||||
if not prefix:
|
||||
prefix = "gpt_neox"
|
||||
else:
|
||||
prefix = f"{prefix}.gpt_neox"
|
||||
|
||||
self.gpt_neox = GPTNeoXModel(prefix, config, weights)
|
||||
self.embed_out = SpeculativeHead.load(
|
||||
config, prefix="embed_out", weights=weights
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
r"""
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
||||
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
||||
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are
|
||||
only required when the model is used as a decoder in a Sequence to Sequence model.
|
||||
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see
|
||||
`past_key_values` input) to speed up sequential decoding.
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||||
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||||
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
||||
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
||||
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
|
||||
Returns:
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, GPTNeoXForCausalLM, GPTNeoXConfig
|
||||
>>> import torch
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
|
||||
>>> config = GPTNeoXConfig.from_pretrained("EleutherAI/gpt-neox-20b")
|
||||
>>> config.is_decoder = True
|
||||
>>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config)
|
||||
|
||||
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
||||
>>> outputs = model(**inputs)
|
||||
|
||||
>>> prediction_logits = outputs.logits
|
||||
```"""
|
||||
return_dict = (
|
||||
return_dict if return_dict is not None else self.config.use_return_dict
|
||||
)
|
||||
|
||||
outputs = self.gpt_neox(
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
lm_logits, speculative_logits = self.embed_out(hidden_states)
|
||||
|
||||
lm_loss = None
|
||||
if labels is not None:
|
||||
# move labels to correct device to enable model parallelism
|
||||
labels = labels.to(lm_logits.device)
|
||||
# we are doing next-token prediction; shift prediction scores and input ids by one
|
||||
shift_logits = lm_logits[:, :-1, :].contiguous()
|
||||
labels = labels[:, 1:].contiguous()
|
||||
loss_fct = CrossEntropyLoss()
|
||||
lm_loss = loss_fct(
|
||||
shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)
|
||||
)
|
||||
|
||||
if not return_dict:
|
||||
output = (lm_logits,) + outputs[1:]
|
||||
return ((lm_loss,) + output) if lm_loss is not None else output
|
||||
|
||||
return (
|
||||
CausalLMOutputWithPast(
|
||||
loss=lm_loss,
|
||||
logits=lm_logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
),
|
||||
speculative_logits,
|
||||
)
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self,
|
||||
input_ids,
|
||||
past_key_values=None,
|
||||
attention_mask=None,
|
||||
inputs_embeds=None,
|
||||
**kwargs,
|
||||
):
|
||||
input_shape = input_ids.shape
|
||||
|
||||
# cut decoder_input_ids if past is used
|
||||
if past_key_values and past_key_values[0] is not None:
|
||||
input_ids = input_ids[:, -1:]
|
||||
|
||||
position_ids = kwargs.get("position_ids", None)
|
||||
if attention_mask is not None and position_ids is None:
|
||||
# create position_ids on the fly for batch generation
|
||||
position_ids = attention_mask.long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(attention_mask == 0, 1)
|
||||
if past_key_values:
|
||||
position_ids = position_ids[:, -1].unsqueeze(-1)
|
||||
|
||||
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
||||
if attention_mask is None:
|
||||
attention_mask = input_ids.new_ones(input_shape)
|
||||
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and past_key_values is None:
|
||||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||
else:
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
|
||||
model_inputs.update(
|
||||
{
|
||||
"attention_mask": attention_mask,
|
||||
"past_key_values": past_key_values,
|
||||
"position_ids": position_ids,
|
||||
}
|
||||
)
|
||||
|
||||
return model_inputs
|
||||
|
||||
def _reorder_cache(self, past_key_values, beam_idx):
|
||||
reordered_past = ()
|
||||
for layer_past in past_key_values:
|
||||
reordered_past += (
|
||||
tuple(
|
||||
past_state.index_select(0, beam_idx)
|
||||
for past_state in layer_past[:2]
|
||||
)
|
||||
+ layer_past[2:],
|
||||
)
|
||||
return reordered_past
|
@ -1,864 +0,0 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""PyTorch OPT model."""
|
||||
|
||||
import random
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_outputs import (
|
||||
BaseModelOutputWithPast,
|
||||
CausalLMOutputWithPast,
|
||||
)
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers import OPTConfig
|
||||
from text_generation_server.layers import (
|
||||
FastLinear,
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
SpeculativeHead,
|
||||
)
|
||||
|
||||
EPS = 1e-5
|
||||
|
||||
|
||||
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
||||
def _make_causal_mask(
|
||||
input_ids_shape: torch.Size,
|
||||
dtype: torch.dtype,
|
||||
device: torch.device,
|
||||
past_key_values_length: int = 0,
|
||||
):
|
||||
"""
|
||||
Make causal mask used for bi-directional self-attention.
