From 10e6f292956705bebd7b9feeb96a9289c4ce20a2 Mon Sep 17 00:00:00 2001 From: OlivierDehaene Date: Tue, 24 Sep 2024 08:38:17 +0200 Subject: [PATCH 01/33] chore: Add old V2 backend (#2551) * wip * added v2 --- Cargo.lock | 61 +- Cargo.toml | 4 +- backends/v2/Cargo.toml | 75 + backends/v2/build.rs | 19 + backends/v2/src/backend.rs | 506 +++++++ backends/v2/src/client/grpc_client.rs | 257 ++++ backends/v2/src/client/mod.rs | 68 + backends/v2/src/client/sharded_client.rs | 252 ++++ backends/v2/src/lib.rs | 141 ++ backends/v2/src/main.rs | 212 +++ .../src/infer/v2 => backends/v2/src}/queue.rs | 17 +- router/src/infer/mod.rs | 31 +- router/src/infer/v2/mod.rs | 4 - router/src/infer/v2/scheduler.rs | 1201 ----------------- 14 files changed, 1618 insertions(+), 1230 deletions(-) create mode 100644 backends/v2/Cargo.toml create mode 100644 backends/v2/build.rs create mode 100644 backends/v2/src/backend.rs create mode 100644 backends/v2/src/client/grpc_client.rs create mode 100644 backends/v2/src/client/mod.rs create mode 100644 backends/v2/src/client/sharded_client.rs create mode 100644 backends/v2/src/lib.rs create mode 100644 backends/v2/src/main.rs rename {router/src/infer/v2 => backends/v2/src}/queue.rs (98%) delete mode 100644 router/src/infer/v2/mod.rs delete mode 100644 router/src/infer/v2/scheduler.rs diff --git a/Cargo.lock b/Cargo.lock index 6f5df898..2c8a0fe2 100644 --- a/Cargo.lock +++ b/Cargo.lock @@ -4175,7 +4175,7 @@ dependencies = [ [[package]] name = "text-generation-backends-trtllm" -version = "2.2.1-dev0" +version = "2.3.1-dev0" dependencies = [ "async-stream", "async-trait", @@ -4198,7 +4198,7 @@ dependencies = [ [[package]] name = "text-generation-benchmark" -version = "2.2.1-dev0" +version = "2.3.1-dev0" dependencies = [ "average", "clap 4.5.17", @@ -4219,7 +4219,7 @@ dependencies = [ [[package]] name = "text-generation-client" -version = "2.2.1-dev0" +version = "2.3.1-dev0" dependencies = [ "async-trait", "base64 0.22.1", @@ -4237,7 +4237,7 @@ dependencies = [ [[package]] name = "text-generation-launcher" -version = "2.2.1-dev0" +version = "2.3.1-dev0" dependencies = [ "clap 4.5.17", "ctrlc", @@ -4256,7 +4256,7 @@ dependencies = [ [[package]] name = "text-generation-router" -version = "2.2.1-dev0" +version = "2.3.1-dev0" dependencies = [ "async-stream", "async-trait", @@ -4303,9 +4303,58 @@ dependencies = [ "vergen", ] +[[package]] +name = "text-generation-router-v2" +version = "2.3.1-dev0" +dependencies = [ + "async-stream", + "async-trait", + "axum 0.7.5", + "axum-tracing-opentelemetry", + "base64 0.22.1", + "clap 4.5.17", + "futures", + "futures-util", + "grpc-metadata", + "hf-hub", + "image", + "init-tracing-opentelemetry", + "jsonschema", + "metrics", + "metrics-exporter-prometheus", + "minijinja", + "minijinja-contrib", + "nohash-hasher", + "once_cell", + "opentelemetry 0.20.0", + "opentelemetry-otlp", + "prost 0.12.6", + "prost-build", + "rand", + "regex", + "reqwest", + "serde", + "serde_json", + "slotmap", + "text-generation-router", + "thiserror", + "tokenizers 0.20.0", + "tokio", + "tokio-stream", + "tonic 0.10.2", + "tonic-build", + "tower", + "tower-http", + "tracing", + "tracing-opentelemetry 0.21.0", + "tracing-subscriber", + "utoipa", + "utoipa-swagger-ui", +] + [[package]] name = "text-generation-router-v3" -version = "2.2.1-dev0" +version = "2.3.1-dev0" dependencies = [ "async-stream", "async-trait", diff --git a/Cargo.toml b/Cargo.toml index c645305f..032dc857 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -1,19 +1,19 @@ [workspace] members = [ "benchmark", + "backends/v2", "backends/v3", "backends/grpc-metadata", "backends/trtllm", - "backends/client", "launcher", "router" ] default-members = [ "benchmark", + "backends/v2", "backends/v3", "backends/grpc-metadata", # "backends/trtllm", - "backends/client", "launcher", "router" ] diff --git a/backends/v2/Cargo.toml b/backends/v2/Cargo.toml new file mode 100644 index 00000000..32d19573 --- /dev/null +++ b/backends/v2/Cargo.toml @@ -0,0 +1,75 @@ +[package] +name = "text-generation-router-v2" +description = "Text Generation Webserver" +version.workspace = true +edition.workspace = true +authors.workspace = true +homepage.workspace = true + +[lib] +path = "src/lib.rs" + +[[bin]] +name = "text-generation-router" +path = "src/main.rs" + +[dependencies] +async-trait = "0.1.74" +async-stream = "0.3.5" +axum = { version = "0.7", features = ["json"] } +axum-tracing-opentelemetry = "0.16" +text-generation-router = { path = "../../router" } +clap = { version = "4.4.5", features = ["derive", "env"] } +grpc-metadata = { path = "../grpc-metadata" } +futures = "0.3.28" +hf-hub = { workspace = true } +jsonschema = { version = "0.17.1", features = ["draft202012"] } +metrics = { workspace = true } +metrics-exporter-prometheus = { workspace = true } +nohash-hasher = "0.2.0" +opentelemetry = { version = "0.20.0", features = ["rt-tokio"] } +opentelemetry-otlp = "0.13.0" +rand = "0.8.5" +reqwest = { version = "0.11.20", features = [] } +serde = "1.0.188" +serde_json = "1.0.107" +slotmap = "1.0.7" +thiserror = "1.0.48" +tokenizers = { workspace = true } +tokio = { version = "1.32.0", features = [ + "rt", + "rt-multi-thread", + "parking_lot", + "signal", + "sync", +] } +tokio-stream = "0.1.14" +tower-http = { version = "0.5.1", features = ["cors"] } +tracing = "0.1.37" +tracing-opentelemetry = "0.21.0" +tracing-subscriber = { version = "0.3.17", features = ["json", "env-filter"] } +utoipa = { version = "4.2.0", features = ["axum_extras"] } +utoipa-swagger-ui = { version = "6.0.0", features = ["axum"] } +init-tracing-opentelemetry = { version = "0.14.1", features = [ + "opentelemetry-otlp", +] } +minijinja = { workspace = true } +minijinja-contrib = { workspace = true } +futures-util = "0.3.30" +regex = "1.10.3" +once_cell = "1.19.0" +image = "0.25.1" +base64 = { workspace = true } +prost = "^0.12" +tonic = "^0.10" +tower = "^0.4" + +[build-dependencies] +tonic-build = "0.10.1" +prost-build = "0.12.1" + +[features] +default = ["ngrok"] +ngrok = ["text-generation-router/ngrok"] +google = ["text-generation-router/google"] +kserve = ["text-generation-router/kserve"] diff --git a/backends/v2/build.rs b/backends/v2/build.rs new file mode 100644 index 00000000..f1d85dc7 --- /dev/null +++ b/backends/v2/build.rs @@ -0,0 +1,19 @@ +use std::fs; + +fn main() -> Result<(), Box> { + println!("cargo:rerun-if-changed=../../proto/"); + + fs::create_dir_all("src/client/pb").unwrap_or(()); + let mut config = prost_build::Config::new(); + config.protoc_arg("--experimental_allow_proto3_optional"); + + tonic_build::configure() + .build_client(true) + .build_server(false) + .out_dir("src/client/pb") + .include_file("mod.rs") + .compile_with_config(config, &["../../proto/generate.proto"], &["../../proto"]) + .unwrap_or_else(|e| panic!("protobuf compilation failed: {e}")); + + Ok(()) +} diff --git a/backends/v2/src/backend.rs b/backends/v2/src/backend.rs new file mode 100644 index 00000000..086fc6dc --- /dev/null +++ b/backends/v2/src/backend.rs @@ -0,0 +1,506 @@ +use crate::client::{Batch, CachedBatch, ClientError, Generation, Health, ShardedClient}; +/// Batching and inference logic +use crate::queue::{Entry, Queue}; +use async_trait::async_trait; +use nohash_hasher::IntMap; +use std::sync::Arc; +use text_generation_router::infer::{Backend, GeneratedText, InferError, InferStreamResponse}; +use text_generation_router::validation::ValidGenerateRequest; +use text_generation_router::{Attention, FinishReason, PrefillToken, Token}; +use tokio::sync::mpsc::error::SendError; +use tokio::sync::{mpsc, Notify}; +use tokio::time::Instant; +use tokio_stream::wrappers::UnboundedReceiverStream; +use tracing::{info_span, instrument, Instrument, Span}; + +pub struct BackendV2 { + /// Request queue + queue: Queue, + /// Notify batcher on queue appends + batching_task_notifier: Arc, + /// Client clone, used for health checks to skip the queue + client: ShardedClient, +} + +impl BackendV2 { + #[allow(clippy::too_many_arguments)] + pub(crate) fn new( + client: ShardedClient, + waiting_served_ratio: f32, + max_batch_prefill_tokens: u32, + max_batch_total_tokens: u32, + max_waiting_tokens: usize, + max_batch_size: Option, + requires_padding: bool, + window_size: Option, + speculate: u32, + ) -> Self { + // Infer shared state + let attention = if let Ok(attention) = std::env::var("ATTENTION") { + attention + .parse() + .unwrap_or_else(|_| panic!("Invalid attention was specified :`{attention}`")) + } else { + Attention::Paged + }; + let block_size = if attention == Attention::FlashDecoding { + 256 + } else { + 16 + }; + let queue = Queue::new(requires_padding, block_size, window_size, speculate); + let batching_task_notifier = Arc::new(Notify::new()); + + // Spawn batching background task that contains all the inference logic + tokio::spawn(batching_task( + client.clone(), + waiting_served_ratio, + max_batch_prefill_tokens, + max_batch_total_tokens, + max_waiting_tokens, + max_batch_size, + queue.clone(), + batching_task_notifier.clone(), + )); + + Self { + queue, + batching_task_notifier, + client, + } + } +} + +#[async_trait] +impl Backend for BackendV2 { + #[instrument(skip_all)] + fn schedule( + &self, + request: ValidGenerateRequest, + ) -> Result>, InferError> { + // MPSC channel to communicate with the background batching task + let (response_tx, response_rx) = mpsc::unbounded_channel(); + + // Append the request to the queue + self.queue.append(Entry { + request, + response_tx, + span: Span::current(), + temp_span: None, + queue_time: Instant::now(), + batch_time: None, + }); + + // Notify the background task that we have a new entry in the queue that needs + // to be batched + self.batching_task_notifier.notify_one(); + + // Return stream + Ok(UnboundedReceiverStream::new(response_rx)) + } + + async fn health(&self, current_health: bool) -> bool { + if current_health { + // Generation is healthy, we only check that the shards can allocate on device + self.client.device_health().await + } else { + self.client.model_health().await + } + .is_ok() + } +} + +/// Batching logic +/// Will be launched in a background Tokio task +/// +/// Batches requests and sends them to the inference server +#[allow(clippy::too_many_arguments)] +pub(crate) async fn batching_task( + mut client: ShardedClient, + waiting_served_ratio: f32, + max_batch_prefill_tokens: u32, + max_batch_total_tokens: u32, + max_waiting_tokens: usize, + max_batch_size: Option, + queue: Queue, + notifier: Arc, +) { + // Infinite loop + loop { + // Wait for a notification from the Infer struct + notifier.notified().await; + + // Get the next batch from the queue + // This batch might be smaller than the maximum batch size if there are not enough requests + // waiting in the queue + while let Some((mut entries, batch, span)) = queue + .next_batch( + None, + max_batch_size, + max_batch_prefill_tokens, + max_batch_total_tokens, + ) + .await + { + let mut cached_batch = prefill(&mut client, batch, &mut entries) + .instrument(span) + .await; + let mut waiting_tokens = 1; + + // We loop until we do not receive any cached batch from the inference server (== until + // all requests have met their stopping criteria) + while let Some(batch) = cached_batch { + // Get current batch info + let batch_size = batch.size; + let batch_max_tokens = batch.max_tokens; + let mut batches = vec![batch]; + metrics::gauge!("tgi_batch_current_size").set(batch_size as f64); + metrics::gauge!("tgi_batch_current_max_tokens").set(batch_max_tokens as f64); + + let min_size = if waiting_tokens >= max_waiting_tokens { + // If we didn't onboard any new requests since >= max_waiting_tokens, we try + // to add a new batch even though its size might be small + None + } else { + // Minimum batch size + Some((batch_size as f32 * waiting_served_ratio).floor() as usize) + }; + + let token_budget = max_batch_total_tokens.saturating_sub(batch_max_tokens); + let max_size = + max_batch_size.map(|max_size| max_size.saturating_sub(batch_size as usize)); + // Try to get a new batch + if let Some((mut new_entries, new_batch, span)) = queue + .next_batch(min_size, max_size, max_batch_prefill_tokens, token_budget) + .await + { + // Tracking metrics + if min_size.is_some() { + metrics::counter!("tgi_batch_concat", "reason" => "backpressure") + .increment(1); + } else { + metrics::counter!("tgi_batch_concat", "reason" => "wait_exceeded") + .increment(1); + } + + entries.iter_mut().for_each(|(_, entry)| { + // Create a new span to add the info that this entry is waiting + // because a new batch is being computed + let entry_waiting_span = info_span!(parent: &entry.span, "waiting"); + // Add relationships + span.follows_from(&entry_waiting_span); + entry_waiting_span.follows_from(&span); + // Update entry + entry.temp_span = Some(entry_waiting_span); + }); + + // Generate one token for this new batch to have the attention past in cache + let new_cached_batch = prefill(&mut client, new_batch, &mut new_entries) + .instrument(span) + .await; + // Reset waiting counter + waiting_tokens = 1; + // Extend current batch with the new batch + if let Some(new_cached_batch) = new_cached_batch { + entries.extend(new_entries); + batches.push(new_cached_batch); + } + } + + // Create span for this batch to add context to inference calls + let next_batch_size = entries.len(); + let next_batch_span = + info_span!(parent: None, "batch", batch_size = next_batch_size); + entries.iter_mut().for_each(|(_, entry)| { + // Create a new span to link the batch back to this entry + let entry_batch_span = info_span!(parent: &entry.span, "infer"); + // Add relationships + next_batch_span.follows_from(&entry_batch_span); + entry_batch_span.follows_from(&next_batch_span); + // Update entry + entry.temp_span = Some(entry_batch_span); + }); + + cached_batch = decode(&mut client, batches, &mut entries) + .instrument(next_batch_span) + .await; + waiting_tokens += 1; + } + metrics::gauge!("tgi_batch_current_size").set(0.0); + metrics::gauge!("tgi_batch_current_max_tokens").set(0.0); + } + } +} + +#[instrument(skip_all)] +async fn prefill( + client: &mut ShardedClient, + batch: Batch, + entries: &mut IntMap, +) -> Option { + let start_time = Instant::now(); + let batch_id = batch.id; + metrics::counter!("tgi_batch_inference_count", "method" => "prefill").increment(1); + + match client.prefill(batch).await { + Ok((generations, next_batch, timings)) => { + let start_filtering_time = Instant::now(); + // Send generated tokens and filter stopped entries + filter_send_generations(generations, entries); + + // Filter next batch and remove requests that were stopped + let next_batch = filter_batch(client, next_batch, entries).await; + + metrics::histogram!("tgi_batch_forward_duration","method" => "prefill") + .record(timings.forward.as_secs_f64()); + metrics::histogram!("tgi_batch_decode_duration", "method" => "prefill") + .record(timings.decode.as_secs_f64()); + metrics::histogram!("tgi_batch_filter_duration", "method" => "prefill") + .record(start_filtering_time.elapsed().as_secs_f64()); + metrics::histogram!("tgi_batch_inference_duration","method" => "prefill") + .record(start_time.elapsed().as_secs_f64()); + metrics::counter!("tgi_batch_inference_success", "method" => "prefill").increment(1); + next_batch + } + // If we have an error, we discard the whole batch + Err(err) => { + let _ = client.clear_cache(Some(batch_id)).await; + send_errors(err, entries); + metrics::counter!("tgi_batch_inference_failure", "method" => "prefill").increment(1); + None + } + } +} + +#[instrument(skip_all)] +async fn decode( + client: &mut ShardedClient, + batches: Vec, + entries: &mut IntMap, +) -> Option { + let start_time = Instant::now(); + let batch_ids: Vec = batches.iter().map(|b| b.id).collect(); + metrics::counter!("tgi_batch_inference_count", "method" => "decode").increment(1); + + match client.decode(batches).await { + Ok((generations, next_batch, timings)) => { + let start_filtering_time = Instant::now(); + // Send generated tokens and filter stopped entries + filter_send_generations(generations, entries); + + // Filter next batch and remove requests that were stopped + let next_batch = filter_batch(client, next_batch, entries).await; + + if let Some(concat_duration) = timings.concat { + metrics::histogram!("tgi_batch_concat_duration", "method" => "decode") + .record(concat_duration.as_secs_f64()); + } + metrics::histogram!("tgi_batch_forward_duration", "method" => "decode") + .record(timings.forward.as_secs_f64()); + metrics::histogram!("tgi_batch_decode_duration", "method" => "decode") + .record(timings.decode.as_secs_f64()); + metrics::histogram!("tgi_batch_filter_duration", "method" => "decode") + .record(start_filtering_time.elapsed().as_secs_f64()); + metrics::histogram!("tgi_batch_inference_duration", "method" => "decode") + .record(start_time.elapsed().as_secs_f64()); + metrics::counter!("tgi_batch_inference_success", "method" => "decode").increment(1); + next_batch + } + // If we have an error, we discard the whole batch + Err(err) => { + for id in batch_ids { + let _ = client.clear_cache(Some(id)).await; + } + send_errors(err, entries); + metrics::counter!("tgi_batch_inference_failure", "method" => "decode").increment(1); + None + } + } +} + +/// Filter a `batch` and remove all requests not present in `entries` +#[instrument(skip_all)] +async fn filter_batch( + client: &mut ShardedClient, + next_batch: Option, + entries: &IntMap, +) -> Option { + let mut batch = next_batch?; + + // No need to filter + if batch.size as usize == entries.len() { + return Some(batch); + } + + let id = batch.id; + + // Retain only requests that are still in entries + batch.request_ids.retain(|id| entries.contains_key(id)); + + if batch.request_ids.is_empty() { + // All requests have been filtered out + // Next batch is now empty + // Clear it from the Python shards cache + // We unwrap here as we need to panic since we cannot recover if this method fails + client.clear_cache(Some(id)).await.unwrap(); + None + } else { + // Filter Python shard cache + // We unwrap here as we need to panic since we cannot recover if this method fails + client.filter_batch(id, batch.request_ids).await.unwrap() + } +} + +/// Send one or multiple `InferStreamResponse` to Infer for all `entries` +/// and filter entries +#[instrument(skip_all)] +fn filter_send_generations(generations: Vec, entries: &mut IntMap) { + generations.into_iter().for_each(|generation| { + let id = generation.request_id; + // Get entry + // We can `expect` here as the request id should always be in the entries + let entry = entries + .get(&id) + .expect("ID not found in entries. This is a bug."); + + // Create and enter a span to link this function back to the entry + let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered(); + // Send generation responses back to the infer task + // If the receive an error from the Flume channel, it means that the client dropped the + // request and we need to stop generating hence why we unwrap_or(true) + let stopped = send_responses(generation, entry).inspect_err(|_err| { + tracing::error!