mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-24 08:22:07 +00:00
Update documentation for Supported models (#2386)
* Minor doc fixes * up. * Other minor updates.
This commit is contained in:
parent
e9ba044250
commit
1d4a35a23c
@ -11,7 +11,7 @@ We recommend using the official quantization scripts for creating your quants:
|
|||||||
|
|
||||||
For on-the-fly quantization you simply need to pass one of the supported quantization types and TGI takes care of the rest.
|
For on-the-fly quantization you simply need to pass one of the supported quantization types and TGI takes care of the rest.
|
||||||
|
|
||||||
## Quantization with bitsandbytes
|
## Quantization with bitsandbytes, EETQ & fp8
|
||||||
|
|
||||||
bitsandbytes is a library used to apply 8-bit and 4-bit quantization to models. Unlike GPTQ quantization, bitsandbytes doesn't require a calibration dataset or any post-processing – weights are automatically quantized on load. However, inference with bitsandbytes is slower than GPTQ or FP16 precision.
|
bitsandbytes is a library used to apply 8-bit and 4-bit quantization to models. Unlike GPTQ quantization, bitsandbytes doesn't require a calibration dataset or any post-processing – weights are automatically quantized on load. However, inference with bitsandbytes is slower than GPTQ or FP16 precision.
|
||||||
|
|
||||||
@ -32,7 +32,7 @@ docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingf
|
|||||||
|
|
||||||
You can get more information about 8-bit quantization by reading this [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), and 4-bit quantization by reading [this blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes).
|
You can get more information about 8-bit quantization by reading this [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), and 4-bit quantization by reading [this blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes).
|
||||||
|
|
||||||
Use `eetq` or `fp8` for other quantization schemes.
|
Similarly you can use pass you can pass `--quantize eetq` or `--quantize fp8` for respective quantization schemes.
|
||||||
|
|
||||||
In addition to this, TGI allows creating GPTQ quants directly by passing the model weights and a calibration dataset.
|
In addition to this, TGI allows creating GPTQ quants directly by passing the model weights and a calibration dataset.
|
||||||
|
|
||||||
|
@ -21,7 +21,7 @@ TGI supports various hardware. Make sure to check the [Using TGI with Nvidia GPU
|
|||||||
|
|
||||||
## Consuming TGI
|
## Consuming TGI
|
||||||
|
|
||||||
Once TGI is running, you can use the `generate` endpoint by doing requests. To learn more about how to query the endpoints, check the [Consuming TGI](./basic_tutorials/consuming_tgi) section, where we show examples with utility libraries and UIs. Below you can see a simple snippet to query the endpoint.
|
Once TGI is running, you can use the `generate` endpoint or the Open AI Chat Completion API compatible [Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api) by doing requests. To learn more about how to query the endpoints, check the [Consuming TGI](./basic_tutorials/consuming_tgi) section, where we show examples with utility libraries and UIs. Below you can see a simple snippet to query the endpoint.
|
||||||
|
|
||||||
<inferencesnippet>
|
<inferencesnippet>
|
||||||
<python>
|
<python>
|
||||||
|
@ -1,22 +1,22 @@
|
|||||||
|
|
||||||
# Supported Models and Hardware
|
# Supported Models and Hardware
|
||||||
|
|
||||||
Text Generation Inference enables serving optimized models on specific hardware for the highest performance. The following sections list which models are hardware are supported.
|
Text Generation Inference enables serving optimized models on specific hardware for the highest performance. The following sections list which models (VLMs & LLMs) are supported.