|
||||
"""
|
||||
bsz, tgt_len = input_ids_shape
|
||||
mask = torch.full(
|
||||
(tgt_len, tgt_len),
|
||||
torch.tensor(torch.finfo(dtype).min, device=device),
|
||||
device=device,
|
||||
)
|
||||
mask_cond = torch.arange(mask.size(-1), device=device)
|
||||
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
||||
mask = mask.to(dtype)
|
||||
|
||||
if past_key_values_length > 0:
|
||||
mask = torch.cat(
|
||||
[
|
||||
torch.zeros(
|
||||
tgt_len, past_key_values_length, dtype=dtype, device=device
|
||||
),
|
||||
mask,
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
return mask[None, None, :, :].expand(
|
||||
bsz, 1, tgt_len, tgt_len + past_key_values_length
|
||||
)
|
||||
|
||||
|
||||
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
||||
"""
|
||||
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
||||
"""
|
||||
bsz, src_len = mask.size()
|
||||
tgt_len = tgt_len if tgt_len is not None else src_len
|
||||
|
||||
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
||||
|
||||
inverted_mask = 1.0 - expanded_mask
|
||||
|
||||
return inverted_mask.masked_fill(
|
||||
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
||||
)
|
||||
|
||||
|
||||
class OPTLearnedPositionalEmbedding(nn.Module):
|
||||
"""
|
||||
This module learns positional embeddings up to a fixed maximum size.
|
||||
"""
|
||||
|
||||
def __init__(self, prefix: str, weights):
|
||||
super().__init__()
|
||||
self.offset = 2
|
||||
self.weight = nn.Parameter(
|
||||
weights.get_tensor(
|
||||
f"{prefix if prefix else ''}decoder.embed_positions.weight"
|
||||
)
|
||||
)
|
||||
|
||||
def forward(
|
||||
self, attention_mask: torch.LongTensor, past_key_values_length: int = 0
|
||||
):
|
||||
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
|
||||
attention_mask = attention_mask.long()
|
||||
|
||||
# create positions depending on attention_mask
|
||||
positions = (
|
||||
torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask
|
||||
).long() - 1
|
||||
|
||||
# cut positions if `past_key_values_length` is > 0
|
||||
positions = positions[:, past_key_values_length:]
|
||||
|
||||
return torch.nn.functional.embedding(positions + self.offset, self.weight)
|
||||
|
||||
|
||||
class OPTAttention(nn.Module):
|
||||
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
prefix,
|
||||
weights,
|
||||
is_decoder: bool = False,
|
||||
bias: bool = True,
|
||||
process_group=None,
|
||||
):
|
||||
super().__init__()
|
||||
hidden_size = config.hidden_size
|
||||
num_heads = config.num_attention_heads
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.num_heads = num_heads
|
||||
self.dropout = config.dropout
|
||||
self.head_dim = hidden_size // num_heads
|
||||
|
||||
if (self.head_dim * num_heads) != self.hidden_size:
|
||||
raise ValueError(
|
||||
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
||||
f" and `num_heads`: {num_heads})."
|
||||
)
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.is_decoder = is_decoder
|
||||
|
||||
process_group = weights.process_group
|
||||
if self.num_heads % weights.process_group.size() != 0:
|
||||
raise ValueError(
|
||||
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
|
||||
f"and `num_shards`: {weights.process_group.size()}"
|
||||
)
|
||||
self.num_heads = self.num_heads // process_group.size()
|
||||
self.hidden_size = self.hidden_size // process_group.size()
|
||||
|
||||
self.q_proj = TensorParallelColumnLinear.load(
|
||||
config, prefix=f"{prefix}.q_proj", weights=weights, bias=bias
|
||||
)
|
||||
self.k_proj = TensorParallelColumnLinear.load(
|
||||
config, prefix=f"{prefix}.k_proj", weights=weights, bias=bias
|
||||
)
|
||||
self.v_proj = TensorParallelColumnLinear.load(
|
||||
config, prefix=f"{prefix}.v_proj", weights=weights, bias=bias
|
||||
)
|
||||
self.out_proj = TensorParallelRowLinear.load(
|
||||
config, prefix=f"{prefix}.out_proj", weights=weights, bias=bias
|
||||
)
|
||||
|
||||
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||||
return (
|
||||
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
|
||||
.transpose(1, 2)
|
||||
.contiguous()
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
key_value_states: Optional[torch.Tensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
layer_head_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: bool = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
"""Input shape: Batch x Time x Channel"""
|
||||
|
||||
# if key_value_states are provided this layer is used as a cross-attention layer
|
||||
# for the decoder
|
||||
is_cross_attention = key_value_states is not None
|
||||
|
||||
bsz, tgt_len, _ = hidden_states.size()
|
||||
|
||||
# get query proj
|
||||
query_states = self.q_proj(hidden_states) * self.scaling
|
||||
# get key, value proj
|
||||
if is_cross_attention and past_key_value is not None:
|
||||
# reuse k,v, cross_attentions
|
||||
key_states = past_key_value[0]
|
||||
value_states = past_key_value[1]
|
||||
elif is_cross_attention:
|
||||
# cross_attentions
|
||||
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
||||
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
||||
elif past_key_value is not None:
|
||||
# reuse k, v, self_attention
|
||||
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
||||
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
||||
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||||
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||||
else:
|
||||
# self_attention
|
||||
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
||||
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
||||
|
||||
if self.is_decoder:
|
||||
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
||||
# Further calls to cross_attention layer can then reuse all cross-attention
|
||||
# key/value_states (first "if" case)
|
||||
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
||||
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
||||
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
||||
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
||||
past_key_value = (key_states, value_states)
|
||||
|
||||
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
||||
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
||||
key_states = key_states.view(*proj_shape)
|
||||
value_states = value_states.view(*proj_shape)
|
||||
|
||||
src_len = key_states.size(1)
|
||||
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
||||
|
||||
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
||||
raise ValueError(
|
||||
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
||||
f" {attn_weights.size()}"
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
||||
raise ValueError(
|
||||
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
||||
)
|
||||
attn_weights = (
|
||||
attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||||
+ attention_mask
|
||||
)
|
||||
attn_weights = torch.max(
|
||||
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
|
||||
)
|
||||
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||||
|
||||
# upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437
|
||||
if attn_weights.dtype == torch.float16:
|
||||
attn_weights = nn.functional.softmax(
|
||||
attn_weights, dim=-1, dtype=torch.float32
|
||||
).to(torch.float16)
|
||||
else:
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||||
|
||||
if layer_head_mask is not None:
|
||||
if layer_head_mask.size() != (self.num_heads,):
|
||||
raise ValueError(
|
||||
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
||||
f" {layer_head_mask.size()}"
|
||||
)
|
||||
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(
|
||||
bsz, self.num_heads, tgt_len, src_len
|
||||
)
|
||||
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||||
|
||||
if output_attentions:
|
||||
# this operation is a bit awkward, but it's required to
|
||||
# make sure that attn_weights keeps its gradient.
|
||||
# In order to do so, attn_weights have to be reshaped
|
||||
# twice and have to be reused in the following
|
||||
attn_weights_reshaped = attn_weights.view(
|
||||
bsz, self.num_heads, tgt_len, src_len
|
||||
)
|
||||
attn_weights = attn_weights_reshaped.view(
|
||||
bsz * self.num_heads, tgt_len, src_len
|
||||
)
|
||||
else:
|
||||
attn_weights_reshaped = None
|
||||
|
||||
attn_probs = nn.functional.dropout(
|
||||
attn_weights, p=self.dropout, training=self.training
|
||||
)
|
||||
|
||||
attn_output = torch.bmm(attn_probs, value_states)
|
||||
|
||||
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
||||
raise ValueError(
|
||||
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
||||
f" {attn_output.size()}"
|
||||
)
|
||||
|
||||
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
||||
attn_output = attn_output.transpose(1, 2)
|
||||
|
||||
# Use the `hidden_size` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
||||
# partitioned aross GPUs when using tensor-parallelism.
|
||||
attn_output = attn_output.reshape(bsz, tgt_len, self.hidden_size)
|
||||
|
||||
attn_output = self.out_proj(attn_output)
|
||||
|
||||
return attn_output, attn_weights_reshaped, past_key_value
|
||||
|
||||
|
||||
class OPTDecoderLayer(nn.Module):
|
||||
def __init__(self, layer_id: int, prefix: str, config: OPTConfig, weights):
|
||||
super().__init__()
|
||||
self.process_group = weights.process_group
|
||||
self.hidden_size = config.hidden_size
|
||||
self.self_attn = OPTAttention(
|
||||
config,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
weights=weights,
|
||||
is_decoder=True,
|
||||
bias=config.enable_bias,
|
||||
)
|
||||
self.do_layer_norm_before = config.do_layer_norm_before
|
||||
self.dropout = config.dropout
|
||||
self.activation_fn = ACT2FN[config.activation_function]
|
||||
|
||||
self.self_attn_layer_norm = nn.LayerNorm.load(
|
||||
prefix=f"{prefix}.self_attn_layer_norm", weights=weights, eps=EPS
|
||||
)
|
||||
self.fc1 = TensorParallelColumnLinear.load(
|
||||
config, prefix=f"{prefix}.fc1", weights=weights, bias=config.enable_bias
|
||||
)
|
||||
self.fc2 = TensorParallelRowLinear.load(
|
||||
config, prefix=f"{prefix}.fc2", weights=weights, bias=config.enable_bias
|
||||
)
|
||||
self.final_layer_norm = nn.LayerNorm.load(
|
||||
prefix=f"{prefix}.final_layer_norm", weights=weights, eps=EPS
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
layer_head_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
) -> Tuple[
|
||||
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
||||
]:
|
||||
"""
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, hidden_size)`
|
||||
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
||||
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
||||
layer_head_mask (`torch.FloatTensor`, *optional*): mask for attention heads in a given layer of size
|
||||
`(encoder_attention_heads,)`.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
||||
(see `past_key_values`).