("Entry response channel error."); + metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1); + }).unwrap_or(true); + if stopped { + entries.remove(&id).expect("ID not found in entries. This is a bug."); + } + }); +} + +/// Send responses through the `entry` response channel +fn send_responses( + generation: Generation, + entry: &Entry, +) -> Result>>> { + // Return directly if the channel is disconnected + if entry.response_tx.is_closed() { + metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1); + return Ok(true); + } + + let mut stopped = false; + + if let Some(prefill_tokens) = generation.prefill_tokens { + // Create Token objects + // We do that here instead of in the Python code as Rust for loops are faster + let prefill_tokens = prefill_tokens + .ids + .into_iter() + .zip(prefill_tokens.logprobs) + .zip(prefill_tokens.texts) + .map(|((id, logprob), text)| PrefillToken { id, text, logprob }) + .collect(); + + // Send message + entry + .response_tx + .send(Ok(InferStreamResponse::Prefill(prefill_tokens)))?; + } + + // Create last Token + let tokens_ = generation.tokens.expect("Non empty tokens in generation"); + let n = tokens_.ids.len(); + metrics::histogram!("tgi_request_skipped_tokens").record((n - 1) as f64); + let mut iterator = tokens_ + .ids + .into_iter() + .zip(tokens_.logprobs) + .zip(tokens_.texts) + .zip(tokens_.is_special) + .enumerate() + .peekable(); + while let Some((i, (((id, logprob), text), special))) = iterator.next() { + let token = Token { + id, + text, + logprob, + special, + }; + let top_tokens = if let Some(top_tokens_) = generation.top_tokens.get(i) { + top_tokens_ + .ids + .iter() + .zip(top_tokens_.logprobs.iter()) + .zip(top_tokens_.texts.iter()) + .zip(top_tokens_.is_special.iter()) + .map(|(((&id, &logprob), text), &special)| Token { + id, + text: text.to_string(), + logprob, + special, + }) + .collect() + } else { + vec![] + }; + match (&generation.generated_text, iterator.peek()) { + (Some(generated_text), None) => { + // Generation has ended + stopped = true; + // Send message + entry.response_tx.send(Ok(InferStreamResponse::End { + token, + top_tokens, + generated_text: GeneratedText::from(generated_text.clone()), + queued: entry.queue_time, + start: entry.batch_time.unwrap(), + }))?; + } + _ => { + // Send message + entry + .response_tx + .send(Ok(InferStreamResponse::Intermediate { token, top_tokens }))?; + } + } + } + + Ok(stopped) +} + +/// Send errors to Infer for all `entries` +#[instrument(skip_all)] +fn send_errors(error: ClientError, entries: &mut IntMap) { + entries.drain().for_each(|(_, entry)| { + // Create and enter a span to link this function back to the entry + let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered(); + let err = InferError::GenerationError(error.to_string()); + metrics::counter!("tgi_request_failure", "err" => "generation").increment(1); + tracing::error!("{err}"); + + // unwrap_or is valid here as we don't care if the receiver is gone. + entry + .response_tx + .send(Err(err)) + .unwrap_or(()); + }); +} + +impl From for GeneratedText { + fn from(value: crate::client::GeneratedText) -> Self { + let v2_finish_reason = crate::client::FinishReason::try_from(value.finish_reason).unwrap(); + let finish_reason = match v2_finish_reason { + crate::client::FinishReason::Length => FinishReason::Length, + crate::client::FinishReason::EosToken => FinishReason::EndOfSequenceToken, + crate::client::FinishReason::StopSequence => FinishReason::StopSequence, + }; + + Self { + text: value.text, + generated_tokens: value.generated_tokens, + finish_reason, + seed: value.seed, + } + } +} diff --git a/backends/v2/src/client/grpc_client.rs b/backends/v2/src/client/grpc_client.rs new file mode 100644 index 00000000..b4943521 --- /dev/null +++ b/backends/v2/src/client/grpc_client.rs @@ -0,0 +1,257 @@ +/// Single shard Client +use crate::client::pb; +use crate::client::{ClientError, Result, WARMUP_IMAGE_BASE64}; +use grpc_metadata::InjectTelemetryContext; +use pb::generate::v2::text_generation_service_client::TextGenerationServiceClient; +use pb::generate::v2::*; +use std::cmp::min; +use std::time::Duration; +use tonic::transport::{Channel, Uri}; +use tracing::instrument; + +/// Text Generation Inference gRPC client +#[derive(Debug, Clone)] +pub struct Client { + stub: TextGenerationServiceClient, +} + +impl Client { + /// Returns a client connected to the given url + #[allow(dead_code)] + pub async fn connect(uri: Uri) -> Result { + let channel = Channel::builder(uri).connect().await?; + + Ok(Self { + stub: TextGenerationServiceClient::new(channel), + }) + } + + /// Returns a client connected to the given unix socket + pub async fn connect_uds(path: String) -> Result { + let channel = Channel::from_shared("http://[::]:50051".to_string()) + .unwrap() + .connect_with_connector(tower::service_fn(move |_: Uri| { + tokio::net::UnixStream::connect(path.clone()) + })) + .await?; + + Ok(Self { + stub: TextGenerationServiceClient::new(channel), + }) + } + + /// Returns a list of uris or unix sockets of all shards + #[instrument(skip(self))] + pub async fn service_discovery(&mut self) -> Result> { + let request = tonic::Request::new(ServiceDiscoveryRequest {}).inject_context(); + let response = self.stub.service_discovery(request).await.map_err(|_| { + ClientError::Connection("Server does not support v2 interface".to_string()) + })?; + let urls = response + .into_inner() + .urls + .into_iter() + // Remove unix socket prefix + .map(|url| match url.strip_prefix("unix://") { + None => url, + Some(stripped_url) => stripped_url.to_string(), + }) + .collect(); + Ok(urls) + } + + /// Get model info + #[instrument(skip(self))] + pub async fn info(&mut self) -> Result { + let request = tonic::Request::new(InfoRequest {}).inject_context(); + let response = self.stub.info(request).await?.into_inner(); + Ok(response) + } + + /// Get model health + #[instrument(skip(self))] + pub async fn health(&mut self) -> Result { + let request = tonic::Request::new(HealthRequest {}).inject_context(); + let response = self.stub.health(request).await?.into_inner(); + Ok(response) + } + + /// Clear the past generations cache + #[instrument(skip(self))] + pub async fn clear_cache(&mut self, batch_id: Option) -> Result<()> { + let request = tonic::Request::new(ClearCacheRequest { id: batch_id }).inject_context(); + self.stub.clear_cache(request).await?; + Ok(()) + } + + /// Filter a cached batch + #[instrument(skip(self))] + pub async fn filter_batch( + &mut self, + batch_id: u64, + request_ids: Vec, + ) -> Result> { + let request = tonic::Request::new(FilterBatchRequest { + batch_id, + request_ids, + }) + .inject_context(); + let filtered_batch = self.stub.filter_batch(request).await?.into_inner(); + Ok(filtered_batch.batch) + } + + /// Warmup on a max size batch + /// + /// Returns the maximum amount of tokens supported by the hardware + #[instrument(skip_all)] + pub async fn warmup( + &mut self, + max_input_length: u32, + max_prefill_tokens: u32, + max_total_tokens: u32, + max_batch_size: Option, + ) -> Result> { + let mut n_tokens = 0; + let mut requests = Vec::new(); + // Create requests + while n_tokens < max_prefill_tokens { + let truncate = min(max_input_length, max_prefill_tokens - n_tokens); + + let mut inputs = String::new(); + inputs.push_str(&"_test ".to_string().repeat(max_input_length as usize)); + if n_tokens == 0 { + // 1 request is enough to test vision heads. + // Sending images on other queries messes up easily with truncation. + inputs.push_str(&format!( + "![](data:image/jpeg;base64,{WARMUP_IMAGE_BASE64})", + )); + } + + requests.push(Request { + id: 0, + inputs, + // We truncate the input on the server side to be sure that it has the correct size + truncate, + // Set sampling parameters to also take these ops into account in the max memory + parameters: Some(NextTokenChooserParameters { + temperature: 0.9, + top_k: 10, + top_p: 0.9, + typical_p: 0.9, + do_sample: false, + seed: 0, + repetition_penalty: 1.2, + frequency_penalty: 0.1, + watermark: true, + grammar: String::new(), + grammar_type: GrammarType::None as i32, + }), + stopping_parameters: Some(StoppingCriteriaParameters { + max_new_tokens: max_total_tokens - truncate, + stop_sequences: vec![], + ignore_eos_token: true, + }), + prefill_logprobs: true, + top_n_tokens: 20, + }); + n_tokens += max_input_length; + + // Check max_batch_size + if Some(requests.len()) == max_batch_size { + break; + } + } + + let batch = Batch { + id: 0, + size: requests.len() as u32, + requests, + max_tokens: 0, + }; + + let request = tonic::Request::new(WarmupRequest { + batch: Some(batch), + max_input_length, + max_prefill_tokens, + max_total_tokens, + }) + .inject_context(); + let response = self.stub.warmup(request).await?.into_inner(); + Ok(response.max_supported_total_tokens) + } + + /// Generate one token for each request in the given batch + /// + /// Returns Generation for each request in batch + /// and the next cached batch + #[instrument(skip_all, fields(id = &batch.id, size = &batch.size))] + pub async fn prefill( + &mut self, + batch: Batch, + ) -> Result<(Vec, Option, PrefillTimings)> { + let request = tonic::Request::new(PrefillRequest { batch: Some(batch) }).inject_context(); + let response = self.stub.prefill(request).await?.into_inner(); + Ok(( + response.generations, + response.batch, + PrefillTimings::new(response.forward_ns, response.decode_ns, response.total_ns), + )) + } + + /// Generate one token for each request in the given cached batches + /// + /// Returns Generation for each request in batches + /// and the next cached batch + #[instrument(skip_all, fields(size = batches.iter().map(|batch|{batch.size}).sum::()))] + pub async fn decode( + &mut self, + batches: Vec, + ) -> Result<(Vec, Option, DecodeTimings)> { + let request = tonic::Request::new(DecodeRequest { batches }).inject_context(); + let response = self.stub.decode(request).await?.into_inner(); + Ok(( + response.generations, + response.batch, + DecodeTimings::new( + response.concat_ns, + response.forward_ns, + response.decode_ns, + response.total_ns, + ), + )) + } +} + +pub struct PrefillTimings { + pub forward: Duration, + pub decode: Duration, + pub total: Duration, +} + +impl PrefillTimings { + fn new(forward_ns: u64, decode_ns: u64, total_ns: u64) -> Self { + Self { + forward: Duration::from_nanos(forward_ns), + decode: Duration::from_nanos(decode_ns), + total: Duration::from_nanos(total_ns), + } + } +} + +pub struct DecodeTimings { + pub concat: Option, + pub forward: Duration, + pub decode: Duration, + pub total: Duration, +} + +impl DecodeTimings { + fn new(concat_ns: Option, forward_ns: u64, decode_ns: u64, total_ns: u64) -> Self { + Self { + concat: concat_ns.map(Duration::from_nanos), + forward: Duration::from_nanos(forward_ns), + decode: Duration::from_nanos(decode_ns), + total: Duration::from_nanos(total_ns), + } + } +} diff --git a/backends/v2/src/client/mod.rs b/backends/v2/src/client/mod.rs new file mode 100644 index 00000000..fa9d4406 --- /dev/null +++ b/backends/v2/src/client/mod.rs @@ -0,0 +1,68 @@ +//! Text Generation gRPC client library + +use async_trait::async_trait; +use thiserror::Error; +use tonic::transport; +use tonic::Status; + +#[allow(clippy::derive_partial_eq_without_eq)] +mod pb; + +mod grpc_client; +mod sharded_client; + +pub use grpc_client::Client; +pub use pb::generate::v2::{ + Batch, CachedBatch, FinishReason, GeneratedText, Generation, GrammarType, HealthResponse, + InfoResponse, NextTokenChooserParameters, Request, StoppingCriteriaParameters, +}; +pub use sharded_client::ShardedClient; + +#[async_trait] +pub trait Health { + /// Check if a generate server is healthy by asking it to allocate a tensor on device + async fn device_health(&self) -> Result<()>; + + /// Check if a generate server is healthy by doing a forward pass. + /// EXPENSIVE + async fn model_health(&self) -> Result<()>; +} + +#[derive(Debug)] +pub struct ShardInfo { + pub requires_padding: bool, + pub dtype: String, + pub device_type: String, + pub window_size: Option, + pub speculate: u32, +} + +#[derive(Error, Debug, Clone)] +pub enum ClientError { + #[error("Could not connect to Text Generation server: {0}")] + Connection(String), + #[error("Server error: {0}")] + Generation(String), + #[error("Sharded results are empty")] + EmptyResults, +} + +impl From for ClientError { + fn from(err: Status) -> Self { + let err = Self::Generation(err.message().to_string()); + tracing::error!("{err}"); + err + } +} + +impl From for ClientError { + fn from(err: transport::Error) -> Self { + let err = Self::Connection(err.to_string()); + tracing::error!("{err}"); + err + } +} + +static WARMUP_IMAGE_BASE64 :&str = "iVBORw0KGgoAAAANSUhEUgAAABQAAAAUCAIAAAAC64paAAABg2lDQ1BJQ0MgcHJvZmlsZQAAKJF9kT1Iw0AcxV/TSotUROxQxCFDdbKLijjWKhShQqgVWnUwufQLmrQkKS6OgmvBwY/FqoOLs64OroIg+AHi7OCk6CIl/i8ptIjx4Lgf7+497t4BQqvKNDOQADTdMjKppJjLr4rBVwQQwhAERGVm1uckKQ3P8XUPH1/v4jzL+9yfY0AtmAzwicQJVjcs4g3imU2rznmfOMLKskp8Tjxh0AWJH7muuPzGueSwwDMjRjYzTxwhFks9rPQwKxsa8TRxTNV0yhdyLquctzhr1Qbr3JO/MFzQV5a5TnMUKSxiCRJEKGiggiosxGnVSTGRof2kh3/E8UvkUshVASPHAmrQIDt+8D/43a1ZnJp0k8JJoO/Ftj/GgOAu0G7a9vexbbdPAP8zcKV3/bUWMPtJerOrxY6AwW3g4rqrKXvA5Q4QfarLhuxIfppCsQi8n9E35YHhW6B/ze2ts4/TByBLXaVvgINDYLxE2ese7w719vbvmU5/PycecohsjayNAAAACXBIWXMAAC4jAAAuIwF4pT92AAAAB3RJTUUH6AQIEQMnlTSSjwAAABl0RVh0Q29tbWVudABDcmVhdGVkIHdpdGggR0lNUFeBDhcAAAASSURBVDjLY2AYBaNgFIyCoQsABMQAAeRw1DoAAAAASUVORK5CYII="; + +pub type Result = std::result::Result; diff --git a/backends/v2/src/client/sharded_client.rs b/backends/v2/src/client/sharded_client.rs new file mode 100644 index 00000000..eccf76d5 --- /dev/null +++ b/backends/v2/src/client/sharded_client.rs @@ -0,0 +1,252 @@ +/// Multi shard Client +use crate::client::{ClientError, Result}; +use crate::client::{Health, ShardInfo}; + +use crate::client::grpc_client::{DecodeTimings, PrefillTimings}; +use crate::client::InfoResponse; +use crate::client::{ + Batch, CachedBatch, Client, Generation, GrammarType, HealthResponse, + NextTokenChooserParameters, Request, StoppingCriteriaParameters, +}; +use async_trait::async_trait; +use futures::future::join_all; +use tonic::transport::Uri; +use tracing::instrument; + +#[derive(Debug, Clone)] +/// Text Generation Inference gRPC multi client +pub struct ShardedClient { + clients: Vec, +} + +impl ShardedClient { + fn new(clients: Vec) -> Self { + Self { clients } + } + + /// Create a new ShardedClient from a master client. The master client will communicate with + /// the other shards and returns all uris/unix sockets with the `service_discovery` gRPC method. + async fn from_master_client(mut master_client: Client) -> Result { + // Get all uris/unix sockets from the master client + let uris = master_client.service_discovery().await?; + let futures = uris.into_iter().map(Client::connect_uds); + let clients: Result> = join_all(futures).await.into_iter().collect(); + Ok(Self::new(clients?)) + } + + /// Returns a client connected to the given uri + #[allow(dead_code)] + pub async fn connect(uri: Uri) -> Result { + let master_client = Client::connect(uri).await?; + Self::from_master_client(master_client).await + } + + /// Returns a client connected to the given unix socket + pub async fn connect_uds(path: String) -> Result { + let master_client = Client::connect_uds(path).await?; + Self::from_master_client(master_client).await + } + + /// Get the model info + #[instrument(skip(self))] + pub async fn info(&mut self) -> Result { + let futures: Vec<_> = self + .clients + .iter_mut() + .map(|client| client.info()) + .collect(); + join_all(futures).await.pop().unwrap().map(ShardInfo::from) + } + + /// GRPC health check + #[instrument(skip(self))] + pub async fn health(&mut self) -> Result { + let futures: Vec<_> = self + .clients + .iter_mut() + .map(|client| client.health()) + .collect(); + join_all(futures).await.pop().unwrap() + } + + /// Clear the past generations cache + #[instrument(skip(self))] + pub async fn clear_cache(&mut self, batch_id: Option) -> Result<()> { + let futures: Vec<_> = self + .clients + .iter_mut() + .map(|client| client.clear_cache(batch_id)) + .collect(); + join_all(futures).await.into_iter().collect() + } + + /// Filter a cached batch + #[instrument(skip(self))] + pub async fn filter_batch( + &mut self, + batch_id: u64, + request_ids: Vec, + ) -> Result> { + let futures: Vec<_> = self + .clients + .iter_mut() + .map(|client| Box::pin(client.filter_batch(batch_id, request_ids.clone()))) + .collect(); + // all shards return the same message + join_all(futures).await.pop().unwrap() + } + + /// Warmup on a max size batch + /// + /// Returns the maximum amount of tokens supported by the hardware + #[instrument(skip(self))] + pub async fn warmup( + &mut self, + max_input_length: u32, + max_prefill_tokens: u32, + max_total_tokens: u32, + max_batch_size: Option, + ) -> Result> { + let futures: Vec<_> = self + .clients + .iter_mut() + .map(|client| { + Box::pin(client.warmup( + max_input_length, + max_prefill_tokens, + max_total_tokens, + max_batch_size, + )) + }) + .collect(); + // Take the minimum value + let results = join_all(futures) + .await + .into_iter() + .collect::>>>()?; + Ok(results.into_iter().flatten().min()) + } + + /// Generate one token for each request in the given batch + /// + /// Returns Generation for each request in batch + /// and the next cached batch + #[instrument(skip_all, fields(id = & batch.id, size = & batch.size))] + pub async fn prefill( + &mut self, + batch: Batch, + ) -> Result<(Vec, Option, PrefillTimings)> { + let futures: Vec<_> = self + .clients + .iter_mut() + .map(|client| Box::pin(client.prefill(batch.clone()))) + .collect(); + #[allow(clippy::type_complexity)] + let results: Result, Option, PrefillTimings)>> = + join_all(futures).await.into_iter().collect(); + let mut results = results?; + + let (mut generations, next_batch, mut timings) = + results.pop().ok_or(ClientError::EmptyResults)?; + + // Merge generations from different model shards + for (mut shard_generations, _, shard_timings) in results.into_iter() { + generations.append(&mut shard_generations); + // Return the timings of the slowest shard + if shard_timings.total > timings.total { + timings = shard_timings; + } + } + Ok((generations, next_batch, timings)) + } + + /// Generate one token for each request in the given cached batches + /// + /// Returns Generation for each request in batches + /// and the next cached batch + #[instrument(skip_all, fields(size = batches.iter().map(| batch | {batch.size}).sum::< u32 > ()))] + pub async fn decode( + &mut self, + batches: Vec, + ) -> Result<(Vec, Option, DecodeTimings)> { + let futures: Vec<_> = self + .clients + .iter_mut() + .map(|client| Box::pin(client.decode(batches.clone()))) + .collect(); + #[allow(clippy::type_complexity)] + let results: Result, Option, DecodeTimings)>> = + join_all(futures).await.into_iter().collect(); + let mut results = results?; + + let (mut generations, next_batch, mut timings) = + results.pop().ok_or(ClientError::EmptyResults)?; + + // Merge generations from different model shards + for (mut shard_generations, _, shard_timings) in results.into_iter() { + generations.append(&mut shard_generations); + // Return the timings of the slowest shard + if shard_timings.total > timings.total { + timings = shard_timings; + } + } + Ok((generations, next_batch, timings)) + } +} + +impl From for ShardInfo { + fn from(value: InfoResponse) -> Self { + Self { + requires_padding: value.requires_padding, + dtype: value.dtype, + device_type: value.device_type, + window_size: value.window_size, + speculate: value.speculate, + } + } +} + +#[async_trait] +impl Health for ShardedClient { + async fn device_health(&self) -> Result<()> { + self.clone().health().await?; + Ok(()) + } + + async fn model_health(&self) -> Result<()> { + // Dummy batch of 1 token and 1 generated token + let liveness_request = Request { + id: u64::MAX, + inputs: "liveness".to_string(), + truncate: 10, + prefill_logprobs: false, + parameters: Some(NextTokenChooserParameters { + temperature: 1.0, + top_k: 0, + top_p: 1.0, + typical_p: 1.0, + do_sample: false, + seed: 0, + repetition_penalty: 1.0, + frequency_penalty: 0.0, + watermark: false, + grammar: String::new(), + grammar_type: GrammarType::None as i32, + }), + stopping_parameters: Some(StoppingCriteriaParameters { + max_new_tokens: 1, + stop_sequences: vec![], + ignore_eos_token: false, + }), + top_n_tokens: 0, + }; + let batch = Batch { + id: u64::MAX, + requests: vec![liveness_request], + size: 1, + max_tokens: 2, + }; + self.clone().prefill(batch).await?; + Ok(()) + } +} diff --git a/backends/v2/src/lib.rs b/backends/v2/src/lib.rs new file mode 100644 index 00000000..85c36931 --- /dev/null +++ b/backends/v2/src/lib.rs @@ -0,0 +1,141 @@ +mod backend; +mod client; +mod queue; + +use crate::client::{ClientError, ShardedClient}; +pub(crate) use backend::BackendV2; +use serde::Serialize; +use thiserror::Error; +use utoipa::ToSchema; + +#[derive(Clone, Debug, Serialize, ToSchema)] +pub struct BackendInfo { + /// Mandatory + #[schema(example = "cuda")] + pub model_device_type: String, + #[schema(example = "torch.float16")] + pub model_dtype: String, + + /// Backend parameters + #[schema(example = "1")] + pub speculate: usize, + #[schema(example = "1.2")] + pub waiting_served_ratio: f32, + #[schema(example = "32000")] + pub max_batch_total_tokens: u32, + #[schema(example = "20")] + pub max_waiting_tokens: usize, + #[schema(nullable = true, example = "null")] + pub max_batch_size: Option, +} + +#[allow(clippy::too_many_arguments)] +pub async fn connect_backend( + max_input_tokens: usize, + max_total_tokens: usize, + master_shard_uds_path: String, + waiting_served_ratio: f32, + max_batch_prefill_tokens: u32, + max_batch_total_tokens: Option, + max_waiting_tokens: usize, + max_batch_size: Option, +) -> Result<(BackendV2, BackendInfo), V2Error> { + // Helper function + let check_max_batch_total_tokens = |max_supported_batch_total_tokens: Option| { + match max_supported_batch_total_tokens { + // Older models do not support automatic max-batch-total-tokens + None => { + let max_batch_total_tokens = max_batch_total_tokens + .unwrap_or(16000.max((max_total_tokens as u32).max(max_batch_prefill_tokens))); + tracing::warn!("Model does not support automatic max batch total tokens"); + Ok(max_batch_total_tokens) + } + // Flash attention models return their max supported total tokens + Some(max_supported_batch_total_tokens) => { + // Warn if user added his own max-batch-total-tokens as we will ignore it + if max_batch_total_tokens.is_some() { + tracing::warn!( + "`--max-batch-total-tokens` is deprecated for Flash \ + Attention models." + ); + tracing::warn!( + "Inferred max batch total tokens: {max_supported_batch_total_tokens}" + ); + } + if max_total_tokens as u32 > max_supported_batch_total_tokens { + return Err(V2Error::NotEnoughMemory(max_total_tokens)); + } + + Ok(max_supported_batch_total_tokens) + } + } + }; + + let mut sharded_client = ShardedClient::connect_uds(master_shard_uds_path) + .await + .map_err(V2Error::Connection)?; + + // server is running on v2 + // Clear the cache; useful if the webserver rebooted + sharded_client + .clear_cache(None) + .await + .map_err(V2Error::Cache)?; + // Get info from the shard + let shard_info = sharded_client.info().await.map_err(V2Error::Info)?; + + // Warmup model + tracing::info!("Warming up model"); + let max_batch_total_tokens = check_max_batch_total_tokens( + sharded_client + .warmup( + max_input_tokens as u32, + max_batch_prefill_tokens, + max_total_tokens as u32, + max_batch_size, + ) + .await + .map_err(V2Error::Warmup)?, + )?; + tracing::info!("Setting max batch total tokens to {max_batch_total_tokens}"); + + let backend_info = BackendInfo { + waiting_served_ratio, + max_batch_total_tokens, + max_waiting_tokens, + max_batch_size, + model_device_type: shard_info.device_type.clone(), + model_dtype: shard_info.dtype.clone(), + speculate: shard_info.speculate as usize, + }; + + let backend = BackendV2::new( + sharded_client, + waiting_served_ratio, + max_batch_prefill_tokens, + max_batch_total_tokens, + max_waiting_tokens, + max_batch_size, + shard_info.requires_padding, + shard_info.window_size, + shard_info.speculate, + ); + + tracing::info!("Using backend V3"); + + Ok((backend, backend_info)) +} + +#[derive(Debug, Error)] +pub enum V2Error { + #[error("Unable to clear the Python model shards cache: {0}")] + Cache(ClientError), + #[error("Unable to connect to the Python model shards: {0}")] + Connection(ClientError), + #[error("Unable to get the Python model shards info: {0}")] + Info(ClientError), + #[error("Unable to warmup the Python model shards: {0}")] + Warmup(ClientError), + #[error("Not enough memory to handle `max_total_tokens={0}`")] + NotEnoughMemory(usize), +} diff --git a/backends/v2/src/main.rs b/backends/v2/src/main.rs new file mode 100644 index 00000000..f53d898e --- /dev/null +++ b/backends/v2/src/main.rs @@ -0,0 +1,212 @@ +use clap::{Parser, Subcommand}; +use text_generation_router::{server, usage_stats}; +use text_generation_router_v2::{connect_backend, V2Error}; +use thiserror::Error; + +/// App Configuration +#[derive(Parser, Debug)] +#[clap(author, version, about, long_about = None)] +struct Args { + #[command(subcommand)] + command: Option, + + #[clap(default_value = "128", long, env)] + max_concurrent_requests: usize, + #[clap(default_value = "2", long, env)] + max_best_of: usize, + #[clap(default_value = "4", long, env)] + max_stop_sequences: usize, + #[clap(default_value = "5", long, env)] + max_top_n_tokens: u32, + #[clap(default_value = "1024", long, env)] + max_input_tokens: usize, + #[clap(default_value = "2048", long, env)] + max_total_tokens: usize, + #[clap(default_value = "1.2", long, env)] + waiting_served_ratio: f32, + #[clap(default_value = "4096", long, env)] + max_batch_prefill_tokens: u32, + #[clap(long, env)] + max_batch_total_tokens: Option, + #[clap(default_value = "20", long, env)] + max_waiting_tokens: usize, + #[clap(long, env)] + max_batch_size: Option, + #[clap(default_value = "0.0.0.0", long, env)] + hostname: String, + #[clap(default_value = "3000", long, short, env)] + port: u16, + #[clap(default_value = "/tmp/text-generation-server-0", long, env)] + master_shard_uds_path: String, + #[clap(default_value = "bigscience/bloom", long, env)] + tokenizer_name: String, + #[clap(long, env)] + tokenizer_config_path: Option, + #[clap(long, env)] + revision: Option, + #[clap(default_value = "2", long, env)] + validation_workers: usize, + #[clap(long, env)] + api_key: Option, + #[clap(long, env)] + json_output: bool, + #[clap(long, env)] + otlp_endpoint: Option, + #[clap(default_value = "text-generation-inference.router", long, env)] + otlp_service_name: String, + #[clap(long, env)] + cors_allow_origin: Option>, + #[clap(long, env)] + ngrok: bool, + #[clap(long, env)] + ngrok_authtoken: Option, + #[clap(long, env)] + ngrok_edge: Option, + #[clap(long, env, default_value_t = false)] + messages_api_enabled: bool, + #[clap(long, env, default_value_t = false)] + disable_grammar_support: bool, + #[clap(default_value = "4", long, env)] + max_client_batch_size: usize, + #[clap(default_value = "on", long, env)] + usage_stats: usage_stats::UsageStatsLevel, +} + +#[derive(Debug, Subcommand)] +enum Commands { + PrintSchema, +} + +#[tokio::main] +async fn main() -> Result<(), RouterError> { + // Get args + let args = Args::parse(); + // Pattern match configuration + let Args { + command, + max_concurrent_requests, + max_best_of, + max_stop_sequences, + max_top_n_tokens, + max_input_tokens, + max_total_tokens, + waiting_served_ratio, + max_batch_prefill_tokens, + max_batch_total_tokens, + max_waiting_tokens, + max_batch_size, + hostname, + port, + master_shard_uds_path, + tokenizer_name, + tokenizer_config_path, + revision, + validation_workers, + api_key, + json_output, + otlp_endpoint, + otlp_service_name, + cors_allow_origin, + ngrok, + ngrok_authtoken, + ngrok_edge, + messages_api_enabled, + disable_grammar_support, + max_client_batch_size, + usage_stats, + } = args; + + if let Some(Commands::PrintSchema) = command { + use utoipa::OpenApi; + let api_doc = text_generation_router::server::ApiDoc::openapi(); + let api_doc = serde_json::to_string_pretty(&api_doc).unwrap(); + println!("{}", api_doc); + std::process::exit(0); + }; + text_generation_router::logging::init_logging(otlp_endpoint, otlp_service_name, json_output); + + // Validate args + if max_input_tokens >= max_total_tokens { + return Err(RouterError::ArgumentValidation( + "`max_input_tokens` must be < `max_total_tokens`".to_string(), + )); + } + if max_input_tokens as u32 > max_batch_prefill_tokens { + return Err(RouterError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {max_batch_prefill_tokens} and {max_input_tokens}"))); + } + + if validation_workers == 0 { + return Err(RouterError::ArgumentValidation( + "`validation_workers` must be > 0".to_string(), + )); + } + + if let Some(ref max_batch_total_tokens) = max_batch_total_tokens { + if max_batch_prefill_tokens > *max_batch_total_tokens { + return Err(RouterError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {max_batch_prefill_tokens} and {max_batch_total_tokens}"))); + } + if max_total_tokens as u32 > *max_batch_total_tokens { + return Err(RouterError::ArgumentValidation(format!("`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {max_total_tokens} and {max_batch_total_tokens}"))); + } + } + + if let Some(max_batch_size) = max_batch_size { + if max_batch_size == 0 { + return Err(RouterError::ArgumentValidation( + "`max_batch_size` must be > 0".to_string(), + )); + } + } + + let (backend, _backend_info) = connect_backend( + max_input_tokens, + max_total_tokens, + master_shard_uds_path, + waiting_served_ratio, + max_batch_prefill_tokens, + max_batch_total_tokens, + max_waiting_tokens, + max_batch_size, + ) + .await?; + + // Run server + server::run( + backend, + max_concurrent_requests, + max_best_of, + max_stop_sequences, + max_top_n_tokens, + max_input_tokens, + max_total_tokens, + validation_workers, + api_key, + tokenizer_name, + tokenizer_config_path, + revision, + hostname, + port, + cors_allow_origin, + ngrok, + ngrok_authtoken, + ngrok_edge, + messages_api_enabled, + disable_grammar_support, + max_client_batch_size, + usage_stats, + ) + .await?; + Ok(()) +} + +#[derive(Debug, Error)] +enum RouterError { + #[error("Argument validation error: {0}")] + ArgumentValidation(String), + #[error("Backend failed: {0}")] + Backend(#[from] V2Error), + #[error("WebServer error: {0}")] + WebServer(#[from] server::WebServerError), + #[error("Tokio runtime failed to start: {0}")] + Tokio(#[from] std::io::Error), +} diff --git a/router/src/infer/v2/queue.rs b/backends/v2/src/queue.rs similarity index 98% rename from router/src/infer/v2/queue.rs rename to backends/v2/src/queue.rs index 696cbfc8..bf52900f 100644 --- a/router/src/infer/v2/queue.rs +++ b/backends/v2/src/queue.rs @@ -1,14 +1,14 @@ -use crate::infer::{InferError, InferStreamResponse}; -use crate::validation::{ - ValidGenerateRequest, ValidGrammar, ValidParameters, ValidStoppingParameters, +use crate::client::{ + Batch, GrammarType, NextTokenChooserParameters, Request, StoppingCriteriaParameters, }; use nohash_hasher::{BuildNoHashHasher, IntMap}; use std::cmp::min; use std::collections::VecDeque; -use text_generation_client::v2::{ - Batch, GrammarType, NextTokenChooserParameters, Request, StoppingCriteriaParameters, +use text_generation_router::infer::InferError; +use text_generation_router::infer::InferStreamResponse; +use text_generation_router::validation::{ + ChunksToString, ValidGenerateRequest, ValidGrammar, ValidParameters, ValidStoppingParameters, }; -use text_generation_client::ChunksToString; use tokio::sync::{mpsc, oneshot}; use tokio::time::Instant; use tracing::{info_span, instrument, Span}; @@ -218,7 +218,7 @@ impl State { // Create span for this batch to add context to inference calls let next_batch_span = info_span!(parent: None, "batch", batch_size = tracing::field::Empty); - next_batch_span.follows_from(&Span::current()); + next_batch_span.follows_from(Span::current()); let mut batch_requests = Vec::with_capacity(self.entries.len()); let mut batch_entries = @@ -404,6 +404,7 @@ impl From for StoppingCriteriaParameters { #[cfg(test)] mod tests { use super::*; + use std::sync::Arc; use tracing::info_span; fn default_entry() -> ( @@ -415,7 +416,9 @@ mod tests { let entry = Entry { request: ValidGenerateRequest { inputs: vec![], + input_ids: Some(Arc::new(vec![])), input_length: 0, + add_special_tokens: true, truncate: 0, decoder_input_details: false, parameters: ValidParameters { diff --git a/router/src/infer/mod.rs b/router/src/infer/mod.rs index 4a2341da..1c9d5620 100644 --- a/router/src/infer/mod.rs +++ b/router/src/infer/mod.rs @@ -8,9 +8,11 @@ use crate::{ ChatTemplateVersions, FinishReason, GenerateRequest, HubProcessorConfig, HubTokenizerConfig, Message, PrefillToken, Token, }; +use async_stream::stream; use async_trait::async_trait; use chat_template::ChatTemplate; use futures::future::try_join_all; +use futures::Stream; use minijinja::ErrorKind; use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::Arc; @@ -87,7 +89,14 @@ impl Infer { pub(crate) async fn generate_stream<'a>( &'a self, request: GenerateRequest, - ) -> Result { + ) -> Result< + ( + OwnedSemaphorePermit, + u32, // input_length + impl Stream> + 'a, + ), + InferError, + > { // Limit concurrent requests by acquiring a permit from the semaphore let permit = self .clone() @@ -107,9 +116,18 @@ impl Infer { })?; let input_length = valid_request.input_length; - let generation_stream = self.backend.schedule(valid_request)?; + let mut generation_stream = self.backend.schedule(valid_request)?; - Ok((permit, input_length, generation_stream)) + // Wrap generation stream to update the backend health if the stream contains an error + let final_stream = stream! { + while let Some(response) = generation_stream.next().await { + yield response.inspect_err(|_err| { + self.backend_health.store(false, Ordering::SeqCst); + }) + } + }; + + Ok((permit, input_length, final_stream)) } /// Tokenizer the input @@ -278,13 +296,6 @@ impl Infer { } } -/// Type alias for generation responses -pub(crate) type GenerateStreamResponse = ( - OwnedSemaphorePermit, - u32, // input_length - UnboundedReceiverStream>, -); - #[derive(Debug)] pub struct GeneratedText { pub text: String, diff --git a/router/src/infer/v2/mod.rs b/router/src/infer/v2/mod.rs deleted file mode 100644 index 6a91a433..00000000 --- a/router/src/infer/v2/mod.rs +++ /dev/null @@ -1,4 +0,0 @@ -mod queue; -mod scheduler; - -pub(crate) use scheduler::BackendV2; diff --git a/router/src/infer/v2/scheduler.rs b/router/src/infer/v2/scheduler.rs deleted file mode 100644 index 0e5fc8a3..00000000 --- a/router/src/infer/v2/scheduler.rs +++ /dev/null @@ -1,1201 +0,0 @@ -/// Batching and inference logic -use crate::infer::v2::queue::{Entry, Queue}; -use crate::infer::{ - Attention, Backend, GenerateStreamResponse, GeneratedText, InferError, InferStreamResponse, -}; -use crate::validation::ValidGenerateRequest; -use crate::{Attention, FinishReason, PrefillToken, Token}; -use nohash_hasher::IntMap; -use std::sync::{ - atomic::{AtomicBool, Ordering}, - Arc, -}; -use text_generation_client::v2::{Batch, CachedBatch, Generation, ShardedClient}; -use text_generation_client::ClientError; -use tokio::sync::mpsc::error::SendError; -use tokio::sync::{mpsc, Notify, OwnedSemaphorePermit}; -use tokio::time::Instant; -use tokio_stream::wrappers::UnboundedReceiverStream; -use tracing::{info_span, instrument, Instrument, Span}; - -pub(crate) struct BackendV2 { - /// Request queue - queue: Queue, - /// Notify batcher on queue appends - batching_task_notifier: Arc, -} - -impl BackendV2 { - #[allow(clippy::too_many_arguments)] - pub(crate) fn new( - client: ShardedClient, - waiting_served_ratio: f32, - max_batch_prefill_tokens: u32, - max_batch_total_tokens: u32, - max_waiting_tokens: usize, - max_batch_size: Option, - requires_padding: bool, - window_size: Option, - speculate: u32, - generation_health: Arc, - ) -> Self { - // Infer shared state - let attention = if let Ok(attention) = std::env::var("ATTENTION") { - attention - .parse() - .expect(&format!