|
||||||
|
|
||||||
## Supported Models
|
## Supported Models
|
||||||
|
|
||||||
- [Deepseek V2](https://huggingface.co/deepseek-ai/DeepSeek-V2)
|
- [Deepseek V2](https://huggingface.co/deepseek-ai/DeepSeek-V2)
|
||||||
- [Idefics 2](https://huggingface.co/HuggingFaceM4/idefics2-8b) (Multimodal)
|
- [Idefics 2](https://huggingface.co/HuggingFaceM4/idefics2-8b) (Multimodal)
|
||||||
- [Llava Next (1.6)](https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf) (Multimodal)
|
- [Llava Next (1.6)](https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf) (Multimodal)
|
||||||
- [Llama](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
|
- [Llama](https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f)
|
||||||
- [Phi 3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
|
- [Phi 3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
|
||||||
- [Gemma](https://huggingface.co/google/gemma-7b)
|
- [Gemma](https://huggingface.co/google/gemma-7b)
|
||||||
- [PaliGemma](https://huggingface.co/google/paligemma-3b-pt-224)
|
- [PaliGemma](https://huggingface.co/google/paligemma-3b-pt-224)
|
||||||
- [Gemma2](https://huggingface.co/google/gemma2-9b)
|
- [Gemma2](https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315)
|
||||||
- [Cohere](https://huggingface.co/CohereForAI/c4ai-command-r-plus)
|
- [Cohere](https://huggingface.co/CohereForAI/c4ai-command-r-plus)
|
||||||
- [Dbrx](https://huggingface.co/databricks/dbrx-instruct)
|
- [Dbrx](https://huggingface.co/databricks/dbrx-instruct)
|
||||||
- [Mamba](https://huggingface.co/state-spaces/mamba-2.8b-slimpj)
|
- [Mamba](https://huggingface.co/state-spaces/mamba-2.8b-slimpj)
|
||||||
- [Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
|
- [Mistral](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407)
|
||||||
- [Mixtral](https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1)
|
- [Mixtral](https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1)
|
||||||
- [Gpt Bigcode](https://huggingface.co/bigcode/gpt_bigcode-santacoder)
|
- [Gpt Bigcode](https://huggingface.co/bigcode/gpt_bigcode-santacoder)
|
||||||
- [Phi](https://huggingface.co/microsoft/phi-1_5)
|
- [Phi](https://huggingface.co/microsoft/phi-1_5)
|
||||||
|
@ -180,7 +180,7 @@ class ModelType(enum.Enum):
|
|||||||
LLAMA = {
|
LLAMA = {
|
||||||
"type": "llama",
|
"type": "llama",
|
||||||
"name": "Llama",
|
"name": "Llama",
|
||||||
"url": "https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct",
|
"url": "https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f",
|
||||||
}
|
}
|
||||||
PHI3 = {
|
PHI3 = {
|
||||||
"type": "phi3",
|
"type": "phi3",
|
||||||
@ -200,7 +200,7 @@ class ModelType(enum.Enum):
|
|||||||
GEMMA2 = {
|
GEMMA2 = {
|
||||||
"type": "gemma2",
|
"type": "gemma2",
|
||||||
"name": "Gemma2",
|
"name": "Gemma2",
|
||||||
"url": "https://huggingface.co/google/gemma2-9b",
|
"url": "https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315",
|
||||||
}
|
}
|
||||||
COHERE = {
|
COHERE = {
|
||||||
"type": "cohere",
|
"type": "cohere",
|
||||||
@ -220,7 +220,7 @@ class ModelType(enum.Enum):
|
|||||||
MISTRAL = {
|
MISTRAL = {
|
||||||
"type": "mistral",
|
"type": "mistral",
|
||||||
"name": "Mistral",
|
"name": "Mistral",
|
||||||
"url": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2",
|
"url": "https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407",
|
||||||
}
|
}
|
||||||
MIXTRAL = {
|
MIXTRAL = {
|
||||||
"type": "mixtral",
|
"type": "mixtral",
|
||||||
|
@ -7,7 +7,7 @@ import os
|
|||||||
TEMPLATE = """
|
TEMPLATE = """
|
||||||
# Supported Models and Hardware
|
# Supported Models and Hardware
|
||||||
|
|
||||||
Text Generation Inference enables serving optimized models on specific hardware for the highest performance. The following sections list which models are hardware are supported.
|
Text Generation Inference enables serving optimized models on specific hardware for the highest performance. The following sections list which models (VLMs & LLMs) are supported.
|
||||||
|
|
||||||
## Supported Models
|
## Supported Models
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user