|
||||
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
||||
"""
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
|
||||
if self.do_layer_norm_before:
|
||||
hidden_states = self.self_attn_layer_norm(hidden_states)
|
||||
|
||||
# Self Attention
|
||||
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
||||
hidden_states=hidden_states,
|
||||
past_key_value=past_key_value,
|
||||
attention_mask=attention_mask,
|
||||
layer_head_mask=layer_head_mask,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
hidden_states = nn.functional.dropout(
|
||||
hidden_states, p=self.dropout, training=self.training
|
||||
)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
# 350m applies layer norm AFTER attention
|
||||
if not self.do_layer_norm_before:
|
||||
hidden_states = self.self_attn_layer_norm(hidden_states)
|
||||
|
||||
# Fully Connected
|
||||
hidden_states_shape = hidden_states.shape
|
||||
hidden_states = hidden_states.reshape(-1, hidden_states.size(-1))
|
||||
residual = hidden_states
|
||||
|
||||
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
|
||||
if self.do_layer_norm_before:
|
||||
hidden_states = self.final_layer_norm(hidden_states)
|
||||
|
||||
hidden_states = self.fc1(hidden_states)
|
||||
hidden_states = self.activation_fn(hidden_states)
|
||||
|
||||
hidden_states = self.fc2(hidden_states)
|
||||
hidden_states = nn.functional.dropout(
|
||||
hidden_states, p=self.dropout, training=self.training
|
||||
)
|
||||
|
||||
hidden_states = (residual + hidden_states).view(hidden_states_shape)
|
||||
|
||||
# 350m applies layer norm AFTER attention
|
||||
if not self.do_layer_norm_before:
|
||||
hidden_states = self.final_layer_norm(hidden_states)
|
||||
|
||||
outputs = (hidden_states,)
|
||||
|
||||
if output_attentions:
|
||||
outputs += (self_attn_weights,)
|
||||
|
||||
if use_cache:
|
||||
outputs += (present_key_value,)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
class OPTPreTrainedModel(PreTrainedModel):
|
||||
config_class = OPTConfig
|
||||
|
||||
|
||||
class OPTDecoder(OPTPreTrainedModel):
|
||||
def __init__(self, prefix: str, config: OPTConfig, weights):
|
||||
super().__init__(config)
|
||||
self.dropout = config.dropout
|
||||
self.layerdrop = config.layerdrop
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.max_target_positions = config.max_position_embeddings
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
prefix = prefix + "." if prefix else ""
|
||||
|
||||
self.embed_tokens = TensorParallelEmbedding(
|
||||
prefix=f"{prefix}decoder.embed_tokens", weights=weights
|
||||
)
|
||||
self.embed_positions = OPTLearnedPositionalEmbedding(prefix, weights)
|
||||
|
||||
if config.word_embed_proj_dim != config.hidden_size:
|
||||
self.project_out = FastLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}decoder.project_out",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
else:
|
||||
self.project_out = None
|
||||
|
||||
if config.word_embed_proj_dim != config.hidden_size:
|
||||
self.project_in = FastLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}decoder.project_in",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
else:
|
||||
self.project_in = None
|
||||
|
||||
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
|
||||
# with checkpoints that have been fine-tuned before transformers v4.20.1
|
||||
# see https://github.com/facebookresearch/metaseq/pull/164
|
||||
if config.do_layer_norm_before and not config._remove_final_layer_norm:
|
||||
self.final_layer_norm = nn.LayerNorm.load(
|
||||
prefix=f"{prefix}decoder.final_layer_norm", weights=weights, eps=EPS
|
||||
)
|
||||
else:
|
||||
self.final_layer_norm = None
|
||||
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
OPTDecoderLayer(
|
||||
layer_id,
|
||||
prefix=f"{prefix}decoder.layers.{layer_id}",
|
||||
config=config,
|
||||
weights=weights,
|
||||
)
|
||||
for layer_id in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
|
||||
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
||||
def _prepare_decoder_attention_mask(
|
||||
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
|
||||
):
|
||||
# create causal mask
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
combined_attention_mask = None
|
||||
if input_shape[-1] > 1:
|
||||
combined_attention_mask = _make_causal_mask(
|
||||
input_shape,
|
||||
inputs_embeds.dtype,
|
||||
device=inputs_embeds.device,
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