("Invalid attention was specified :`{attention}`")) - } else { - Attention::Paged - }; - let block_size = if attention == Attention::FlashDecoding { - 256 - } else { - 16 - }; - let queue = Queue::new(requires_padding, block_size, window_size, speculate); - let batching_task_notifier = Arc::new(Notify::new()); - - // Spawn batching background task that contains all the inference logic - tokio::spawn(batching_task( - client, - waiting_served_ratio, - max_batch_prefill_tokens, - max_batch_total_tokens, - max_waiting_tokens, - max_batch_size, - queue.clone(), - batching_task_notifier.clone(), - generation_health, - )); - - Self { - queue, - batching_task_notifier, - } - } -} - -impl Backend for BackendV2 { - #[instrument(skip_all)] - fn schedule( - &self, - request: ValidGenerateRequest, - permit: OwnedSemaphorePermit, - ) -> Result { - // MPSC channel to communicate with the background batching task - let (response_tx, response_rx) = mpsc::unbounded_channel(); - let input_length = request.input_length; - - // Append the request to the queue - self.queue.append(Entry { - request, - response_tx, - span: Span::current(), - temp_span: None, - queue_time: Instant::now(), - batch_time: None, - }); - - // Notify the background task that we have a new entry in the queue that needs - // to be batched - self.batching_task_notifier.notify_one(); - - // Return stream - Ok(( - permit, - input_length, - UnboundedReceiverStream::new(response_rx), - )) - } -} - -/// Batching logic -/// Will be launched in a background Tokio task -/// -/// Batches requests and sends them to the inference server -#[allow(clippy::too_many_arguments)] -pub(crate) async fn batching_task( - mut client: ShardedClient, - waiting_served_ratio: f32, - max_batch_prefill_tokens: u32, - max_batch_total_tokens: u32, - max_waiting_tokens: usize, - max_batch_size: Option, - queue: Queue, - notifier: Arc, - generation_health: Arc, -) { - // Infinite loop - loop { - // Wait for a notification from the Infer struct - notifier.notified().await; - - // Get the next batch from the queue - // This batch might be smaller than the maximum batch size if there are not enough requests - // waiting in the queue - while let Some((mut entries, batch, span)) = queue - .next_batch( - None, - max_batch_size, - max_batch_prefill_tokens, - max_batch_total_tokens, - ) - .await - { - let mut cached_batch = prefill(&mut client, batch, &mut entries, &generation_health) - .instrument(span) - .await; - let mut waiting_tokens = 1; - - // We loop until we do not receive any cached batch from the inference server (== until - // all requests have met their stopping criteria) - while let Some(batch) = cached_batch { - // Get current batch info - let batch_size = batch.size; - let batch_max_tokens = batch.max_tokens; - let mut batches = vec![batch]; - metrics::gauge!("tgi_batch_current_size").set(batch_size as f64); - metrics::gauge!("tgi_batch_current_max_tokens").set(batch_max_tokens as f64); - - let min_size = if waiting_tokens >= max_waiting_tokens { - // If we didn't onboard any new requests since >= max_waiting_tokens, we try - // to add a new batch even though its size might be small - None - } else { - // Minimum batch size - Some((batch_size as f32 * waiting_served_ratio).floor() as usize) - }; - - let token_budget = max_batch_total_tokens.saturating_sub(batch_max_tokens); - let max_size = - max_batch_size.map(|max_size| max_size.saturating_sub(batch_size as usize)); - // Try to get a new batch - if let Some((mut new_entries, new_batch, span)) = queue - .next_batch(min_size, max_size, max_batch_prefill_tokens, token_budget) - .await - { - // Tracking metrics - if min_size.is_some() { - metrics::counter!("tgi_batch_concat", "reason" => "backpressure") - .increment(1); - } else { - metrics::counter!("tgi_batch_concat", "reason" => "wait_exceeded") - .increment(1); - } - - entries.iter_mut().for_each(|(_, entry)| { - // Create a new span to add the info that this entry is waiting - // because a new batch is being computed - let entry_waiting_span = info_span!(parent: &entry.span, "waiting"); - // Add relationships - span.follows_from(&entry_waiting_span); - entry_waiting_span.follows_from(&span); - // Update entry - entry.temp_span = Some(entry_waiting_span); - }); - - // Generate one token for this new batch to have the attention past in cache - let new_cached_batch = - prefill(&mut client, new_batch, &mut new_entries, &generation_health) - .instrument(span) - .await; - // Reset waiting counter - waiting_tokens = 1; - // Extend current batch with the new batch - if let Some(new_cached_batch) = new_cached_batch { - entries.extend(new_entries); - batches.push(new_cached_batch); - } - } - - // Create span for this batch to add context to inference calls - let next_batch_size = entries.len(); - let next_batch_span = - info_span!(parent: None, "batch", batch_size = next_batch_size); - entries.iter_mut().for_each(|(_, entry)| { - // Create a new span to link the batch back to this entry - let entry_batch_span = info_span!(parent: &entry.span, "infer"); - // Add relationships - next_batch_span.follows_from(&entry_batch_span); - entry_batch_span.follows_from(&next_batch_span); - // Update entry - entry.temp_span = Some(entry_batch_span); - }); - - cached_batch = decode(&mut client, batches, &mut entries, &generation_health) - .instrument(next_batch_span) - .await; - waiting_tokens += 1; - } - metrics::gauge!("tgi_batch_current_size").set(0.0); - metrics::gauge!("tgi_batch_current_max_tokens").set(0.0); - } - } -} - -#[instrument(skip_all)] -async fn prefill( - client: &mut ShardedClient, - batch: Batch, - entries: &mut IntMap, - generation_health: &Arc, -) -> Option { - let start_time = Instant::now(); - let batch_id = batch.id; - metrics::counter!("tgi_batch_inference_count", "method" => "prefill").increment(1); - - match client.prefill(batch).await { - Ok((generations, next_batch, timings)) => { - // Update health - generation_health.store(true, Ordering::SeqCst); - - let start_filtering_time = Instant::now(); - // Send generated tokens and filter stopped entries - filter_send_generations(generations, entries); - - // Filter next batch and remove requests that were stopped - let next_batch = filter_batch(client, next_batch, entries).await; - - metrics::histogram!("tgi_batch_forward_duration","method" => "prefill") - .record(timings.forward.as_secs_f64()); - metrics::histogram!("tgi_batch_decode_duration", "method" => "prefill") - .record(timings.decode.as_secs_f64()); - metrics::histogram!("tgi_batch_filter_duration", "method" => "prefill") - .record(start_filtering_time.elapsed().as_secs_f64()); - metrics::histogram!("tgi_batch_inference_duration","method" => "prefill") - .record(start_time.elapsed().as_secs_f64()); - metrics::counter!("tgi_batch_inference_success", "method" => "prefill").increment(1); - next_batch - } - // If we have an error, we discard the whole batch - Err(err) => { - // Update health - generation_health.store(false, Ordering::SeqCst); - let _ = client.clear_cache(Some(batch_id)).await; - send_errors(err, entries); - metrics::counter!("tgi_batch_inference_failure", "method" => "prefill").increment(1); - None - } - } -} - -#[instrument(skip_all)] -async fn decode( - client: &mut ShardedClient, - batches: Vec, - entries: &mut IntMap, - generation_health: &Arc, -) -> Option { - let start_time = Instant::now(); - let batch_ids: Vec = batches.iter().map(|b| b.id).collect(); - metrics::counter!("tgi_batch_inference_count", "method" => "decode").increment(1); - - match client.decode(batches).await { - Ok((generations, next_batch, timings)) => { - // Update health - generation_health.store(true, Ordering::SeqCst); - - let start_filtering_time = Instant::now(); - // Send generated tokens and filter stopped entries - filter_send_generations(generations, entries); - - // Filter next batch and remove requests that were stopped - let next_batch = filter_batch(client, next_batch, entries).await; - - if let Some(concat_duration) = timings.concat { - metrics::histogram!("tgi_batch_concat_duration", "method" => "decode") - .record(concat_duration.as_secs_f64()); - } - metrics::histogram!("tgi_batch_forward_duration", "method" => "decode") - .record(timings.forward.as_secs_f64()); - metrics::histogram!("tgi_batch_decode_duration", "method" => "decode") - .record(timings.decode.as_secs_f64()); - metrics::histogram!("tgi_batch_filter_duration", "method" => "decode") - .record(start_filtering_time.elapsed().as_secs_f64()); - metrics::histogram!("tgi_batch_inference_duration", "method" => "decode") - .record(start_time.elapsed().as_secs_f64()); - metrics::counter!("tgi_batch_inference_success", "method" => "decode").increment(1); - next_batch - } - // If we have an error, we discard the whole batch - Err(err) => { - generation_health.store(false, Ordering::SeqCst); - for id in batch_ids { - let _ = client.clear_cache(Some(id)).await; - } - send_errors(err, entries); - metrics::counter!("tgi_batch_inference_failure", "method" => "decode").increment(1); - None - } - } -} - -/// Filter a `batch` and remove all requests not present in `entries` -#[instrument(skip_all)] -async fn filter_batch( - client: &mut ShardedClient, - next_batch: Option, - entries: &IntMap, -) -> Option { - let mut batch = next_batch?; - - // No need to filter - if batch.size as usize == entries.len() { - return Some(batch); - } - - let id = batch.id; - - // Retain only requests that are still in entries - batch.request_ids.retain(|id| entries.contains_key(id)); - - if batch.request_ids.is_empty() { - // All requests have been filtered out - // Next batch is now empty - // Clear it from the Python shards cache - // We unwrap here as we need to panic since we cannot recover if this method fails - client.clear_cache(Some(id)).await.unwrap(); - None - } else { - // Filter Python shard cache - // We unwrap here as we need to panic since we cannot recover if this method fails - client.filter_batch(id, batch.request_ids).await.unwrap() - } -} - -/// Send one or multiple `InferStreamResponse` to Infer for all `entries` -/// and filter entries -#[instrument(skip_all)] -fn filter_send_generations(generations: Vec, entries: &mut IntMap) { - generations.into_iter().for_each(|generation| { - let id = generation.request_id; - // Get entry - // We can `expect` here as the request id should always be in the entries - let entry = entries - .get(&id) - .expect("ID not found in entries. This is a bug."); - - // Create and enter a span to link this function back to the entry - let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered(); - // Send generation responses back to the infer task - // If the receive an error from the Flume channel, it means that the client dropped the - // request and we need to stop generating hence why we unwrap_or(true) - let stopped = send_responses(generation, entry).map_err(|err| { - tracing::error!("Entry response channel error."); - metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1); - err - }).unwrap_or(true); - if stopped { - entries.remove(&id).expect("ID not found in entries. This is a bug."); - } - }); -} - -/// Send responses through the `entry` response channel -fn send_responses( - generation: Generation, - entry: &Entry, -) -> Result>>> { - // Return directly if the channel is disconnected - if entry.response_tx.is_closed() { - metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1); - return Ok(true); - } - - let mut stopped = false; - - if let Some(prefill_tokens) = generation.prefill_tokens { - // Create Token objects - // We do that here instead of in the Python code as Rust for loops are faster - let prefill_tokens = prefill_tokens - .ids - .into_iter() - .zip(prefill_tokens.logprobs) - .zip(prefill_tokens.texts) - .map(|((id, logprob), text)| PrefillToken { id, text, logprob }) - .collect(); - - // Send message - entry - .response_tx - .send(Ok(InferStreamResponse::Prefill(prefill_tokens)))?; - } - - // Create last Token - let tokens_ = generation.tokens.expect("Non empty tokens in generation"); - let n = tokens_.ids.len(); - metrics::histogram!("tgi_request_skipped_tokens").record((n - 1) as f64); - let mut iterator = tokens_ - .ids - .into_iter() - .zip(tokens_.logprobs) - .zip(tokens_.texts) - .zip(tokens_.is_special) - .enumerate() - .peekable(); - while let Some((i, (((id, logprob), text), special))) = iterator.next() { - let token = Token { - id, - text, - logprob, - special, - }; - let top_tokens = if let Some(top_tokens_) = generation.top_tokens.get(i) { - top_tokens_ - .ids - .iter() - .zip(top_tokens_.logprobs.iter()) - .zip(top_tokens_.texts.iter()) - .zip(top_tokens_.is_special.iter()) - .map(|(((&id, &logprob), text), &special)| Token { - id, - text: text.to_string(), - logprob, - special, - }) - .collect() - } else { - vec![] - }; - match (&generation.generated_text, iterator.peek()) { - (Some(generated_text), None) => { - // Generation has ended - stopped = true; - // Send message - entry.response_tx.send(Ok(InferStreamResponse::End { - token, - top_tokens, - generated_text: GeneratedText::from(generated_text.clone()), - queued: entry.queue_time, - start: entry.batch_time.unwrap(), - }))?; - } - _ => { - // Send message - entry - .response_tx - .send(Ok(InferStreamResponse::Intermediate { token, top_tokens }))?; - } - } - } - - Ok(stopped) -} - -/// Send errors to Infer for all `entries` -#[instrument(skip_all)] -fn send_errors(error: ClientError, entries: &mut IntMap) { - entries.drain().for_each(|(_, entry)| { - // Create and enter a span to link this function back to the entry - let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered(); - let err = InferError::GenerationError(error.to_string()); - metrics::counter!("tgi_request_failure", "err" => "generation").increment(1); - tracing::error!("{err}"); - - // unwrap_or is valid here as we don't care if the receiver is gone. - entry - .response_tx - .send(Err(err)) - .unwrap_or(()); - }); -} - -impl From for GeneratedText { - fn from(value: text_generation_client::v2::GeneratedText) -> Self { - let v2_finish_reason = - text_generation_client::v2::FinishReason::try_from(value.finish_reason).unwrap(); - let finish_reason = match v2_finish_reason { - text_generation_client::v2::FinishReason::Length => FinishReason::Length, - text_generation_client::v2::FinishReason::EosToken => FinishReason::EndOfSequenceToken, - text_generation_client::v2::FinishReason::StopSequence => FinishReason::StopSequence, - }; - - Self { - text: value.text, - generated_tokens: value.generated_tokens, - finish_reason, - seed: value.seed, - } - } -} - -// tests -#[cfg(test)] -mod tests { - use crate::infer::raise_exception; - use crate::{ChatTemplateInputs, TextMessage}; - use minijinja::Environment; - - #[test] - fn test_chat_template() { - let env = Environment::new(); - - let source = r#" - {% for message in messages %} - {% if message['role'] == 'system' %} - {% if message['content']%} - {{'### System:\n' + message['content']+'\n\n'}} - {% endif %} - {% elif message['role'] == 'user' %} - {{'### User:\n' + message['content']+'\n\n'}} - {% elif message['role'] == 'assistant' %} - {{'### Assistant:\n' + message['content']}} - {% endif %} - {% if loop.last and add_generation_prompt %} - {{ '### Assistant:\n' }} - {% endif %} - {% endfor %}"#; - - // trim all the whitespace - let source = source - .lines() - .map(|line| line.trim()) - .collect::>() - .join(""); - - let tmpl = env.template_from_str(&source); - - let chat_template_inputs = ChatTemplateInputs { - messages: vec![ - TextMessage { - role: "user".to_string(), - content: "Hi!".to_string(), - }, - TextMessage { - role: "assistant".to_string(), - content: "Hello how can I help?".to_string(), - }, - TextMessage { - role: "user".to_string(), - content: "What is Deep Learning?".to_string(), - }, - TextMessage { - role: "assistant".to_string(), - content: "magic!".to_string(), - }, - ], - bos_token: Some("[BOS]"), - eos_token: Some("[EOS]"), - add_generation_prompt: true, - ..Default::default() - }; - - let result = tmpl.unwrap().render(chat_template_inputs).unwrap(); - - assert_eq!( - result, - "### User:\nHi!\n\n### Assistant:\nHello how can I help?### User:\nWhat is Deep Learning?\n\n### Assistant:\nmagic!### Assistant:\n" - ); - } - - #[test] - fn test_chat_template_invalid_with_raise() { - let mut env = Environment::new(); - env.add_function("raise_exception", raise_exception); - - let source = r#" - {{ bos_token }} - {% for message in messages %} - {% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %} - {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }} - {% endif %} - {% if message['role'] == 'user' %} - {{ '[INST] ' + message['content'] + ' [/INST]' }} - {% elif message['role'] == 'assistant' %} - {{ message['content'] + eos_token}} - {% else %} - {{ raise_exception('Only user and assistant roles are supported!') }} - {% endif %} - {% endfor %}"#; - - // trim all the whitespace - let source = source - .lines() - .map(|line| line.trim()) - .collect::>() - .join(""); - - let tmpl = env.template_from_str(&source); - - let chat_template_inputs = ChatTemplateInputs { - messages: vec![ - TextMessage { - role: "user".to_string(), - content: "Hi!".to_string(), - }, - TextMessage { - role: "user".to_string(), - content: "Hi again!".to_string(), - }, - TextMessage { - role: "assistant".to_string(), - content: "Hello how can I help?".to_string(), - }, - TextMessage { - role: "user".to_string(), - content: "What is Deep Learning?".to_string(), - }, - TextMessage { - role: "assistant".to_string(), - content: "magic!".to_string(), - }, - ], - bos_token: Some("[BOS]"), - eos_token: Some("[EOS]"), - add_generation_prompt: true, - ..Default::default() - }; - - let result = tmpl.unwrap().render(chat_template_inputs); //.err().unwrap(); - - match result { - Ok(_) => panic!