mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-10 20:04:52 +00:00
implemented a basic naive router
This commit is contained in:
parent
e7ec2ff282
commit
1f87c7762f
235
server-dev.ipynb
235
server-dev.ipynb
@ -13,31 +13,242 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7d43c041-2c79-4276-9104-2f224b2f8af6",
|
||||
"id": "a19786b8-e72c-43c1-964f-45d92fd171e9",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Example Interacting With The Service"
|
||||
"## Example Interacting With The Router"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "f23bc085-94db-44b6-af42-fc8a05f2cf6a",
|
||||
"execution_count": 2,
|
||||
"id": "0b2c83cd-92ea-40d7-bc7e-f737b87d9b8d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"ename": "SyntaxError",
|
||||
"evalue": "invalid syntax (260114089.py, line 2)",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[0;36m Cell \u001b[0;32mIn[12], line 2\u001b[0;36m\u001b[0m\n\u001b[0;31m b = (a = 5) < 5\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n"
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2023-08-23 19:52:18 deepsparse.transformers WARNING The neuralmagic fork of transformers may not be installed. It can be installed via `pip install nm_transformers`\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"a = None\n",
|
||||
"b = (a = 5) < 5\n",
|
||||
"print(b)\n"
|
||||
"from server.deepsparse.deepsparse_router import DeepSparseRouter, batching_task\n",
|
||||
"from server.deepsparse.deepsparse_service import DeepSparseService\n",
|
||||
"from server.deepsparse.deepsparse_causal_lm import DeepSparseCausalLM"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "78acf813-3688-483d-9148-5c0df5d6b8e3",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Using pad_token, but it is not set yet.\n",
|
||||
"2023-08-23 19:52:20 deepsparse.transformers.utils.helpers INFO Overwriting in-place the input shapes of the transformer model at /home/robertgshaw/.cache/sparsezoo/neuralmagic/codegen_mono-350m-bigpython_bigquery_thepile-base/model.onnx/model.onnx\n",
|
||||
"DeepSparse, Copyright 2021-present / Neuralmagic, Inc. version: 1.6.0.20230815 COMMUNITY | (134dba40) (release) (optimized) (system=avx2, binary=avx2)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"deepsparse.engine.Engine:\n",
|
||||
"\tonnx_file_path: /home/robertgshaw/.cache/sparsezoo/neuralmagic/codegen_mono-350m-bigpython_bigquery_thepile-base/model.onnx/model.onnx\n",
|
||||
"\tbatch_size: 1\n",
|
||||
"\tnum_cores: 8\n",
|
||||
"\tnum_streams: 1\n",
|
||||
"\tscheduler: Scheduler.default\n",
|
||||
"\tfraction_of_supported_ops: 1.0\n",
|
||||
"\tcpu_avx_type: avx2\n",
|
||||
"\tcpu_vnni: False\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2023-08-23 19:52:44 deepsparse.transformers.utils.helpers INFO Overwriting in-place the input shapes of the transformer model at /home/robertgshaw/.cache/sparsezoo/neuralmagic/codegen_mono-350m-bigpython_bigquery_thepile-base/model.onnx/model.onnx\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"deepsparse.engine.Engine:\n",
|
||||
"\tonnx_file_path: /home/robertgshaw/.cache/sparsezoo/neuralmagic/codegen_mono-350m-bigpython_bigquery_thepile-base/model.onnx/model.onnx\n",
|
||||
"\tbatch_size: 1\n",
|
||||
"\tnum_cores: 8\n",
|
||||
"\tnum_streams: 1\n",
|
||||
"\tscheduler: Scheduler.default\n",
|
||||
"\tfraction_of_supported_ops: 1.0\n",
|
||||
"\tcpu_avx_type: avx2\n",
|
||||