expanded_attn_mask = _expand_mask(
|
||||
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
||||
).to(inputs_embeds.device)
|
||||
combined_attention_mask = (
|
||||
expanded_attn_mask
|
||||
if combined_attention_mask is None
|
||||
else expanded_attn_mask + combined_attention_mask
|
||||
)
|
||||
|
||||
return combined_attention_mask
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
||||
provide it.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
|
||||
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
||||
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
||||
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
||||
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
||||
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
||||
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
||||
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||||
than the model's internal embedding lookup matrix.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
||||
for more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
output_attentions = (
|
||||
output_attentions
|
||||
if output_attentions is not None
|
||||
else self.config.output_attentions
|
||||
)
|
||||
output_hidden_states = (
|
||||
output_hidden_states
|
||||
if output_hidden_states is not None
|
||||
else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
|
||||
return_dict = (
|
||||
return_dict if return_dict is not None else self.config.use_return_dict
|
||||
)
|
||||
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError(
|
||||
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
||||
)
|
||||
elif input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
input_ids = input_ids.view(-1, input_shape[-1])
|
||||
elif inputs_embeds is not None:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
else:
|
||||
raise ValueError(
|
||||
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
||||
)
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
|
||||
batch_size, seq_length = input_shape
|
||||
past_key_values_length = (
|
||||
past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
||||
)
|
||||
# required mask seq length can be calculated via length of past
|
||||
mask_seq_length = past_key_values_length + seq_length
|
||||
|
||||
# embed positions
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(
|
||||
batch_size, mask_seq_length, device=inputs_embeds.device
|
||||
)
|
||||
causal_attention_mask = self._prepare_decoder_attention_mask(
|
||||
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
||||
)
|
||||
pos_embeds = self.embed_positions(attention_mask, past_key_values_length)
|
||||
|
||||
if self.project_in is not None:
|
||||
inputs_embeds = self.project_in(inputs_embeds)
|
||||
|
||||
hidden_states = inputs_embeds + pos_embeds
|
||||
|
||||
# decoder layers
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attns = () if output_attentions else None
|
||||
next_decoder_cache = () if use_cache else None
|
||||
|
||||
# check if head_mask has a correct number of layers specified if desired
|
||||
for attn_mask, mask_name in zip([head_mask], ["head_mask"]):
|
||||
if attn_mask is not None:
|
||||
if attn_mask.size()[0] != (len(self.layers)):
|
||||
raise ValueError(
|
||||
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
|
||||
f" {head_mask.size()[0]}."
|
||||
)
|
||||
|
||||
for idx, decoder_layer in enumerate(self.layers):
|
||||
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
dropout_probability = random.uniform(0, 1)
|
||||
if self.training and (dropout_probability < self.layerdrop):
|
||||
continue
|
||||
|
||||
past_key_value = (
|
||||
past_key_values[idx] if past_key_values is not None else None
|
||||
)
|
||||
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=causal_attention_mask,
|
||||
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attns += (layer_outputs[1],)
|
||||
|
||||
if self.final_layer_norm is not None:
|
||||
hidden_states = self.final_layer_norm(hidden_states)
|
||||
|
||||
if self.project_out is not None:
|
||||
hidden_states = self.project_out(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = next_decoder_cache if use_cache else None
|
||||
if not return_dict:
|
||||
return tuple(
|
||||
v
|
||||
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
||||
if v is not None
|
||||
)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
||||
|
||||
class OPTModel(OPTPreTrainedModel):