("Should have failed"), - Err(e) => { - assert_eq!( - e.detail().unwrap(), - "Conversation roles must alternate user/assistant/user/assistant/..." - ); - } - } - } - - #[test] - fn test_chat_template_valid_with_raise() { - let mut env = Environment::new(); - env.add_function("raise_exception", raise_exception); - - let source = r#" - {{ bos_token }} - {% for message in messages %} - {% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %} - {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }} - {% endif %} - {% if message['role'] == 'user' %} - {{ '[INST] ' + message['content'] + ' [/INST]' }} - {% elif message['role'] == 'assistant' %} - {{ message['content'] + eos_token}} - {% else %} - {{ raise_exception('Only user and assistant roles are supported!') }} - {% endif %} - {% endfor %}"#; - - // trim all the whitespace - let source = source - .lines() - .map(|line| line.trim()) - .collect::>() - .join(""); - - let tmpl = env.template_from_str(&source); - - let chat_template_inputs = ChatTemplateInputs { - messages: vec![ - TextMessage { - role: "user".to_string(), - content: "Hi!".to_string(), - }, - TextMessage { - role: "assistant".to_string(), - content: "Hello how can I help?".to_string(), - }, - TextMessage { - role: "user".to_string(), - content: "What is Deep Learning?".to_string(), - }, - TextMessage { - role: "assistant".to_string(), - content: "magic!".to_string(), - }, - ], - bos_token: Some("[BOS]"), - eos_token: Some("[EOS]"), - add_generation_prompt: true, - ..Default::default() - }; - - let result = tmpl.unwrap().render(chat_template_inputs).unwrap(); - assert_eq!(result, "[BOS][INST] Hi! [/INST]Hello how can I help?[EOS][INST] What is Deep Learning? [/INST]magic![EOS]"); - } - - #[test] - fn test_chat_template_valid_with_add_generation_prompt() { - let mut env = Environment::new(); - env.add_function("raise_exception", raise_exception); - - let source = r#" - {% for message in messages %} - {{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}} - {% endfor %} - {% if add_generation_prompt %} - {{ '<|im_start|>assistant\n' }} - {% endif %}"#; - - // trim all the whitespace - let source = source - .lines() - .map(|line| line.trim()) - .collect::>() - .join(""); - - let tmpl = env.template_from_str(&source); - - let chat_template_inputs = ChatTemplateInputs { - messages: vec![ - TextMessage { - role: "user".to_string(), - content: "Hi!".to_string(), - }, - TextMessage { - role: "assistant".to_string(), - content: "Hello how can I help?".to_string(), - }, - TextMessage { - role: "user".to_string(), - content: "What is Deep Learning?".to_string(), - }, - TextMessage { - role: "assistant".to_string(), - content: "magic!".to_string(), - }, - ], - bos_token: Some("[BOS]"), - eos_token: Some("[EOS]"), - add_generation_prompt: true, - ..Default::default() - }; - - let result = tmpl.unwrap().render(chat_template_inputs).unwrap(); - assert_eq!(result, "<|im_start|>user\nHi!<|im_end|>\n<|im_start|>assistant\nHello how can I help?<|im_end|>\n<|im_start|>user\nWhat is Deep Learning?<|im_end|>\n<|im_start|>assistant\nmagic!<|im_end|>\n<|im_start|>assistant\n"); - } - - struct ChatTemplateTestItem { - name: &'static str, - chat_template: &'static str, - input: ChatTemplateInputs<'static>, - target: &'static str, - } - - #[test] - fn test_many_chat_templates() { - let example_chat = vec![ - TextMessage { - role: "user".to_string(), - content: "Hello, how are you?".to_string(), - }, - TextMessage { - role: "assistant".to_string(), - content: "I'm doing great. How can I help you today?".to_string(), - }, - TextMessage { - role: "user".to_string(), - content: "I'd like to show off how chat templating works!".to_string(), - }, - ]; - - let example_chat_with_system = [TextMessage { - role: "system".to_string(), - content: "You are a friendly chatbot who always responds in the style of a pirate" - .to_string(), - }] - .iter() - .chain(&example_chat) - .cloned() - .collect::>(); - - let test_default_templates = vec![ - ChatTemplateTestItem { - name: "_base", - chat_template: "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\\n' + message['content'] + '<|im_end|>' + '\\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\\n' }}{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "<|im_start|>user\nHello, how are you?<|im_end|>\n<|im_start|>assistant\nI'm doing great. How can I help you today?<|im_end|>\n<|im_start|>user\nI'd like to show off how chat templating works!<|im_end|>\n", - }, - ChatTemplateTestItem { - name: "blenderbot", - chat_template: "{% for message in messages %}{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}{{ message['content'] }}{% if not loop.last %}{{ ' ' }}{% endif %}{% endfor %}{{ eos_token }}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: " Hello, how are you? I'm doing great. How can I help you today? I'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "blenderbot_small", - chat_template: "{% for message in messages %}{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}{{ message['content'] }}{% if not loop.last %}{{ ' ' }}{% endif %}{% endfor %}{{ eos_token }}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: " Hello, how are you? I'm doing great. How can I help you today? I'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "bloom", - chat_template: "{% for message in messages %}{{ message.content }}{{ eos_token }}{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "Hello, how are you?I'm doing great. How can I help you today?I'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "gpt_neox", - chat_template: "{% for message in messages %}{{ message.content }}{{ eos_token }}{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some("<|endoftext|>"), - ..Default::default() - }, - target: "Hello, how are you?<|endoftext|>I'm doing great. How can I help you today?<|endoftext|>I'd like to show off how chat templating works!<|endoftext|>", - }, - ChatTemplateTestItem { - name: "gpt2", - chat_template: "{% for message in messages %}{{ message.content }}{{ eos_token }}{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some("<|endoftext|>"), - ..Default::default() - }, - target: "Hello, how are you?<|endoftext|>I'm doing great. How can I help you today?<|endoftext|>I'd like to show off how chat templating works!<|endoftext|>", - }, - ChatTemplateTestItem { - name: "llama", - // NOTE: the `.strip()` has been replaced with `| trim` in the following template - chat_template: "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif USE_DEFAULT_PROMPT == true and not '<>' in messages[0]['content'] %}{% set loop_messages = messages %}{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<>\\n' + system_message + '\\n<>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token +'[INST] ' + content | trim + ' [/INST]' }}{% elif message['role'] == 'system' %}{{ '<>\\n' + content | trim + '\\n<>\\n\\n' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content | trim + ' ' + eos_token }}{% endif %}{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat_with_system.clone(), - add_generation_prompt: true, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "[INST] <>\nYou are a friendly chatbot who always responds in the style of a pirate\n<>\n\nHello, how are you? [/INST] I'm doing great. How can I help you today? [INST] I'd like to show off how chat templating works! [/INST]", - }, - ChatTemplateTestItem { - name: "whisper", - chat_template: "{% for message in messages %}{{ message.content }}{{ eos_token }}{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: true, - bos_token: Some(""), - eos_token: Some("<|endoftext|>"), - ..Default::default() - }, - target: "Hello, how are you?<|endoftext|>I'm doing great. How can I help you today?<|endoftext|>I'd like to show off how chat templating works!<|endoftext|>", - }, - ]; - - #[allow(unused_variables)] // name is unused - for ChatTemplateTestItem { - name, - chat_template, - input, - target, - } in test_default_templates - { - let mut env = Environment::new(); - env.add_function("raise_exception", raise_exception); - let tmpl = env.template_from_str(chat_template); - let result = tmpl.unwrap().render(input).unwrap(); - assert_eq!(result, target); - } - - let test_custom_templates = vec![ - ChatTemplateTestItem { - name: "HuggingFaceH4/zephyr-7b-beta (add_generation_prompt=false)", - chat_template: "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat_with_system.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "<|system|>\nYou are a friendly chatbot who always responds in the style of a pirate<|user|>\nHello, how are you?<|assistant|>\nI'm doing great. How can I help you today?<|user|>\nI'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "HuggingFaceH4/zephyr-7b-beta (add_generation_prompt=true)", - chat_template: "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}", - input: ChatTemplateInputs { - messages: vec![ - TextMessage { - role: "system".to_string(), - content: "You are a friendly chatbot who always responds in the style of a pirate".to_string(), - }, - TextMessage { - role: "user".to_string(), - content: "How many helicopters can a human eat in one sitting?".to_string(), - }, - ], - add_generation_prompt: true, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "<|system|>\nYou are a friendly chatbot who always responds in the style of a pirate<|user|>\nHow many helicopters can a human eat in one sitting?<|assistant|>", - }, - ChatTemplateTestItem { - name: "HuggingFaceH4/zephyr-7b-gemma-v0.1", - chat_template: "{% if messages[0]['role'] == 'user' or messages[0]['role'] == 'system' %}{{ bos_token }}{% endif %}{% for message in messages %}{{ '<|im_start|>' + message['role'] + '\\n' + message['content'] + '<|im_end|>' + '\\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% elif messages[-1]['role'] == 'assistant' %}{{ eos_token }}{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "<|im_start|>user\nHello, how are you?<|im_end|>\n<|im_start|>assistant\nI'm doing great. How can I help you today?<|im_end|>\n<|im_start|>user\nI'd like to show off how chat templating works!<|im_end|>\n", - }, - ChatTemplateTestItem { - name: "mistralai/Mistral-7B-Instruct-v0.1", - chat_template: "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token + ' ' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "[INST] Hello, how are you? [/INST]I'm doing great. How can I help you today? [INST] I'd like to show off how chat templating works! [/INST]", - }, - ChatTemplateTestItem { - name: "mistralai/Mixtral-8x7B-Instruct-v0.1", - chat_template: "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "[INST] Hello, how are you? [/INST]I'm doing great. How can I help you today?[INST] I'd like to show off how chat templating works! [/INST]", - }, - ChatTemplateTestItem { - name: "cognitivecomputations/dolphin-2.5-mixtral-8x7b", - chat_template: "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\\n' + message['content'] + '<|im_end|>' + '\\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\\n' }}{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "<|im_start|>user\nHello, how are you?<|im_end|>\n<|im_start|>assistant\nI'm doing great. How can I help you today?<|im_end|>\n<|im_start|>user\nI'd like to show off how chat templating works!<|im_end|>\n", - }, - ChatTemplateTestItem { - name: "openchat/openchat-3.5-0106", - // `.title()` has been replaced with `| upper` in the following template - chat_template: "{{ bos_token }}{% for message in messages %}{{ 'GPT4 Correct ' + (message['role'] | title) + ': ' + message['content'] + '<|end_of_turn|>'}}{% endfor %}{% if add_generation_prompt %}{{ 'GPT4 Correct Assistant:' }}{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "GPT4 Correct User: Hello, how are you?<|end_of_turn|>GPT4 Correct Assistant: I'm doing great. How can I help you today?<|end_of_turn|>GPT4 Correct User: I'd like to show off how chat templating works!<|end_of_turn|>", - }, - ChatTemplateTestItem { - name: "upstage/SOLAR-10.7B-Instruct-v1.0", - chat_template: "{% for message in messages %}{{ message.content }}{{ eos_token }}{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "Hello, how are you?I'm doing great. How can I help you today?I'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "codellama/CodeLlama-70b-Instruct-hf", - // NOTE: `.strip()` has been replaced with `| trim` in the following template - chat_template: "{% if messages[0]['role'] == 'system' %}{% set user_index = 1 %}{% else %}{% set user_index = 0 %}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != ((loop.index0 + user_index) % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 %}{{ '' }}{% endif %}{% set content = 'Source: ' + message['role'] + '\\n\\n ' + message['content'] | trim %}{{ content + ' ' }}{% endfor %}{{'Source: assistant\\nDestination: user\\n\\n '}}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "Source: user\n\n Hello, how are you? Source: assistant\n\n I'm doing great. How can I help you today? Source: user\n\n I'd like to show off how chat templating works! Source: assistant\nDestination: user\n\n ", - }, - ChatTemplateTestItem { - name: "Deci/DeciLM-7B-instruct", - chat_template: "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '### User:\\n' + message['content'] }}\n{% elif message['role'] == 'system' %}\n{{ '### System:\\n' + message['content'] }}\n{% elif message['role'] == 'assistant' %}\n{{ '### Assistant:\\n' + message['content'] }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '### Assistant:' }}\n{% endif %}\n{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "### User:\nHello, how are you?### Assistant:\nI'm doing great. How can I help you today?### User:\nI'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "Qwen/Qwen1.5-72B-Chat", - chat_template: "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\\nYou are a helpful assistant<|im_end|>\\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\\n' + message['content']}}{% if (loop.last and add_generation_prompt) or not loop.last %}{{ '<|im_end|>' + '\\n'}}{% endif %}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{ '<|im_start|>assistant\\n' }}{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "<|im_start|>system\nYou are a helpful assistant<|im_end|>\n<|im_start|>user\nHello, how are you?<|im_end|>\n<|im_start|>assistant\nI'm doing great. How can I help you today?<|im_end|>\n<|im_start|>user\nI'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "deepseek-ai/deepseek-llm-7b-chat", - chat_template: "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{{ bos_token }}{% for message in messages %}{% if message['role'] == 'user' %}{{ 'User: ' + message['content'] + '\\n\\n' }}{% elif message['role'] == 'assistant' %}{{ 'Assistant: ' + message['content'] + eos_token }}{% elif message['role'] == 'system' %}{{ message['content'] + '\\n\\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some("<|begin▁of▁sentence|>"), - eos_token: Some("<|end▁of▁sentence|>"), - ..Default::default() - }, - target: "<|begin▁of▁sentence|>User: Hello, how are you?\n\nAssistant: I'm doing great. How can I help you today?<|end▁of▁sentence|>User: I'd like to show off how chat templating works!\n\n", - }, - ChatTemplateTestItem { - name: "h2oai/h2o-danube-1.8b-chat", - chat_template: "{% for message in messages %}{% if message['role'] == 'user' %}{{ '<|prompt|>' + message['content'] + eos_token }}{% elif message['role'] == 'system' %}{{ '<|system|>' + message['content'] + eos_token }}{% elif message['role'] == 'assistant' %}{{ '<|answer|>' + message['content'] + eos_token }}{% endif %}{% if loop.last and add_generation_prompt %}{{ '<|answer|>' }}{% endif %}{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "<|prompt|>Hello, how are you?<|answer|>I'm doing great. How can I help you today?<|prompt|>I'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "internlm/internlm2-chat-7b", - chat_template: "{% if messages[0]['role'] == 'user' or messages[0]['role'] == 'system' %}{{ bos_token }}{% endif %}{% for message in messages %}{{ '<|im_start|>' + message['role'] + '\\n' + message['content'] + '<|im_end|>' + '\\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\\n' }}{% elif messages[-1]['role'] == 'assistant' %}{{ eos_token }}{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "<|im_start|>user\nHello, how are you?<|im_end|>\n<|im_start|>assistant\nI'm doing great. How can I help you today?<|im_end|>\n<|im_start|>user\nI'd like to show off how chat templating works!<|im_end|>\n", - }, - ChatTemplateTestItem { - name: "TheBloke/deepseek-coder-33B-instruct-AWQ", - chat_template: "{%- set found_item = false -%}\n{%- for message in messages -%}\n {%- if message['role'] == 'system' -%}\n {%- set found_item = true -%}\n {%- endif -%}\n{%- endfor -%}\n{%- if not found_item -%}\n{{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.\\n'}}\n{%- endif %}\n{%- for message in messages %}\n {%- if message['role'] == 'system' %}\n{{ message['content'] }}\n {%- else %}\n {%- if message['role'] == 'user' %}\n{{'### Instruction:\\n' + message['content'] + '\\n'}}\n {%- else %}\n{{'### Response:\\n' + message['content'] + '\\n<|EOT|>\\n'}}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{{'### Response:\\n'}}\n", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some("<|begin▁of▁sentence|>"), - eos_token: Some("<|EOT|>"), - ..Default::default() - }, - target: "You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.