"\tcpu_vnni: False\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"tokenizer_path = \"/home/robertgshaw/.cache/sparsezoo/neuralmagic/codegen_mono-350m-bigpython_bigquery_thepile-base/deployment\"\n",
|
||||
"onnx_path = \"/home/robertgshaw/.cache/sparsezoo/neuralmagic/codegen_mono-350m-bigpython_bigquery_thepile-base/model.onnx/model.onnx\"\n",
|
||||
"\n",
|
||||
"model = DeepSparseCausalLM(\n",
|
||||
" tokenizer_path=tokenizer_path,\n",
|
||||
" model_path=onnx_path\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"service = DeepSparseService(model=model)\n",
|
||||
"router = DeepSparseRouter(service=service)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "e93bac63-8924-4cf4-8683-81ce9333a2f1",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Finish the following function for computing a fibonacci sequence: \n",
|
||||
"\n",
|
||||
"def fib(n):\n",
|
||||
" if n == 0:\n",
|
||||
" return 0\n",
|
||||
" elif n == 1:\n",
|
||||
" return 1\n",
|
||||
" else:\n",
|
||||
" return fib(n-1) + fib(n-2)\n",
|
||||
"\n",
|
||||
"# Driver function to test above function\n",
|
||||
"n = int(input(\"Enter the number: \"))\n",
|
||||
"print(fib(n))\n",
|
||||
"\n",
|
||||
"# This code is contributed by Nikhil Kumar Singh(nickzuck_007)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Write a function for filtering a list of integers to include only positive numbers:\n",
|
||||
"\n",
|
||||
"def filter(lst):\n",
|
||||
" return [x for x in lst if x > 0]\n",
|
||||
"\n",
|
||||
"# Test\n",
|
||||
"print(filter([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]))\n",
|
||||
"print(filter([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]))\n",
|
||||
"print(filter([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]))\n",
|
||||
"print(filter([1,\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Write a function for checking if a word if a palindrome:\n",
|
||||
"\n",
|
||||
"def is_palindrome(word):\n",
|
||||
" return word == word[::-1]\n",
|
||||
"\n",
|
||||
"# Test\n",
|
||||
"print(is_palindrome(\"racecar\"))\n",
|
||||
"print(is_palindrome(\"racecar\"))\n",
|
||||
"print(is_palindrome(\"racecar\"))\n",
|
||||
"print(is_palindrome(\"racecar\"))\n",
|
||||
"print(is_palindrome(\"racecar\"))\n",
|
||||
"print(is_palindrome(\"racecar\"))\n",
|
||||
"print(is_palindrome(\"racecar\"))\n",
|
||||
"print(\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Write a function for reversing a string:\n",
|
||||
"\n",
|
||||
"def reverse_string(s):\n",
|
||||
" return s[::-1]\n",
|
||||
"\n",
|
||||
"# Test\n",
|
||||
"print(reverse_string(\"hello\"))\n",
|
||||
"print(reverse_string(\"\"))\n",
|
||||
"print(reverse_string(\"a\"))\n",
|
||||
"print(reverse_string(\"\"))\n",
|
||||
"print(reverse_string(\"\"))\n",
|
||||
"print(reverse_string(\"\"))\n",
|
||||
"print(reverse_string(\"\"))\n",
|
||||
"print(reverse_string(\"\"))\n",
|
||||
"print(reverse_string(\"\"))\n",
|
||||
"print(reverse_string(\"\"))\n",
|
||||
"print(reverse_string(\"\"))\n",
|
||||
"print(reverse_string(\"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Write a function for sorting an array of integers:\n",
|
||||
"\n",
|
||||
"def merge_sort(arr):\n",
|
||||
" if len(arr) <= 1:\n",
|
||||
" return arr\n",
|
||||
" mid = len(arr) // 2\n",
|
||||
" left = arr[:mid]\n",
|
||||
" right = arr[mid:]\n",
|
||||
" left = merge_sort(left)\n",
|
||||
" right = merge_sort(right)\n",
|
||||
" return merge(left, right)\n",
|
||||
"\n",
|
||||
"def merge(left, right):\n",