|
||||
def __init__(self, prefix: str, config: OPTConfig, weights):
|
||||
super().__init__(config)
|
||||
self.decoder = OPTDecoder(prefix, config, weights)
|
||||
# Initialize weights and apply final processing
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
output_attentions = (
|
||||
output_attentions
|
||||
if output_attentions is not None
|
||||
else self.config.output_attentions
|
||||
)
|
||||
output_hidden_states = (
|
||||
output_hidden_states
|
||||
if output_hidden_states is not None
|
||||
else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = (
|
||||
return_dict if return_dict is not None else self.config.use_return_dict
|
||||
)
|
||||
|
||||
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
|
||||
decoder_outputs = self.decoder(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
if not return_dict:
|
||||
return decoder_outputs
|
||||
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=decoder_outputs.last_hidden_state,
|
||||
past_key_values=decoder_outputs.past_key_values,
|
||||
hidden_states=decoder_outputs.hidden_states,
|
||||
attentions=decoder_outputs.attentions,
|
||||
)
|
||||
|
||||
|
||||
class OPTForCausalLM(OPTPreTrainedModel):
|
||||
def __init__(self, prefix, config, weights):
|
||||
super().__init__(config)
|
||||
if not prefix and any(s.startswith("model") for s in weights.routing.keys()):
|
||||
prefix = "model"
|
||||
|
||||
self.model = OPTModel(prefix, config, weights)
|
||||
|
||||
self.lm_head = SpeculativeHead.load(
|
||||
config,
|
||||
prefix=f"{prefix + '.' if prefix else ''}decoder.embed_tokens",
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
output_attentions = (
|
||||
output_attentions
|
||||
if output_attentions is not None
|
||||
else self.config.output_attentions
|
||||
)
|
||||
output_hidden_states = (
|
||||
output_hidden_states
|
||||
if output_hidden_states is not None
|
||||
else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = (
|
||||
return_dict if return_dict is not None else self.config.use_return_dict
|
||||
)
|
||||
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||||
outputs = self.model.decoder(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
logits, speculative_logits = self.lm_head(outputs.last_hidden_state)
|
||||
|
||||
loss = None
|
||||
|
||||
return (
|
||||
CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
),
|
||||
speculative_logits,
|
||||
)
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self,
|
||||
input_ids,
|
||||
past_key_values=None,
|
||||
attention_mask=None,
|
||||
inputs_embeds=None,
|
||||
**kwargs,
|
||||
):
|
||||
if past_key_values:
|
||||
input_ids = input_ids[:, -1:]
|
||||
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and past_key_values is None:
|
||||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||
else:
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
|
||||
model_inputs.update(
|
||||
{
|
||||
"past_key_values": past_key_values,
|
||||
"use_cache": kwargs.get("use_cache"),
|
||||
"attention_mask": attention_mask,
|
||||
}
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
@staticmethod
|
||||
def _reorder_cache(past_key_values, beam_idx):
|
||||
reordered_past = ()
|
||||
for layer_past in past_key_values:
|
||||
reordered_past += (
|
||||
tuple(
|
||||
past_state.index_select(0, beam_idx) for past_state in layer_past
|
||||
),
|
||||
)
|
||||
return reordered_past
|
@ -1,336 +0,0 @@
|
||||
# imlementation of the PhiModel and PhiForCausalLM classes
|
||||
|
||||
import torch
|
||||
import torch.distributed
|
||||
|
||||
import math
|
||||
from torch import nn
|
||||
from typing import Optional, List, Tuple
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
|
||||
from text_generation_server.layers import (
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
SpeculativeHead,
|
||||
FastLinear,
|
||||
)
|
||||
|
||||
|
||||
# PhiConfig is the configuration class for the PhiModel.
|
||||
class PhiConfig(PretrainedConfig):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=51200,
|
||||
n_positions=2048,
|
||||
n_embd=2560,
|
||||
n_layer=32,
|
||||
n_inner=None,
|
||||
n_head=32,
|
||||
rotary_dim=32,
|
||||
layer_norm_epsilon=1e-5,
|
||||
tie_word_embeddings=False,
|
||||
pad_vocab_size_multiple=64,
|
||||
pad_token_id=0,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
no_bias=False,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.n_positions = n_positions