\n### Instruction:\nHello, how are you?\n### Response:\nI'm doing great. How can I help you today?\n<|EOT|>\n### Instruction:\nI'd like to show off how chat templating works!\n### Response:\n", - }, - ChatTemplateTestItem { - name: "ericzzz/falcon-rw-1b-chat", - // `.strip()` has been replaced with `| trim` in the following template - chat_template: "{% for message in messages %}{% if loop.index > 1 and loop.previtem['role'] != 'assistant' %}{{ ' ' }}{% endif %}{% if message['role'] == 'system' %}{{ '[SYS] ' + message['content'] | trim }}{% elif message['role'] == 'user' %}{{ '[INST] ' + message['content'] | trim }}{% elif message['role'] == 'assistant' %}{{ '[RESP] ' + message['content'] + eos_token }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ ' [RESP] ' }}{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some("<|endoftext|>"), - eos_token: Some("<|endoftext|>"), - ..Default::default() - }, - target: "[INST] Hello, how are you? [RESP] I'm doing great. How can I help you today?<|endoftext|>[INST] I'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "abacusai/Smaug-34B-v0.1", - chat_template: "{%- for idx in range(0, messages|length) -%}\n{%- if messages[idx]['role'] == 'user' -%}\n{%- if idx > 1 -%}\n{{- bos_token + '[INST] ' + messages[idx]['content'] + ' [/INST]' -}}\n{%- else -%}\n{{- messages[idx]['content'] + ' [/INST]' -}}\n{%- endif -%}\n{% elif messages[idx]['role'] == 'system' %}\n{{- '[INST] <>\\n' + messages[idx]['content'] + '\\n<>\\n\\n' -}}\n{%- elif messages[idx]['role'] == 'assistant' -%}\n{{- ' ' + messages[idx]['content'] + ' ' + eos_token -}}\n{% endif %}\n{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "Hello, how are you? [/INST] I'm doing great. How can I help you today? [INST] I'd like to show off how chat templating works! [/INST]", - }, - ChatTemplateTestItem { - name: "maywell/Synatra-Mixtral-8x7B", - chat_template: "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n{% for message in messages %}{% if message['role'] == 'user' %}### Instruction:\n{{ message['content']|trim -}}{% if not loop.last %}{% endif %}\n{% elif message['role'] == 'assistant' %}### Response:\n{{ message['content']|trim -}}{% if not loop.last %}{% endif %}\n{% elif message['role'] == 'system' %}{{ message['content']|trim -}}{% if not loop.last %}{% endif %}\n{% endif %}\n{% endfor %}\n{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}\n### Response:\n{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "Below is an instruction that describes a task. Write a response that appropriately completes the request.### Instruction:Hello, how are you?### Response:I'm doing great. How can I help you today?### Instruction:I'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "deepseek-ai/deepseek-coder-33b-instruct", - chat_template: "{% if not add_generation_prompt is defined %}\n{% set add_generation_prompt = false %}\n{% endif %}\n{%- set ns = namespace(found=false) -%}\n{%- for message in messages -%}\n {%- if message['role'] == 'system' -%}\n {%- set ns.found = true -%}\n {%- endif -%}\n{%- endfor -%}\n{{bos_token}}{%- if not ns.found -%}\n{{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\\n'}}\n{%- endif %}\n{%- for message in messages %}\n {%- if message['role'] == 'system' %}\n{{ message['content'] }}\n {%- else %}\n {%- if message['role'] == 'user' %}\n{{'### Instruction:\\n' + message['content'] + '\\n'}}\n {%- else %}\n{{'### Response:\\n' + message['content'] + '\\n<|EOT|>\\n'}}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{% if add_generation_prompt %}\n{{'### Response:'}}\n{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some("<|begin▁of▁sentence|>"), - eos_token: Some(""), - ..Default::default() - }, - target: "<|begin▁of▁sentence|>You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\n### Instruction:\nHello, how are you?\n### Response:\nI'm doing great. How can I help you today?\n<|EOT|>\n### Instruction:\nI'd like to show off how chat templating works!\n", - }, - // NOT INCLUDED - // - meetkai/functionary-medium-v2.2 - // - fireworks-ai/firefunction-v1 - // https://github - ChatTemplateTestItem { - name: "maywell/PiVoT-MoE", - chat_template: "{{ (messages|selectattr('role', 'equalto', 'system')|list|last).content|trim if (messages|selectattr('role', 'equalto', 'system')|list) else '' }}{% for message in messages %}{% if message['role'] == 'system' %}{{ message['content']|trim }}{% elif message['role'] == 'user' %}### Instruction: {{ message['content']|trim }}{% elif message['role'] == 'assistant' %}### Response: {{ message['content']|trim }}{% elif message['role'] == 'user_context' %}### Input: {{ message['content']|trim }}{% endif %}{% if not loop.last %}\n{% endif %}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}### Response:{% endif %}", - input: ChatTemplateInputs { - messages: example_chat_with_system.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "You are a friendly chatbot who always responds in the style of a pirateYou are a friendly chatbot who always responds in the style of a pirate### Instruction: Hello, how are you?### Response: I'm doing great. How can I help you today?### Instruction: I'd like to show off how chat templating works!", - }, - ]; - - #[allow(unused_variables)] // name is unused - for ChatTemplateTestItem { - name, - chat_template, - input, - target, - } in test_custom_templates - { - let mut env = Environment::new(); - env.add_function("raise_exception", raise_exception); - // trim all the whitespace - let chat_template = chat_template - .lines() - .map(|line| line.trim()) - .collect::>() - .join(""); - - let tmpl = env.template_from_str(&chat_template); - let result = tmpl.unwrap().render(input).unwrap(); - assert_eq!(result, target); - } - } -} From d31a6f75cc84001ed0330f050e1693ce079f5686 Mon Sep 17 00:00:00 2001 From: Alvaro Bartolome <36760800+alvarobartt@users.noreply.github.com> Date: Tue, 24 Sep 2024 10:19:13 +0200 Subject: [PATCH 02/33] Remove duplicated `RUN` in `Dockerfile` (#2547) --- Dockerfile | 1 - 1 file changed, 1 deletion(-) diff --git a/Dockerfile b/Dockerfile index dc2c1d9f..80e5b681 100644 --- a/Dockerfile +++ b/Dockerfile @@ -40,7 +40,6 @@ COPY router router COPY backends backends COPY launcher launcher RUN cargo build --profile release-opt -RUN cargo build --profile release-opt # Python builder # Adapted from: https://github.com/pytorch/pytorch/blob/master/Dockerfile From 74d3ce106e470cc9260736c6574a43874d9f60f6 Mon Sep 17 00:00:00 2001 From: Nicolas Patry Date: Tue, 24 Sep 2024 11:19:24 +0200 Subject: [PATCH 03/33] Micro cleanup. (#2555) --- .../text_generation_server/utils/adapter.py | 6 +-- server/text_generation_server/utils/hub.py | 39 ------------------- 2 files changed, 2 insertions(+), 43 deletions(-) diff --git a/server/text_generation_server/utils/adapter.py b/server/text_generation_server/utils/adapter.py index 31927b91..2b61f9bb 100644 --- a/server/text_generation_server/utils/adapter.py +++ b/server/text_generation_server/utils/adapter.py @@ -75,7 +75,6 @@ def load_and_merge_adapters( weight_names: Tuple[str], trust_remote_code: bool = False, ) -> Tuple["ModuleMap", "AdapterConfig", Set[str], PreTrainedTokenizer]: - if len(adapter_parameters.adapter_info) == 1: adapter = next(iter(adapter_parameters.adapter_info)) return load_module_map( @@ -191,16 +190,15 @@ def load_module_map( weight_names: Tuple[str], trust_remote_code: bool = False, ) -> Tuple["ModuleMap", "AdapterConfig", Set[str], PreTrainedTokenizer]: - adapter_config = LoraConfig.load(adapter_path or adapter_id, None) if not adapter_path and adapter_config.base_model_name_or_path != model_id: check_architectures(model_id, adapter_id, adapter_config, trust_remote_code) adapter_filenames = ( - hub._adapter_weight_files_from_dir(adapter_path, extension=".safetensors") + hub._weight_files_from_dir(adapter_path, extension=".safetensors") if adapter_path - else hub._cached_adapter_weight_files( + else hub._cached_weight_files( adapter_id, revision=revision, extension=".safetensors" ) ) diff --git a/server/text_generation_server/utils/hub.py b/server/text_generation_server/utils/hub.py index db412aeb..f9c476ac 100644 --- a/server/text_generation_server/utils/hub.py +++ b/server/text_generation_server/utils/hub.py @@ -18,17 +18,6 @@ WEIGHTS_CACHE_OVERRIDE = os.getenv("WEIGHTS_CACHE_OVERRIDE", None) HF_HUB_OFFLINE = os.environ.get("HF_HUB_OFFLINE", "0").lower() in ["true", "1", "yes"] -def _cached_adapter_weight_files( - adapter_id: str, revision: Optional[str], extension: str -) -> List[str]: - """Guess weight files from the cached revision snapshot directory""" - d = _get_cached_revision_directory(adapter_id, revision) - if not d: - return [] - filenames = _adapter_weight_files_from_dir(d, extension) - return filenames - - def _cached_weight_files( model_id: str, revision: Optional[str], extension: str ) -> List[str]: @@ -65,39 +54,11 @@ def _weight_files_from_dir(d: Path, extension: str) -> List[str]: if f.endswith(extension) and "arguments" not in f and "args" not in f - and "adapter" not in f and "training" not in f ] return filenames -def _adapter_weight_files_from_dir(d: Path, extension: str) -> List[str]: - # os.walk: do not iterate, just scan for depth 1, not recursively - # see _weight_files_from_dir, that's also what is done there - root, _, files = next(os.walk(str(d))) - filenames = [ - os.path.join(root, f) - for f in files - if f.endswith(extension) - and "arguments" not in f - and "args" not in f - and "training" not in f - ] - return filenames - - -def _adapter_config_files_from_dir(d: Path) -> List[str]: - # os.walk: do not iterate, just scan for depth 1, not recursively - # see _weight_files_from_dir, that's also what is done there - root, _, files = next(os.walk(str(d))) - filenames = [ - os.path.join(root, f) - for f in files - if f.endswith(".json") and "arguments" not in f and "args" not in f - ] - return filenames - - def _get_cached_revision_directory( model_id: str, revision: Optional[str] ) -> Optional[Path]: From 0ff6ff60ada291840beed63d8bf458d6f9606f7f Mon Sep 17 00:00:00 2001 From: Nicolas Patry Date: Tue, 24 Sep 2024 11:51:14 +0200 Subject: [PATCH 04/33] Hotfixing main (#2556) --- backends/v2/Cargo.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/backends/v2/Cargo.toml b/backends/v2/Cargo.toml index 32d19573..4d32474e 100644 --- a/backends/v2/Cargo.toml +++ b/backends/v2/Cargo.toml @@ -10,7 +10,7 @@ homepage.workspace = true path = "src/lib.rs" [[bin]] -name = "text-generation-router" +name = "text-generation-router-v2" path = "src/main.rs" [dependencies] From c29dc89c1867c395719c148553b87a0717884c47 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Tue, 24 Sep 2024 13:57:40 +0200 Subject: [PATCH 05/33] Add support for scalar FP8 weight scales (#2550) * Add support for scalar FP8 weight scales * Support LLM compressor FP8 checkpoints on H100 On H100, we use fbgemm-gpu, which requires bfloat16 as the input dtype. However, we wouldn't pick up fp8 quantization for models quantized with LLM compressor. This change adds enough parsing to detect if models have FP8-quantized weights. * Remove stray debug print --- server/text_generation_server/layers/fp8.py | 49 ++++++++++++++----- .../text_generation_server/models/__init__.py | 19 ++++++- 2 files changed, 56 insertions(+), 12 deletions(-) diff --git a/server/text_generation_server/layers/fp8.py b/server/text_generation_server/layers/fp8.py index 59b08b55..61dd5115 100644 --- a/server/text_generation_server/layers/fp8.py +++ b/server/text_generation_server/layers/fp8.py @@ -87,9 +87,11 @@ class HybridFP8UnquantLoader(WeightsLoader): if w.dtype == torch.float8_e4m3fn: # FP8 branch - scale = weights.get_tensor( - f"{prefix}.weight_scale", to_dtype=False - ).reshape(-1) + scale = ( + weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False) + .reshape(-1) + .expand(w.shape[0]) + ) return Fp8Weight( weight=w, weight_scale=scale, @@ -113,9 +115,16 @@ class HybridFP8UnquantLoader(WeightsLoader): if w.dtype == torch.float8_e4m3fn: # FP8 branch - scale = weights.get_packed_sharded( - f"{prefix}.weight_scale", dim=0, block_sizes=block_sizes, to_dtype=False - ).reshape(-1) + scale = weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False) + if scale.numel() > 1: + scale = weights.get_packed_sharded( + f"{prefix}.weight_scale", + dim=0, + block_sizes=block_sizes, + to_dtype=False, + ) + scale = scale.reshape(-1).expand(w.shape[0]) + return Fp8Weight( weight=w, weight_scale=scale, @@ -132,16 +141,19 @@ class HybridFP8UnquantLoader(WeightsLoader): w = [ weights.get_sharded(f"{p}.weight", dim=0, to_device=False) for p in prefixes ] + shapes = [x.shape for x in w] + # Concat then send to the device w = torch.cat(w, dim=dim).to(weights.device) # FP8 branch if w.dtype == torch.float8_e4m3fn: scale = [ - weights.get_sharded(f"{p}.weight_scale", dim=0, to_dtype=False) - for p in prefixes + _load_scalar_or_matrix_scale(weights, f"{p}.weight_scale", shape) + for p, shape in zip(prefixes, shapes) ] scale = torch.cat(scale, dim=0).reshape(-1) + return Fp8Weight( weight=w, weight_scale=scale, @@ -157,9 +169,11 @@ class HybridFP8UnquantLoader(WeightsLoader): w = weights.get_sharded(f"{prefix}.weight", dim=1) # FP8 branch if w.dtype == torch.float8_e4m3fn: - scale = weights.get_tensor( - f"{prefix}.weight_scale", to_dtype=False - ).reshape(-1) + scale = ( + weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False) + .reshape(-1) + .expand(w.shape[0]) + ) return Fp8Weight( weight=w, weight_scale=scale, @@ -182,6 +196,9 @@ class Fp8Weight(Weight): def get_linear(self, bias: torch.Tensor): if self.weight_scale is None: return get_fp8_linear().from_unquant(self.weight, bias, self.dtype) + # This is not checked by the fbgemm kernels, but they require contiguous + # memory. Can be non-contiguous when we e.g. expand from scalars. + self.weight_scale = self.weight_scale.contiguous() return get_fp8_linear().from_fp8( self.weight, self.weight_scale, self.activation_scale_ub, bias, self.dtype ) @@ -222,6 +239,9 @@ class Fp8Linear(torch.nn.Module): @classmethod def from_fp8(cls, weight, scale, input_scale, bias, dtype): + if FBGEMM_DYN_AVAILABLE: + # fbgemm needs float32 scales. + scale = scale.float() return cls( qweight=weight, scale=scale, @@ -256,3 +276,10 @@ class Fp8Linear(torch.nn.Module): bias=self.bias, ) return output + + +def _load_scalar_or_matrix_scale(weights: Weights, prefix: str, shape: torch.Size): + scale = weights.get_tensor(prefix, to_dtype=False) + if scale.numel() > 1: + scale = weights.get_sharded(prefix, dim=0, to_dtype=False) + return scale.reshape(-1).expand(shape[0]) diff --git a/server/text_generation_server/models/__init__.py b/server/text_generation_server/models/__init__.py index fc530b38..e5e5aabb 100644 --- a/server/text_generation_server/models/__init__.py +++ b/server/text_generation_server/models/__init__.py @@ -334,6 +334,7 @@ def get_model( model_type = config_dict.get("model_type", None) quantization_config = config_dict.get("quantization_config", None) + compression_config = config_dict.get("compression_config", None) if quantization_config is not None and quantize is None: method = quantization_config.get("quant_method", None) if method in {"gptq", "awq", "exl2"}: @@ -344,6 +345,23 @@ def get_model( quantize = "fp8" else: log_master(logger.warning, f"Unknown quantization method {method}") + elif compression_config is not None: + # TODO: at some point we should probably fully parse the compression + # configuration to know which parameters are compressed. + config_groups = compression_config.get("config_groups") + if config_groups is not None: + for _, group in config_groups.items(): + weights_config = group.get("weights") + if weights_config is not None: + if ( + weights_config["type"] == "float" + and weights_config["num_bits"] == 8 + ): + log_master( + logger.info, "Auto selecting quantization method fp8" + ) + quantize = "fp8" + break if dtype is None: if quantize in ["awq", "exl2", "gptq", "marlin"]: @@ -768,7 +786,6 @@ def get_model( ) elif model_type == LLAMA or model_type == BAICHUAN or model_type == PHI3: - print(f">>> model_type: {model_type}") if FLASH_ATTENTION: return FlashCausalLM( model_id=model_id, From 3f14cd1420fd30287d34320fd68b2779794b3010 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Tue, 24 Sep 2024 14:27:06 +0200 Subject: [PATCH 06/33] Add `DenseMoELayer` and wire it up in Mixtral/Deepseek V2 (#2537) This replaces the custom layers in both models. --- .../layers/moe/__init__.py | 165 +++++++++++++++++- .../flash_deepseek_v2_modeling.py | 127 +++----------- .../custom_modeling/flash_mixtral_modeling.py | 139 +++------------ 3 files changed, 211 insertions(+), 220 deletions(-) diff --git a/server/text_generation_server/layers/moe/__init__.py b/server/text_generation_server/layers/moe/__init__.py index e32003ae..3171af90 100644 --- a/server/text_generation_server/layers/moe/__init__.py +++ b/server/text_generation_server/layers/moe/__init__.py @@ -1,15 +1,178 @@ -from typing import Optional +from typing import Optional, Protocol, runtime_checkable import torch import torch.nn as nn +from loguru import logger +from transformers.activations import ACT2FN + +from text_generation_server.layers import ( + TensorParallelColumnLinear, + TensorParallelRowLinear, +) from text_generation_server.layers.fp8 import HybridFP8UnquantLoader from text_generation_server.layers.moe.unquantized import UnquantizedSparseMoELayer +from text_generation_server.utils.import_utils import SYSTEM +from text_generation_server.utils.log import log_once from text_generation_server.utils.weights import ( DefaultWeightsLoader, UnquantizedWeight, Weights, ) +if SYSTEM != "ipex": + from moe_kernels.fused_moe import fused_topk, grouped_topk + + +# NOTE: we are using a protocol here, because multiple inherance is not nice. +# We need `Module`, and `Module` -> some abstract class -> some concrete +# class inheritance is whacky. + + +@runtime_checkable +class MoELayer(Protocol): + def __init__( + self, + *, + n_expert_group: Optional[int], + n_experts: int, + prefix: str, + renormalize: bool, + topk: int, + topk_group: Optional[int], + weights: Weights, + gate_proj_name: str = "gate_proj", + up_proj_name: str = "up_proj", + down_proj_name: str = "down_proj", + hidden_act: str = "silu", + ): ... + + def forward( + self, x: torch.Tensor, *, gating_output: torch.Tensor + ) -> torch.Tensor: ... + + +class DenseMoELayer(nn.Module): + """ + Layer for MoE that applies *all* experts to each tokens and then weights + their outputs based on the calculated routing. This layer is much slower + than `SparseMoELayer` and should only be used when no fused kernels are + available (e.g. for unsupported quantizers). + """ + + def __init__( + self, + *, + n_expert_group: Optional[int], + n_experts: int, + prefix: str, + renormalize: bool, + topk: int, + topk_group: Optional[int], + weights: Weights, + gate_proj_name: str = "gate_proj", + up_proj_name: str = "up_proj", + down_proj_name: str = "down_proj", + hidden_act: str = "silu", + ): + super().