|
||||
" result = []\n",
|
||||
" while len(left) > 0 and len(right) > 0:\n",
|
||||
" if left[0]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"stop\n",
|
||||
"\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from threading import Thread\n",
|
||||
"import time\n",
|
||||
"\n",
|
||||
"batching_thread = Thread(target=batching_task, args=[router])\n",
|
||||
"batching_thread.start()\n",
|
||||
"\n",
|
||||
"prompts = [\n",
|
||||
" \"Finish the following function for computing a fibonacci sequence: \\n\\ndef fib(n):\",\n",
|
||||
" \"Write a function for filtering a list of integers to include only positive numbers:\\n\\ndef filter(lst):\",\n",
|
||||
" \"Write a function for reversing a string:\\n\\ndef reverse_string(s):\",\n",
|
||||
" \"Write a function for checking if a word if a palindrome:\\n\\ndef is_palindrome(word):\",\n",
|
||||
" \"Write a function for sorting an array of integers:\\n\\ndef merge_sort(arr):\",\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"def generate_task(prompt):\n",
|
||||
" result = router.generate(prompt=prompt)\n",
|
||||
" print(result)\n",
|
||||
" print(\"\\n\")\n",
|
||||
"\n",
|
||||
"generate_threads = [\n",
|
||||
" Thread(target=generate_task, args=[prompt]) for prompt in prompts\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"# print(len(generate_threads))\n",
|
||||
"\n",
|
||||
"for gt in generate_threads:\n",
|
||||
" gt.start()\n",
|
||||
" time.sleep(0.5)\n",
|
||||
"\n",
|
||||
"for gt in generate_threads:\n",
|
||||
" gt.join()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"generate_task(\"stop\")\n",
|
||||
"batching_thread.join()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7d43c041-2c79-4276-9104-2f224b2f8af6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Example Interacting With The Service"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -205,11 +205,11 @@ class DeepSparseCausalLM:
|
||||
logits, past_key_values = self.model(input_ids, past_key_values)
|
||||
|
||||
# sample token
|
||||
# simple for now --- should use NextTokenChooser
|
||||
# todo: simple for now --- should use NextTokenChooser
|
||||
generated_token_id = self.sample_token(logits)
|
||||
|
||||
# check stopping criteria
|
||||
# simple for now --- should use StoppingCriteria
|
||||
# todo: simple for now --- should use StoppingCriteria
|
||||
assert len(input_ids.shape) == 2
|
||||
assert input_ids.shape[0] == 1
|
||||
|
||||
|
@ -13,7 +13,9 @@ class GenerateRequest:
|
||||
self.generation = prompt
|
||||
self.max_generated_tokens = max_generated_tokens
|
||||
self.cv = Condition()
|
||||
self.is_stopped = False
|
||||
|
||||
# todo: implement logic for maximum memory usage
|
||||
class DeepSparseQueue:
|
||||
def __init__(self):
|
||||
self.next_request_id: int = 0
|
||||
|
@ -16,59 +16,102 @@ class DeepSparseRouter:
|
||||
self.queue: DeepSparseQueue = DeepSparseQueue()
|
||||
self.cv: Condition = Condition()
|
||||
|
||||
def generate(self):
|
||||
pass
|
||||
def generate(self, prompt:str) -> str:
|
||||
generate_request = GenerateRequest(
|
||||
prompt=prompt,
|
||||
max_generated_tokens=100
|
||||
)
|
||||
|
||||
with self.cv:
|
||||
# print("router: acquired cv")
|
||||
self.queue.append(generate_request)
|
||||
self.cv.notify()
|
||||
|
||||
if prompt == "stop":
|
||||
return "stop"
|
||||
|
||||
with generate_request.cv:
|
||||
# print("generate_request: acquired cv")
|
||||
if not generate_request.is_stopped:
|
||||
# print("generate_request: waiting")
|
||||
generate_request.cv.wait()
|
||||
|
||||
# print("generate_request: done waiting")
|
||||
|
||||
return generate_request.generation
|
||||
|
||||
def prefill(
|
||||
self,
|
||||
batch: Batch,
|
||||
generation_requests: Dict[int,GenerateRequest]
|
||||
generate_requests: Dict[int,GenerateRequest]
|
||||
) -> Optional[CachedBatch]:
|
||||
|
||||
# print("prefill")
|
||||
generation, next_batch = self.service.Prefill(
|
||||
PrefillRequest(batch=batch)
|
||||
)
|
||||
|
||||
self.filter_notify_update([generation], generation_requests)
|
||||
self.filter_notify_update([generation], generate_requests)
|
||||
|
||||
return self.filter_batch(
|
||||
batch=next_batch,
|
||||
generation_requests=generation_requests
|
||||
generate_requests=generate_requests
|
||||
)
|
||||
|
||||
def decode(self):
|
||||
pass
|
||||
def decode(
|
||||
self,
|
||||
batches: List[CachedBatch],
|
||||
generate_requests: Dict[int,GenerateRequest]
|
||||
) -> Optional[CachedBatch]:
|
||||
# print("decode")
|
||||
generations, next_batch = self.service.Decode(
|
||||
DecodeRequest(batches=batches)
|
||||
)
|
||||
|
||||
self.filter_notify_update(generations, generate_requests)
|
||||
|
||||
return self.filter_batch(
|
||||
batch=next_batch,
|
||||
generate_requests=generate_requests
|
||||
)
|
||||
|
||||
def filter_notify_update(
|
||||
self,
|
||||
generations: List[Generation],
|
||||
generation_requests: Dict[int, GenerateRequest]
|
||||
generate_requests: Dict[int, GenerateRequest]
|
||||
):
|
||||
# print("filter_notify_update")
|
||||
for generation in generations:
|
||||
request_id = generation.request_id
|
||||
|
||||
# if we hit a stopping criteria
|
||||
if generation.generated_text is None:
|
||||
# remove from active requests and notify
|
||||
stopped_generation_request = generation_requests.pop()
|
||||
stopped_generation_request[request_id].cv.notify()
|
||||
stopped_generate_request = generate_requests.pop(request_id)
|
||||
with stopped_generate_request.cv:
|
||||
stopped_generate_request.is_stopped = True
|
||||
stopped_generate_request.cv.notify()
|
||||
|
||||
# otherwise, update generation
|
||||
else:
|
||||
generation_requests[request_id].generation += generation.generated_text
|
||||
generate_requests[request_id].generation += generation.generated_text
|
||||
|
||||
def filter_batch(
|
||||
self,
|
||||
batch: CachedBatch,
|
||||
generation_requests: Dict[int, GenerateRequest]
|
||||
batch: Optional[CachedBatch],
|
||||
generate_requests: Dict[int, GenerateRequest]
|
||||
) -> Optional[CachedBatch]:
|
||||
# print("filter_batch")
|
||||
|
||||
# batch is already done
|
||||
if batch is None:
|
||||
return batch
|
||||
|
||||
# no need to filter
|
||||
if len(batch) == len(generation_requests):
|
||||
if len(batch) == len(generate_requests):
|
||||
return batch
|
||||
|
||||
# retain only requests that are still in active generation requests
|
||||
batch.request_ids = [id for id in batch.request_ids if id in generation_requests]
|
||||
batch.request_ids = [id for id in batch.request_ids if id in generate_requests]
|
||||
|
||||
# if all requests complete, clear cache and return None
|
||||
if len(batch) == 0:
|
||||
@ -83,18 +126,59 @@ class DeepSparseRouter:
|
||||
)
|
||||
)
|
||||
|
||||
def batching_task(self):
|
||||
def batching_task(
|
||||
router: DeepSparseRouter
|
||||
) -> bool:
|
||||
# infinite_loop
|
||||
while True:
|
||||
with self.cv:
|