|
||||
self.n_embd = n_embd
|
||||
self.n_layer = n_layer
|
||||
self.n_inner = n_inner
|
||||
self.n_head = n_head
|
||||
self.rotary_dim = rotary_dim
|
||||
|
||||
self.layer_norm_epsilon = layer_norm_epsilon
|
||||
self.tie_word_embeddings = tie_word_embeddings
|
||||
self.pad_vocab_size_multiple = pad_vocab_size_multiple
|
||||
self.pad_token_id = pad_token_id
|
||||
self.bos_token_id = bos_token_id
|
||||
self.eos_token_id = eos_token_id
|
||||
self.no_bias = no_bias
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
# RotaryEmbedding is a class that implements the rotary embedding.
|
||||
class RotaryEmbedding(nn.Module):
|
||||
def __init__(self, dim, max_seq_len):
|
||||
super().__init__()
|
||||
inv_freq = [1.0 / 10000.0 ** (i / dim) for i in range(0, dim, 2)]
|
||||
inv_freq_len = len(inv_freq)
|
||||
inv_freq = torch.tensor(inv_freq).view(1, inv_freq_len)
|
||||
t = torch.arange(0, max_seq_len, dtype=torch.float).view(max_seq_len, 1)
|
||||
freqs = t.matmul(inv_freq)
|
||||
self.sin = freqs.sin()
|
||||
self.cos = freqs.cos()
|
||||
|
||||
def apply_rotary_emb_qkv(self, qkv, seqlen_offset):
|
||||
b_size, seqlen, three, _, _headdim = qkv.shape
|
||||
if three != 3:
|
||||
raise Exception("unexpected shape for qkv")
|
||||
_, rotary_dim = self.cos.shape
|
||||
rotary_dim = rotary_dim * 2
|
||||
q_rot = qkv[:, :, 0, :, :rotary_dim]
|
||||
q_pass = qkv[:, :, 0, :, rotary_dim:]
|
||||
k_rot = qkv[:, :, 1, :, :rotary_dim]
|
||||
k_pass = qkv[:, :, 1, :, rotary_dim:]
|
||||
q12 = torch.chunk(q_rot, 2, dim=-1)
|
||||
k12 = torch.chunk(k_rot, 2, dim=-1)
|
||||
q1, q2 = q12[0], q12[1]
|
||||
k1, k2 = k12[0], k12[1]
|
||||
c = self.cos.narrow(0, seqlen_offset, seqlen).unsqueeze(1)
|
||||
s = self.sin.narrow(0, seqlen_offset, seqlen).unsqueeze(1)
|
||||
q_rot = torch.cat(
|
||||
[
|
||||
q1 * c - q2 * s,
|
||||
q1 * s + q2 * c,
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
k_rot = torch.cat(
|
||||
[
|
||||
k1 * c - k2 * s,
|
||||
k1 * s + k2 * c,
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
q = torch.cat([q_rot, q_pass], dim=-1)
|
||||
k = torch.cat([k_rot, k_pass], dim=-1)
|
||||
v = qkv[:, :, 2]
|
||||
return q, k, v
|
||||
|
||||
|
||||
# PhiCausalLMHead is the head of the PhiModel. It is a linear layer with a layer norm.
|
||||
class PhiCausalLMHead(nn.Module):
|
||||
def __init__(self, config, weights):
|
||||
super().__init__()
|
||||
self.ln = nn.LayerNorm.load(
|
||||
prefix="lm_head.ln",
|
||||
weights=weights,
|
||||
eps=config.layer_norm_epsilon,
|
||||
)
|
||||
self.linear = SpeculativeHead.load(
|
||||
config=config, prefix="lm_head.linear", weights=weights
|
||||
)
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.ln(hidden_states)
|
||||
hidden_states = self.linear(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
# PhiMHA is a multi-head attention layer. This layer uses an attention mask to prevent tokens from attending to subsequent tokens.
|
||||
class PhiMHA(nn.Module):
|
||||
def __init__(self, prefix, config, weights):
|
||||
super().__init__()
|
||||
self.Wqkv = TensorParallelColumnLinear.load(
|
||||
config, prefix=f"{prefix}.Wqkv", weights=weights, bias=not config.no_bias
|
||||
)
|
||||
self.out_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.out_proj",
|
||||
weights=weights,
|
||||
bias=not config.no_bias,
|
||||
)
|
||||
self.op_size = config.n_embd
|
||||
self.head_dim = int(config.n_embd / config.n_head)
|
||||
self.num_heads = config.n_head
|
||||
self.rotary_emb = RotaryEmbedding(
|
||||
config.rotary_dim,
|
||||
config.n_positions,
|
||||
)
|
||||
self.softmax_scale = 1.0 / math.sqrt(self.head_dim)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
past_kv_cache,
|
||||
attention_mask=None,
|
||||
):
|
||||
b_size, seq_len, _n_embd = hidden_states.shape
|
||||
qkv = self.Wqkv(hidden_states)
|
||||
qkv = qkv.view(b_size, seq_len, 3, self.num_heads, self.head_dim)
|
||||
seqlen_offset = 0 if past_kv_cache is None else past_kv_cache[0].shape[1]
|
||||
q, k, v = self.rotary_emb.apply_rotary_emb_qkv(qkv, seqlen_offset)
|
||||
|
||||
# if there is a kv_cache, then we need to concatenate
|
||||
if past_kv_cache is not None:
|
||||
prev_k, prev_v = past_kv_cache
|
||||
k = torch.cat([prev_k, k], dim=1)
|
||||
v = torch.cat([prev_v, v], dim=1)
|
||||
|
||||
past_kv_cache = [k, v]
|
||||
attn_weights = torch.einsum("bthd,bshd->bhts", q, k * self.softmax_scale)
|
||||
|
||||
if attention_mask is not None:
|
||||
seqlen_k = k.shape[1]
|
||||
seqlen_q = q.shape[1]
|
||||
causal_mask = torch.triu(
|
||||
torch.full((seqlen_q, seqlen_k), -10000.0, device=attn_weights.device),
|
||||
1,
|
||||
)
|
||||
attn_weights = attn_weights + causal_mask.to(dtype=attn_weights.dtype)
|
||||
|
||||
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
||||
attn_output = attn_weights.matmul(v.transpose(1, 2)).squeeze(0)
|
||||
attn_output = (
|
||||
attn_output.view((b_size, self.num_heads, seq_len, self.head_dim))
|
||||
.transpose(1, 2)
|
||||
.flatten(-2)
|
||||
)