__init__() + + log_once( + logger.info, + "No fused layers are available for this model type, using (slower) dense MoE layer", + ) + + assert (n_expert_group is None) == ( + topk_group is None + ), "n_expert_group and topk_group must both be None or have some value" + + self.n_expert_group = n_expert_group + self.n_experts = n_experts + self.renormalize = renormalize + self.topk = topk + self.topk_group = topk_group + + if "gelu" in hidden_act: + self.act = lambda x: torch.nn.functional.gelu( + x, + approximate=( + "tanh" + if hidden_act in ["gelu_fast", "gelu_pytorch_tanh"] + else "none" + ), + ) + elif "silu" in hidden_act: + self.act = torch.nn.functional.silu + else: + self.act = ACT2FN[hidden_act] + + self.gate_proj = [ + TensorParallelColumnLinear.load( + None, + prefix=f"{prefix}.{i}.{gate_proj_name}", + weights=weights, + bias=False, + ) + for i in range(self.n_experts) + ] + self.up_proj = [ + TensorParallelColumnLinear.load( + None, + prefix=f"{prefix}.{i}.{up_proj_name}", + weights=weights, + bias=False, + ) + for i in range(self.n_experts) + ] + self.down_proj = [ + TensorParallelRowLinear.load( + None, + prefix=f"{prefix}.{i}.{down_proj_name}", + weights=weights, + bias=False, + ) + for i in range(self.n_experts) + ] + + self.process_group = weights.process_group + + def forward(self, x: torch.Tensor, *, gating_output: torch.Tensor) -> torch.Tensor: + """ + x: (sequence_length, model_dim) + gating_output: (sequence_length, n_experts) + """ + # optional reshape + input_shape = x.shape + x = x.view(-1, input_shape[-1]) + + if self.n_expert_group is not None and self.topk_group is not None: + topk_weights, topk_ids = grouped_topk( + x, + gating_output, + self.topk, + renormalize=self.renormalize, + num_expert_group=self.n_expert_group, + topk_group=self.topk_group, + ) + else: + topk_weights, topk_ids = fused_topk( + x, gating_output, self.topk, self.renormalize + ) + topk_weights = topk_weights.to(x.dtype) + + weights = torch.zeros( + topk_ids.shape[0], self.n_experts, dtype=x.dtype, device=x.device + ) + + weights.scatter_(1, topk_ids.long(), topk_weights.to(weights.dtype)) + + out = torch.zeros_like(x) + for i in range(self.n_experts): + h = self.act(self.gate_proj[i](x)) * self.up_proj[i](x) + h = self.down_proj[i](h, reduce=False) + out += h * weights[:, i].view(-1, 1) + + return out + class SparseMoELayer(nn.Module): """ diff --git a/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py b/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py index 328f239b..2ca7cc24 100644 --- a/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py @@ -13,10 +13,14 @@ # See the License for the specific language governing permissions and # limitations under the License. -from typing import List, Optional, Tuple +from typing import List, Optional, Tuple, Type import torch import torch.distributed +from torch import nn +from transformers.activations import ACT2FN +from transformers.configuration_utils import PretrainedConfig + from text_generation_server.layers import ( FastLinear, SpeculativeHead, @@ -26,22 +30,16 @@ from text_generation_server.layers import ( get_linear, ) from text_generation_server.layers.attention import ( + Seqlen, attention, paged_attention, reshape_and_cache, - Seqlen, ) from text_generation_server.layers.layernorm import FastRMSNorm -from text_generation_server.layers.moe import SparseMoELayer +from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer from text_generation_server.layers.rotary import PositionRotaryEmbedding, get_mscale from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.utils.weights import Weights -from torch import nn -from transformers.activations import ACT2FN -from transformers.configuration_utils import PretrainedConfig - -if SYSTEM != "ipex": - from moe_kernels.fused_moe import grouped_topk if SYSTEM == "rocm": try: @@ -410,8 +408,14 @@ class DeepseekV2MLP(nn.Module): ) -class BlockSparseMoE(nn.Module): - def __init__(self, prefix, config: DeepseekV2Config, weights): +class DeepseekV2MoE(nn.Module): + def __init__( + self, + prefix, + config: DeepseekV2Config, + moe_layer_cls: Type[MoELayer], + weights, + ): super().__init__() self.hidden_dim = config.hidden_size @@ -423,7 +427,7 @@ class BlockSparseMoE(nn.Module): # Gating self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False) - self.moe_layer = SparseMoELayer( + self.moe_layer = moe_layer_cls( prefix=f"{prefix}.experts", n_experts=config.n_routed_experts, n_expert_group=config.n_group, @@ -432,6 +436,7 @@ class BlockSparseMoE(nn.Module): topk_group=config.topk_group, weights=weights, ) + assert isinstance(self.moe_layer, MoELayer) if config.n_shared_experts is not None: self.shared_experts = DeepseekV2MLP( @@ -466,96 +471,6 @@ class BlockSparseMoE(nn.Module): return out.view(*x.shape) -class DenseMoE(nn.Module): - def __init__(self, prefix: str, config: DeepseekV2Config, weights: Weights): - super().__init__() - - self.hidden_dim = config.hidden_size - self.moe_intermediate_size = config.moe_intermediate_size - self.n_routed_experts = config.n_routed_experts - self.n_expert_group = config.n_group - self.topk_group = config.topk_group - self.top_k = config.num_experts_per_tok - self.norm_topk_prob = config.norm_topk_prob - self.routed_scaling_factor = config.routed_scaling_factor - - # Gating - # - # Seems like no one quantizes the gate. - self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False) - - self.experts = [ - DeepseekV2MLP( - f"{prefix}.experts.{i}", config, weights, self.moe_intermediate_size - ) - for i in range(self.n_routed_experts) - ] - - if config.n_shared_experts is not None: - self.shared_experts = DeepseekV2MLP( - prefix=f"{prefix}.shared_experts", - config=config, - weights=weights, - intermediate_size=config.moe_intermediate_size - * config.n_shared_experts, - ) - else: - self.shared_experts = None - - self.process_group = weights.process_group - - def forward(self, x: torch.Tensor) -> torch.Tensor: - """ - x: (sequence_length, model_dim) - gate_logits: (sequence_length, n_experts) - """ - # optional reshape - input_shape = x.shape - x = x.view(-1, input_shape[-1]) - - if self.shared_experts is not None: - shared_output = self.shared_experts(x, reduce=False) - else: - shared_output = None - - # gate_logits: (sequence_length, n_experts) - router_logits = self.gate(x) - - topk_weights, topk_ids = grouped_topk( - x, - router_logits, - self.top_k, - renormalize=self.norm_topk_prob, - num_expert_group=self.n_expert_group, - topk_group=self.topk_group, - ) - - out = self.moe_infer_gpu(x, topk_ids, topk_weights) * self.routed_scaling_factor - - if shared_output is not None: - out = out + shared_output - - # Reduce sum - if self.process_group.size() > 1: - torch.distributed.all_reduce(out, group=self.process_group) - - return out - - def moe_infer_gpu( - self, x: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor - ): - weights = torch.zeros( - topk_ids.shape[0], len(self.experts), dtype=x.dtype, device=x.device - ) - weights.scatter_(1, topk_ids, topk_weight) - - out = x.new_zeros(x.shape[0], self.hidden_dim) - for i, expert in enumerate(self.experts): - # Add expert output to out with masking - out += expert(x, reduce=False) * weights[:, i].view(-1, 1) - return out - - class DeepseekV2Layer(nn.Module): def __init__(self, prefix, layer_id, config, weights): super().__init__() @@ -572,10 +487,12 @@ class DeepseekV2Layer(nn.Module): and layer_id >= config.first_k_dense_replace and layer_id % config.moe_layer_freq == 0 ): - moe_cls = ( - BlockSparseMoE if SparseMoELayer.is_supported(weights) else DenseMoE + moe_layer_cls = ( + SparseMoELayer + if SparseMoELayer.is_supported(weights) + else DenseMoELayer ) - self.mlp = moe_cls(f"{prefix}.mlp", config, weights) + self.mlp = DeepseekV2MoE(f"{prefix}.mlp", config, moe_layer_cls, weights) else: self.mlp = DeepseekV2MLP( prefix=f"{prefix}.mlp", diff --git a/server/text_generation_server/models/custom_modeling/flash_mixtral_modeling.py b/server/text_generation_server/models/custom_modeling/flash_mixtral_modeling.py index 2fda718b..02da1384 100644 --- a/server/text_generation_server/models/custom_modeling/flash_mixtral_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_mixtral_modeling.py @@ -18,38 +18,31 @@ # See the License for the specific language governing permissions and # limitations under the License. +from typing import List, Optional, Tuple, Type + import torch import torch.distributed - - from torch import nn -from text_generation_server.utils.import_utils import SYSTEM - -from transformers.activations import ACT2FN from transformers.configuration_utils import PretrainedConfig -from typing import Optional, List, Tuple -from text_generation_server.layers.attention import ( - paged_attention, - attention, - reshape_and_cache, - Seqlen, -) from text_generation_server.layers import ( FastLinear, - TensorParallelRowLinear, + SpeculativeHead, TensorParallelColumnLinear, TensorParallelEmbedding, - SpeculativeHead, + TensorParallelRowLinear, get_linear, ) -from text_generation_server.layers.moe import SparseMoELayer -from text_generation_server.layers.layernorm import ( - FastRMSNorm, -) -from text_generation_server.layers.rotary import ( - PositionRotaryEmbedding, +from text_generation_server.layers.attention import ( + Seqlen, + attention, + paged_attention, + reshape_and_cache, ) +from text_generation_server.layers.layernorm import FastRMSNorm +from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer +from text_generation_server.layers.rotary import PositionRotaryEmbedding +from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.utils.weights import UnquantizedWeight @@ -315,14 +308,16 @@ def round_up(x: torch.Tensor, value: int): return torch.div(x + (value - 1), value, rounding_mode="trunc") * value -class BlockSparseMoE(nn.Module): - def __init__(self, prefix, config: MixtralConfig, weights): +class MixtralMoE(nn.Module): + def __init__( + self, prefix, config: MixtralConfig, moe_layer_cls: Type[MoELayer], weights + ): super().__init__() # gating self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False) - self.moe = SparseMoELayer( + self.moe = moe_layer_cls( n_expert_group=None, n_experts=config.num_local_experts, prefix=f"{prefix}.experts", @@ -334,6 +329,7 @@ class BlockSparseMoE(nn.Module): up_proj_name="w3", down_proj_name="w2", ) + assert isinstance(self.moe, MoELayer) self.process_group = weights.process_group @@ -349,95 +345,6 @@ class BlockSparseMoE(nn.Module): return out.view(*x.shape) -class DenseMoE(nn.Module): - def __init__(self, prefix, config: MixtralConfig, weights): - super().__init__() - self.hidden_dim = config.hidden_size - self.ffn_dim = config.intermediate_size // weights.process_group.size() - self.num_experts = config.num_local_experts - self.top_k = config.num_experts_per_tok - - act = config.hidden_act - if "gelu" in act: - self.act = lambda x: torch.nn.functional.gelu( - x, - approximate=( - "tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none" - ), - ) - elif "silu" in act: - self.act = torch.nn.functional.silu - else: - self.act = ACT2FN[act] - - # gating - self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False) - - self.w1 = [ - TensorParallelColumnLinear.load( - config, prefix=f"{prefix}.experts.{i}.w1", weights=weights, bias=False - ) - for i in range(self.num_experts) - ] - self.w3 = [ - TensorParallelColumnLinear.load( - config, prefix=f"{prefix}.experts.{i}.w3", weights=weights, bias=False - ) - for i in range(self.num_experts) - ] - self.w2 = [ - TensorParallelRowLinear.load( - config, prefix=f"{prefix}.experts.{i}.w2", weights=weights, bias=False - ) - for i in range(self.num_experts) - ] - - self.process_group = weights.process_group - - def forward(self, x: torch.Tensor) -> torch.Tensor: - """ - x: (sequence_length, model_dim) - gate_logits: (sequence_length, n_experts) - """ - # optional reshape - input_shape = x.shape - x = x.view(-1, input_shape[-1]) - - # gate_logits: (sequence_length, n_experts) - gate_logits = self.gate(x) - # all_probs: (sequence_length, n_experts) and upcast for softmax - all_probs = torch.nn.functional.softmax(gate_logits, dim=1, dtype=torch.float) - - if self.top_k < self.num_experts: - _, not_selected_experts = torch.topk( - all_probs, - self.num_experts - self.top_k, - largest=False, - sorted=False, - dim=1, - ) - # Mask not selected experts - all_probs.scatter_(1, not_selected_experts, 0) - - # Re-normalize - weights = all_probs / all_probs.sum(dim=1, keepdim=True) - weights = weights.to(x.dtype) - - # Final output tensor - out = x.new_zeros(x.shape[0], self.hidden_dim) - for i in range(self.num_experts): - h = self.act(self.w1[i](x)) * self.w3[i](x) - h = self.w2[i](h, reduce=False) - # Add expert output to out with masking - out += h * weights[:, i].view(-1, 1) - - # Reduce sum - if self.process_group.size() > 1: - torch.distributed.all_reduce(out, group=self.process_group) - - return out - - class MixtralLayer(nn.Module): def __init__(self, prefix: str, layer_id, config, weights): super().__init__() @@ -447,8 +354,12 @@ class MixtralLayer(nn.Module): prefix=f"{prefix}.self_attn", config=config, weights=weights ) - moe_cls = BlockSparseMoE if SparseMoELayer.is_supported(weights) else DenseMoE - self.moe = moe_cls(f"{prefix}.block_sparse_moe", config, weights) + moe_layer_cls = ( + SparseMoELayer if SparseMoELayer.is_supported(weights) else DenseMoELayer + ) + self.moe = MixtralMoE( + f"{prefix}.block_sparse_moe", config, moe_layer_cls, weights + ) self.input_layernorm = FastRMSNorm.load( prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps From 03263f5e88c758b1061f784914a729663054ecf0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Orhun=20Parmaks=C4=B1z?= Date: Tue, 24 Sep 2024 15:51:48 +0300 Subject: [PATCH 07/33] Update the link to the Ratatui organization (#2546) --- benchmark/README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/benchmark/README.md b/benchmark/README.md index 17a02a30..f4e0cb16 100644 --- a/benchmark/README.md +++ b/benchmark/README.md @@ -7,7 +7,7 @@ A lightweight benchmarking tool based inspired by [oha](https://github.com/hatoo/oha) -and powered by [tui](https://github.com/tui-rs-revival/ratatui). +and powered by [Ratatui](https://github.com/ratatui/ratatui). ## Install From 8024ded58f94a6ca0a1dc187ecb3e4a963ebb8fc Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Orhun=20Parmaks=C4=B1z?= Date: Tue, 24 Sep 2024 15:57:20 +0300 Subject: [PATCH 08/33] Simplify crossterm imports (#2545) --- benchmark/Cargo.toml | 3 +-- benchmark/src/app.rs | 2 +- benchmark/src/event.rs | 2 +- benchmark/src/lib.rs | 14 +++++++------- 4 files changed, 10 insertions(+), 11 deletions(-) diff --git a/benchmark/Cargo.toml b/benchmark/Cargo.toml index 7d3d8b18..23885da2 100644 --- a/benchmark/Cargo.toml +++ b/benchmark/Cargo.toml @@ -16,7 +16,6 @@ path = "src/main.rs" [dependencies] average = "0.14" clap = { version = "4.4.5", features = ["derive", "env"] } -crossterm = "0.28.1" float-ord = "0.3.2" serde = {version = "1.0.188", features = ["derive"]} serde_json = "1.0" @@ -25,7 +24,7 @@ text-generation-client = { path = "../backends/client" } thiserror = "1.0.48" tokenizers = { workspace = true } tokio = { version = "1.32.0", features = ["rt", "rt-multi-thread", "parking_lot", "signal", "sync", "macros"] } -ratatui = { version = "0.28.1", default-features = false, features = ["crossterm"] } +ratatui = "0.28.1" tracing = "0.1.37" tracing-subscriber = { version = "0.3.17", features = ["json", "env-filter"] } hf-hub = { workspace = true } diff --git a/benchmark/src/app.rs b/benchmark/src/app.rs index 7e4d1181..7e3aeaf9 100644 --- a/benchmark/src/app.rs +++ b/benchmark/src/app.rs @@ -1,6 +1,6 @@ /// Inspired by https://github.com/hatoo/oha/blob/bb989ea3cd77727e7743e7daa60a19894bb5e901/src/monitor.rs use crate::generation::{Decode, Message, Prefill}; -use crossterm::event::{KeyCode, KeyEvent, KeyModifiers}; +use ratatui::crossterm::event::{KeyCode, KeyEvent, KeyModifiers}; use ratatui::layout::{Alignment, Constraint, Direction, Layout}; use ratatui::style::{Color, Modifier, Style}; use ratatui::text::{Line, Span}; diff --git a/benchmark/src/event.rs b/benchmark/src/event.rs index 07482aed..d3f10fb6 100644 --- a/benchmark/src/event.rs +++ b/benchmark/src/event.rs @@ -1,5 +1,5 @@ /// Inspired by https://github.com/orhun/rust-tui-template/blob/472aa515119d4c94903eac12d9784417281dc7f5/src/event.rs -use crossterm::event; +use ratatui::crossterm::event; use std::time::{Duration, Instant}; use tokio::sync::{broadcast, mpsc}; diff --git a/benchmark/src/lib.rs b/benchmark/src/lib.rs index 0469b6fd..03612eef 100644 --- a/benchmark/src/lib.rs +++ b/benchmark/src/lib.rs @@ -6,7 +6,7 @@ mod utils; use crate::app::App; use crate::event::Event; -use crossterm::ExecutableCommand; +use ratatui::crossterm::ExecutableCommand; use ratatui::backend::CrosstermBackend; use ratatui::Terminal; use std::io; @@ -50,9 +50,9 @@ pub async fn run( }; // Initialize terminal properties - crossterm::terminal::enable_raw_mode()?; - io::stdout().execute(crossterm::terminal::EnterAlternateScreen)?; - io::stdout().execute(crossterm::cursor::Hide)?; + ratatui::crossterm::terminal::enable_raw_mode()?; + io::stdout().execute(ratatui::crossterm::terminal::EnterAlternateScreen)?; + io::stdout().execute(ratatui::crossterm::cursor::Hide)?; // Initialize