||||
while self.queue.is_empty():
|
||||
self.cv.wait()
|
||||
# block while the queue is empty
|
||||
# print("batching_task: about to acquire cv")
|
||||
with router.cv:
|
||||
while router.queue.is_empty():
|
||||
# print(f"batching_task cv: waiting")
|
||||
router.cv.wait()
|
||||
# print(f"batching_task: done waiting")
|
||||
|
||||
# loop until the queue is empty
|
||||
next_batch = self.queue.next_batch()
|
||||
# loop until all batches in the queue are processed
|
||||
next_batch = router.queue.next_batch()
|
||||
while next_batch is not None:
|
||||
cached_batch = self.prefill(*next_batch)
|
||||
batch, generate_requests = next_batch
|
||||
|
||||
# hack to break out of the cycle
|
||||
if batch.requests[0].prompt == "stop":
|
||||
assert router.queue.is_empty()
|
||||
assert len(router.service.cache) == 0
|
||||
return True
|
||||
|
||||
cached_batch = router.prefill(
|
||||
batch=batch,
|
||||
generate_requests=generate_requests
|
||||
)
|
||||
|
||||
next_batch = self.queue.next_batch()
|
||||
# loop until we do not reiceve any cached batch from the service (== until
|
||||
# all requests have met their stopping criteria
|
||||
while cached_batch is not None:
|
||||
# print(f"batch_size = {len(cached_batch)}")
|
||||
batches = [cached_batch]
|
||||
|
||||
# try to get a new batch and run prefill on this batch
|
||||
next_batch = router.queue.next_batch()
|
||||
if next_batch is not None:
|
||||
new_batch, new_generate_requests = next_batch
|
||||
new_cached_batch = router.prefill(
|
||||
batch=new_batch,
|
||||
generate_requests=new_generate_requests
|
||||
)
|
||||
|
||||
if new_cached_batch is not None:
|
||||
batches.append(new_cached_batch)
|
||||
assert len(generate_requests.keys() & new_generate_requests.keys()) == 0
|
||||
generate_requests.update(new_generate_requests)
|
||||
|
||||
# run decode
|
||||
cached_batch = router.decode(
|
||||
batches=batches,
|
||||
generate_requests=generate_requests
|
||||
)
|
||||
|
||||
next_batch = router.queue.next_batch()
|
@ -7,7 +7,7 @@ from server.deepsparse.deepsparse_requests import (
|
||||
Generation, CachedBatch
|
||||
)
|
||||
|
||||
class BatchCache:
|
||||
class Cache:
|
||||
def __init__(self):
|
||||
self.cache: Dict[int, DeepSparseCausalLMBatch] = {}
|
||||
|
||||
@ -37,7 +37,7 @@ class DeepSparseService:
|
||||
model: DeepSparseCausalLM
|
||||
):
|
||||
self.model = model
|
||||
self.cache = BatchCache()
|
||||
self.cache = Cache()
|
||||
|
||||
def ClearCache(self):
|
||||
self.cache.clear()
|
||||
@ -46,6 +46,7 @@ class DeepSparseService:
|
||||
self,
|
||||
request: FilterBatchRequest
|
||||
) -> CachedBatch:
|
||||
|
||||
ds_batch = self.cache.pop(request.batch_id)
|
||||
assert ds_batch is not None, "Batch ID {request.batch_id} not found in cache."
|
||||
filtered_batch = ds_batch.filter(request.request_ids)
|
||||
@ -57,6 +58,7 @@ class DeepSparseService:
|
||||
self,
|
||||
request: PrefillRequest
|
||||
) -> [Generation, CachedBatch]:
|
||||
|
||||
ds_batch = DeepSparseCausalLMBatch.from_batch(
|
||||
batch=request.batch,
|
||||
tokenizer=self.model.tokenizer
|
||||
@ -88,4 +90,4 @@ class DeepSparseService:
|
||||
generations, next_ds_batch = self.model.generate_token(ds_batch)
|
||||
self.cache.set(next_ds_batch)
|
||||
|
||||
return generations, next_ds_batch.to_batch() if next_ds_batch else None
|
||||
return generations, (next_ds_batch.to_batch() if next_ds_batch else None)
|
Loading…
Reference in New Issue
Block a user