|
||||
return self.out_proj(attn_output), past_kv_cache
|
||||
|
||||
|
||||
# PhiMLP is a multi-layer perceptron. It contains two linear layers with a gelu activation function.
|
||||
class PhiMLP(nn.Module):
|
||||
def __init__(self, prefix, config, weights):
|
||||
super().__init__()
|
||||
|
||||
self.n_inner = config.n_inner
|
||||
self.fc1 = FastLinear.load(
|
||||
config=config,
|
||||
prefix=f"{prefix}.fc1",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
self.fc2 = FastLinear.load(
|
||||
config=config,
|
||||
prefix=f"{prefix}.fc2",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
self.activation = torch.nn.functional.gelu
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.fc1(hidden_states)
|
||||
hidden_states = self.activation(hidden_states)
|
||||
hidden_states = self.fc2(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
# PhiBlock is a single transformer block. It contains a layer norm, a multi-head attention layer and an multi-layer perceptron.
|
||||
class PhiBlock(nn.Module):
|
||||
def __init__(self, layer_id, config, weights):
|
||||
super().__init__()
|
||||
self.layer_id = layer_id
|
||||
self.layer_norm = nn.LayerNorm.load(
|
||||
prefix=f"{layer_id}.ln", weights=weights, eps=config.layer_norm_epsilon
|
||||
)
|
||||
self.mixer = PhiMHA(prefix=f"{layer_id}.mixer", config=config, weights=weights)
|
||||
self.mlp = PhiMLP(prefix=f"{layer_id}.mlp", config=config, weights=weights)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
kv_cache,
|
||||
attention_mask,
|
||||
):
|
||||
residual = hidden_states
|
||||
hidden_states = self.layer_norm(hidden_states)
|
||||
attn_outputs, past_kv_cache = self.mixer(
|
||||
hidden_states, kv_cache, attention_mask
|
||||
)
|
||||
feed_forward_hidden_states = self.mlp(hidden_states)
|
||||
out = attn_outputs + feed_forward_hidden_states + residual
|
||||
return out, past_kv_cache
|
||||
|
||||
|
||||
# PhiModel implements the embedding layer and the transformer blocks.
|
||||
class PhiModel(nn.Module):
|
||||
def __init__(self, prefix: str, config, weights):
|
||||
super().__init__()
|
||||
self.tp_rank = weights.process_group.rank()
|
||||
self.tp_world_size = weights.process_group.size()
|
||||
self.embed_tokens = TensorParallelEmbedding(
|
||||
prefix=f"{prefix}.embd.wte", weights=weights
|
||||
)
|
||||
self.blocks = nn.ModuleList(
|
||||
[
|
||||
PhiBlock(f"{prefix}.h.{layer_id}", config, weights)
|
||||
for layer_id in range(config.n_layer)
|
||||
]
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor,
|
||||
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
||||
attention_mask: Optional[torch.ByteTensor] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
seq_len = hidden_states.shape[1]
|
||||
mask = None if seq_len <= 1 else attention_mask
|
||||
|
||||
past_key_values = (
|
||||
[None] * len(self.blocks) if past_key_values is None else past_key_values
|
||||
)
|
||||
|
||||
for index, block in enumerate(self.blocks):
|
||||
hidden_states, new_key_values = block(
|
||||
hidden_states, past_key_values[index], mask
|
||||
)
|
||||
past_key_values[index] = new_key_values
|
||||
|
||||
return hidden_states, past_key_values
|
||||
|
||||
|
||||
# PhiForCausalLM wraps the PhiModel and PhiCausalLMHead together and returns a CausalLMOutputWithPast object.
|
||||
class PhiForCausalLM(torch.nn.Module):
|
||||
def __init__(self, prefix: str, config, weights):
|
||||
super().__init__()
|
||||
|
||||
if not prefix:
|
||||
prefix = "transformer"
|
||||
else:
|
||||
prefix = f"{prefix}.transformer"
|
||||
|
||||
self.model = PhiModel(prefix, config, weights)
|
||||
self.lm_head = PhiCausalLMHead(config, weights)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor,
|
||||
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
||||
attention_mask: Optional[torch.ByteTensor] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
|
||||
model_output = self.model(
|
||||
input_ids, past_key_values, attention_mask, return_dict, use_cache
|
||||
)
|
||||
logits = self.lm_head(model_output[0])
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
loss = nn.CrossEntropyLoss()(
|
||||
logits[:, :-1].view(-1, logits.size(-1)), labels[:, 1:].view(-1)
|
||||
)
|
||||
|
||||
if not return_dict:
|
||||
return (
|
||||
((loss,) + (logits,) + model_output[1:])
|
||||
if loss is not None
|
||||
else (logits,) + model_output[1:]
|
||||
)
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=model_output[1],
|
||||
hidden_states=None,
|
||||
attentions=None,
|
||||
)
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user