terminal let mut terminal = { @@ -128,9 +128,9 @@ pub async fn run( let _ = shutdown_guard_receiver.recv().await; // Revert terminal to original view - io::stdout().execute(crossterm::terminal::LeaveAlternateScreen)?; - crossterm::terminal::disable_raw_mode()?; - io::stdout().execute(crossterm::cursor::Show)?; + io::stdout().execute(ratatui::crossterm::terminal::LeaveAlternateScreen)?; + ratatui::crossterm::terminal::disable_raw_mode()?; + io::stdout().execute(ratatui::crossterm::cursor::Show)?; let parameters_table = table::parameters_table( tokenizer_name, From e6d29656b50c741484b43479bc560a0fc64c97cd Mon Sep 17 00:00:00 2001 From: Aritra Roy Gosthipaty Date: Tue, 24 Sep 2024 18:36:53 +0530 Subject: [PATCH 09/33] Adding note for private models in quick-tour document (#2548) * chore: adding note for private models in quicktour doc * Update docs/source/quicktour.md Co-authored-by: Omar Sanseviero * Update docs/source/quicktour.md Co-authored-by: vb * Update docs/source/quicktour.md Co-authored-by: vb --------- Co-authored-by: Omar Sanseviero Co-authored-by: vb --- docs/source/quicktour.md | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/docs/source/quicktour.md b/docs/source/quicktour.md index 109e3c9a..33832964 100644 --- a/docs/source/quicktour.md +++ b/docs/source/quicktour.md @@ -15,6 +15,15 @@ docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \ --model-id $model ``` + + +If you want to serve gated or private models, which provide +controlled access to sensitive or proprietary content, refer to +[this guide](https://huggingface.co/docs/text-generation-inference/en/basic_tutorials/gated_model_access) +for detailed instructions. + + + ### Supported hardware TGI supports various hardware. Make sure to check the [Using TGI with Nvidia GPUs](./installation_nvidia), [Using TGI with AMD GPUs](./installation_amd), [Using TGI with Intel GPUs](./installation_intel), [Using TGI with Gaudi](./installation_gaudi), [Using TGI with Inferentia](./installation_inferentia) guides depending on which hardware you would like to deploy TGI on. From 75c8c54ac9a84b532b7179ce051f0ade134cbe13 Mon Sep 17 00:00:00 2001 From: Nicolas Patry Date: Tue, 24 Sep 2024 23:00:43 +0200 Subject: [PATCH 10/33] Hotfixing main. (#2562) --- Cargo.lock | 186 +++++++++++++++++++++++-------------------- benchmark/src/lib.rs | 2 +- 2 files changed, 101 insertions(+), 87 deletions(-) diff --git a/Cargo.lock b/Cargo.lock index 2c8a0fe2..e535004e 100644 --- a/Cargo.lock +++ b/Cargo.lock @@ -109,9 +109,9 @@ dependencies = [ [[package]] name = "anyhow" -version = "1.0.88" +version = "1.0.89" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "4e1496f8fb1fbf272686b8d37f523dab3e4a7443300055e74cdaa449f3114356" +checksum = "86fdf8605db99b54d3cd748a44c6d04df638eb5dafb219b135d0149bd0db01f6" [[package]] name = "arbitrary" @@ -177,9 +177,9 @@ dependencies = [ [[package]] name = "async-trait" -version = "0.1.82" +version = "0.1.83" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "a27b8a3a6e1a44fa4c8baf1f653e4172e81486d4941f2237e20dc2d0cf4ddff1" +checksum = "721cae7de5c34fbb2acd27e21e6d2cf7b886dce0c27388d46c4e6c47ea4318dd" dependencies = [ "proc-macro2", "quote", @@ -269,9 +269,9 @@ dependencies = [ [[package]] name = "aws-lc-sys" -version = "0.21.1" +version = "0.21.2" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "234314bd569802ec87011d653d6815c6d7b9ffb969e9fee5b8b20ef860e8dce9" +checksum = "b3ddc4a5b231dd6958b140ff3151b6412b3f4321fab354f399eec8f14b06df62" dependencies = [ "bindgen", "cc", @@ -309,19 +309,19 @@ dependencies = [ "serde_urlencoded", "sync_wrapper 0.1.2", "tokio", - "tower", + "tower 0.4.13", "tower-layer", "tower-service", ] [[package]] name = "axum" -version = "0.7.5" +version = "0.7.6" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "3a6c9af12842a67734c9a2e355436e5d03b22383ed60cf13cd0c18fbfe3dcbcf" +checksum = "8f43644eed690f5374f1af436ecd6aea01cd201f6fbdf0178adaf6907afb2cec" dependencies = [ "async-trait", - "axum-core 0.4.3", + "axum-core 0.4.4", "bytes", "futures-util", "http 1.1.0", @@ -342,7 +342,7 @@ dependencies = [ "serde_urlencoded", "sync_wrapper 1.0.1", "tokio", - "tower", + "tower 0.5.1", "tower-layer", "tower-service", "tracing", @@ -367,9 +367,9 @@ dependencies = [ [[package]] name = "axum-core" -version = "0.4.3" +version = "0.4.4" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "a15c63fd72d41492dc4f497196f5da1fb04fb7529e631d73630d1b491e47a2e3" +checksum = "5e6b8ba012a258d63c9adfa28b9ddcf66149da6f986c5b5452e629d5ee64bf00" dependencies = [ "async-trait", "bytes", @@ -380,7 +380,7 @@ dependencies = [ "mime", "pin-project-lite", "rustversion", - "sync_wrapper 0.1.2", + "sync_wrapper 1.0.1", "tower-layer", "tower-service", "tracing", @@ -392,13 +392,13 @@ version = "0.16.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "bdad298231394729042d1f155b93f9fdf0b5ee1aea0b62404c4d7341f7d8fe08" dependencies = [ - "axum 0.7.5", + "axum 0.7.6", "futures-core", "futures-util", "http 1.1.0", "opentelemetry 0.21.0", "pin-project-lite", - "tower", + "tower 0.4.13", "tracing", "tracing-opentelemetry 0.22.0", "tracing-opentelemetry-instrumentation-sdk", @@ -546,9 +546,9 @@ checksum = "8f1fe948ff07f4bd06c30984e69f5b4899c516a3ef74f34df92a2df2ab535495" [[package]] name = "bytes" -version = "1.7.1" +version = "1.7.2" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "8318a53db07bb3f8dca91a600466bdb3f2eaadeedfdbcf02e1accbad9271ba50" +checksum = "428d9aa8fbc0670b7b8d6030a7fadd0f86151cae55e4dbbece15f3780a3dfaf3" [[package]] name = "camino" @@ -605,9 +605,9 @@ dependencies = [ [[package]] name = "cc" -version = "1.1.18" +version = "1.1.21" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "b62ac837cdb5cb22e10a256099b4fc502b1dfe560cb282963a974d7abd80e476" +checksum = "07b1695e2c7e8fc85310cde85aeaab7e3097f593c91d209d3f9df76c928100f0" dependencies = [ "jobserver", "libc", @@ -675,9 +675,9 @@ dependencies = [ [[package]] name = "clap" -version = "4.5.17" +version = "4.5.18" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "3e5a21b8495e732f1b3c364c9949b201ca7bae518c502c80256c96ad79eaf6ac" +checksum = "b0956a43b323ac1afaffc053ed5c4b7c1f1800bacd1683c353aabbb752515dd3" dependencies = [ "clap_builder", "clap_derive", @@ -685,9 +685,9 @@ dependencies = [ [[package]] name = "clap_builder" -version = "4.5.17" +version = "4.5.18" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "8cf2dd12af7a047ad9d6da2b6b249759a22a7abc0f474c1dae1777afa4b21a73" +checksum = "4d72166dd41634086d5803a47eb71ae740e61d84709c36f3c34110173db3961b" dependencies = [ "anstream", "anstyle", @@ -697,9 +697,9 @@ dependencies = [ [[package]] name = "clap_derive" -version = "4.5.13" +version = "4.5.18" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "501d359d5f3dcaf6ecdeee48833ae73ec6e42723a1e52419c79abf9507eec0a0" +checksum = "4ac6a0c7b1a9e9a5186361f67dfa1b88213572f427fb9ab038efb2bd8c582dab" dependencies = [ "heck 0.5.0", "proc-macro2", @@ -1732,9 +1732,9 @@ dependencies = [ [[package]] name = "hyper-util" -version = "0.1.8" +version = "0.1.9" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "da62f120a8a37763efb0cf8fdf264b884c7b8b9ac8660b900c8661030c00e6ba" +checksum = "41296eb09f183ac68eec06e03cdbea2e759633d4067b2f6552fc2e009bcad08b" dependencies = [ "bytes", "futures-channel", @@ -1745,7 +1745,6 @@ dependencies = [ "pin-project-lite", "socket2", "tokio", - "tower", "tower-service", "tracing", ] @@ -1985,7 +1984,7 @@ dependencies = [ "anyhow", "base64 0.21.7", "bytecount", - "clap 4.5.17", + "clap 4.5.18", "fancy-regex", "fraction", "getrandom", @@ -2025,9 +2024,9 @@ checksum = "03087c2bad5e1034e8cace5926dec053fb3790248370865f5117a7d0213354c8" [[package]] name = "libc" -version = "0.2.158" +version = "0.2.159" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "d8adc4bb1803a324070e64a98ae98f38934d91957a99cfb3a43dcbc01bc56439" +checksum = "561d97a539a36e26a9a5fad1ea11a3039a67714694aaa379433e580854bc3dc5" [[package]] name = "libfuzzer-sys" @@ -2240,9 +2239,9 @@ dependencies = [ [[package]] name = "minijinja" -version = "2.2.0" +version = "2.3.1" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "6d7d3e3a3eece1fa4618237ad41e1de855ced47eab705cec1c9a920e1d1c5aad" +checksum = "1028b628753a7e1a88fc59c9ba4b02ecc3bc0bd3c7af23df667bc28df9b3310e" dependencies = [ "serde", "serde_json", @@ -2250,9 +2249,9 @@ dependencies = [ [[package]] name = "minijinja-contrib" -version = "2.2.0" +version = "2.3.1" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "744a2b84dbd22398e347594ed2aef9d3f1b948934e3e6e94ef69ecd39d597f4b" +checksum = "39ffd46ee854be23604a20efd6c9655374fefbe4d44b949dc0f907305d92873a" dependencies = [ "minijinja", "serde", @@ -2600,9 +2599,9 @@ dependencies = [ [[package]] name = "once_cell" -version = "1.20.0" +version = "1.19.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "33ea5043e58958ee56f3e15a90aee535795cd7dfd319846288d93c5b57d85cbe" +checksum = "3fdb12b2476b595f9358c5161aa467c2438859caa136dec86c26fdd2efe17b92" [[package]] name = "onig" @@ -2955,9 +2954,9 @@ checksum = "8b870d8c151b6f2fb93e84a13146138f05d02ed11c7e7c54f8826aaaf7c9f184" [[package]] name = "pkg-config" -version = "0.3.30" +version = "0.3.31" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "d231b230927b5e4ad203db57bbcbee2802f6bce620b1e4a9024a07d94e2907ec" +checksum = "953ec861398dccce10c670dfeaf3ec4911ca479e9c02154b3a215178c5f566f2" [[package]] name = "plotters" @@ -3002,9 +3001,9 @@ dependencies = [ [[package]] name = "portable-atomic" -version = "1.7.0" +version = "1.8.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "da544ee218f0d287a911e9c99a39a8c9bc8fcad3cb8db5959940044ecfc67265" +checksum = "d30538d42559de6b034bc76fd6dd4c38961b1ee5c6c56e3808c50128fdbc22ce" [[package]] name = "powerfmt" @@ -3161,9 +3160,9 @@ dependencies = [ [[package]] name = "pyo3" -version = "0.22.2" +version = "0.22.3" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "831e8e819a138c36e212f3af3fd9eeffed6bf1510a805af35b0edee5ffa59433" +checksum = "15ee168e30649f7f234c3d49ef5a7a6cbf5134289bc46c29ff3155fa3221c225" dependencies = [ "cfg-if", "indoc", @@ -3179,9 +3178,9 @@ dependencies = [ [[package]] name = "pyo3-build-config" -version = "0.22.2" +version = "0.22.3" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "1e8730e591b14492a8945cdff32f089250b05f5accecf74aeddf9e8272ce1fa8" +checksum = "e61cef80755fe9e46bb8a0b8f20752ca7676dcc07a5277d8b7768c6172e529b3" dependencies = [ "once_cell", "target-lexicon", @@ -3189,9 +3188,9 @@ dependencies = [ [[package]] name = "pyo3-ffi" -version = "0.22.2" +version = "0.22.3" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "5e97e919d2df92eb88ca80a037969f44e5e70356559654962cbb3316d00300c6" +checksum = "67ce096073ec5405f5ee2b8b31f03a68e02aa10d5d4f565eca04acc41931fa1c" dependencies = [ "libc", "pyo3-build-config", @@ -3199,9 +3198,9 @@ dependencies = [ [[package]] name = "pyo3-macros" -version = "0.22.2" +version = "0.22.3" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "eb57983022ad41f9e683a599f2fd13c3664d7063a3ac5714cae4b7bee7d3f206" +checksum = "2440c6d12bc8f3ae39f1e775266fa5122fd0c8891ce7520fa6048e683ad3de28" dependencies = [ "proc-macro2", "pyo3-macros-backend", @@ -3211,9 +3210,9 @@ dependencies = [ [[package]] name = "pyo3-macros-backend" -version = "0.22.2" +version = "0.22.3" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "ec480c0c51ddec81019531705acac51bcdbeae563557c982aa8263bb96880372" +checksum = "1be962f0e06da8f8465729ea2cb71a416d2257dff56cbe40a70d3e62a93ae5d1" dependencies = [ "heck 0.5.0", "proc-macro2", @@ -3403,9 +3402,9 @@ dependencies = [ [[package]] name = "redox_syscall" -version = "0.5.4" +version = "0.5.5" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "0884ad60e090bf1345b93da0a5de8923c93884cd03f40dfcfddd3b4bee661853" +checksum = "62871f2d65009c0256aed1b9cfeeb8ac272833c404e13d53d400cd0dad7a2ac0" dependencies = [ "bitflags 2.6.0", ] @@ -3770,9 +3769,9 @@ dependencies = [ [[package]] name = "security-framework-sys" -version = "2.11.1" +version = "2.12.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "75da29fe9b9b08fe9d6b22b5b4bcbc75d8db3aa31e639aa56bb62e9d46bfceaf" +checksum = "ea4a292869320c0272d7bc55a5a6aafaff59b4f63404a003887b679a2e05b4b6" dependencies = [ "core-foundation-sys", "libc", @@ -4179,7 +4178,7 @@ version = "2.3.1-dev0" dependencies = [ "async-stream", "async-trait", - "clap 4.5.17", + "clap 4.5.18", "cmake", "cxx", "cxx-build", @@ -4201,8 +4200,7 @@ name = "text-generation-benchmark" version = "2.3.1-dev0" dependencies = [ "average", - "clap 4.5.17", - "crossterm", + "clap 4.5.18", "float-ord", "hf-hub", "ratatui", @@ -4231,7 +4229,7 @@ dependencies = [ "tokio", "tonic 0.10.2", "tonic-build", - "tower", + "tower 0.4.13", "tracing", ] @@ -4239,7 +4237,7 @@ dependencies = [ name = "text-generation-launcher" version = "2.3.1-dev0" dependencies = [ - "clap 4.5.17", + "clap 4.5.18", "ctrlc", "float_eq", "hf-hub", @@ -4260,10 +4258,10 @@ version = "2.3.1-dev0" dependencies = [ "async-stream", "async-trait", - "axum 0.7.5", + "axum 0.7.6", "axum-tracing-opentelemetry", "base64 0.22.1", - "clap 4.5.17", + "clap 4.5.18", "csv", "futures", "futures-util", @@ -4309,10 +4307,10 @@ version = "2.3.1-dev0" dependencies = [ "async-stream", "async-trait", - "axum 0.7.5", + "axum 0.7.6", "axum-tracing-opentelemetry", "base64 0.22.1", - "clap 4.5.17", + "clap 4.5.18", "futures", "futures-util", "grpc-metadata", @@ -4343,7 +4341,7 @@ dependencies = [ "tokio-stream", "tonic 0.10.2", "tonic-build", - "tower", + "tower 0.4.13", "tower-http", "tracing", "tracing-opentelemetry 0.21.0", @@ -4358,10 +4356,10 @@ version = "2.3.1-dev0" dependencies = [ "async-stream", "async-trait", - "axum 0.7.5", + "axum 0.7.6", "axum-tracing-opentelemetry", "base64 0.22.1", - "clap 4.5.17", + "clap 4.5.18", "criterion", "futures", "futures-util", @@ -4394,7 +4392,7 @@ dependencies = [ "tokio-stream", "tonic 0.10.2", "tonic-build", - "tower", + "tower 0.4.13", "tower-http", "tracing", "tracing-opentelemetry 0.21.0", @@ -4414,18 +4412,18 @@ dependencies = [ [[package]] name = "thiserror" -version = "1.0.63" +version = "1.0.64" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "c0342370b38b6a11b6cc11d6a805569958d54cfa061a29969c3b5ce2ea405724" +checksum = "d50af8abc119fb8bb6dbabcfa89656f46f84aa0ac7688088608076ad2b459a84" dependencies = [ "thiserror-impl", ] [[package]] name = "thiserror-impl" -version = "1.0.63" +version = "1.0.64" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "a4558b58466b9ad7ca0f102865eccc95938dca1a74a856f2b57b6629050da261" +checksum = "08904e7672f5eb876eaaf87e0ce17857500934f4981c4a0ab2b4aa98baac7fc3" dependencies = [ "proc-macro2", "quote", @@ -4696,9 +4694,9 @@ dependencies = [ [[package]] name = "toml_edit" -version = "0.22.20" +version = "0.22.22" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "583c44c02ad26b0c3f3066fe629275e50627026c51ac2e595cca4c230ce1ce1d" +checksum = "4ae48d6208a266e853d946088ed816055e556cc6028c5e8e2b84d9fa5dd7c7f5" dependencies = [ "indexmap 2.5.0", "serde", @@ -4729,7 +4727,7 @@ dependencies = [ "prost 0.11.9", "tokio", "tokio-stream", - "tower", + "tower 0.4.13", "tower-layer", "tower-service", "tracing", @@ -4756,7 +4754,7 @@ dependencies = [ "prost 0.12.6", "tokio", "tokio-stream", - "tower", + "tower 0.4.13", "tower-layer", "tower-service", "tracing", @@ -4795,6 +4793,22 @@ dependencies = [ "tracing", ] +[[package]] +name = "tower" +version = "0.5.1" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "2873938d487c3cfb9aed7546dc9f2711d867c9f90c46b889989a2cb84eba6b4f" +dependencies = [ + "futures-core", + "futures-util", + "pin-project-lite", + "sync_wrapper 0.1.2", + "tokio", + "tower-layer", + "tower-service", + "tracing", +] + [[package]] name = "tower-http" version = "0.5.2" @@ -5008,9 +5022,9 @@ checksum = "e91b56cd4cadaeb79bbf1a5645f6b4f8dc5bde8834ad5894a8db35fda9efa1fe" [[package]] name = "unicode-normalization" -version = "0.1.23" +version = "0.1.24" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "a56d1686db2308d901306f92a263857ef59ea39678a5458e7cb17f01415101f5" +checksum = "5033c97c4262335cded6d6fc3e5c18ab755e1a3dc96376350f3d8e9f009ad956" dependencies = [ "tinyvec", ] @@ -5043,9 +5057,9 @@ dependencies = [ [[package]] name = "unicode-width" -version = "0.1.13" +version = "0.1.14" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "0336d538f7abc86d282a4189614dfaa90810dfc2c6f6427eaf88e16311dd225d" +checksum = "7dd6e30e90baa6f72411720665d41d89b9a3d039dc45b8faea1ddd07f617f6af" [[package]] name = "unicode_categories" @@ -5145,7 +5159,7 @@ version = "6.0.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "0b39868d43c011961e04b41623e050aedf2cc93652562ff7935ce0f819aaf2da" dependencies = [ - "axum 0.7.5", + "axum 0.7.6", "mime_guess", "regex", "rust-embed", @@ -5362,9 +5376,9 @@ dependencies = [ [[package]] name = "webpki-roots" -version = "0.26.5" +version = "0.26.6" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "0bd24728e5af82c6c4ec1b66ac4844bdf8156257fccda846ec58b42cd0cdbe6a" +checksum = "841c67bff177718f1d4dfefde8d8f0e78f9b6589319ba88312f567fc5841a958" dependencies = [ "rustls-pki-types", ] @@ -5653,9 +5667,9 @@ checksum = "589f6da84c646204747d1270a2a5661ea66ed1cced2631d546fdfb155959f9ec" [[package]] name = "winnow" -version = "0.6.18" +version = "0.6.19" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "68a9bda4691f099d435ad181000724da8e5899daa10713c2d432552b9ccd3a6f" +checksum = "c52ac009d615e79296318c1bcce2d422aaca15ad08515e344feeda07df67a587" dependencies = [ "memchr", ] diff --git a/benchmark/src/lib.rs b/benchmark/src/lib.rs index 03612eef..bb4b6a77 100644 --- a/benchmark/src/lib.rs +++ b/benchmark/src/lib.rs @@ -6,8 +6,8 @@ mod utils; use crate::app::App; use crate::event::Event; -use ratatui::crossterm::ExecutableCommand; use ratatui::backend::CrosstermBackend; +use ratatui::crossterm::ExecutableCommand; use ratatui::Terminal; use std::io; use text_generation_client::v3::{GrammarType, NextTokenChooserParameters, ShardedClient}; From c032280b17840c1c03994fa5ac498029ecb4c3f6 Mon Sep 17 00:00:00 2001 From: Nicolas Patry Date: Tue, 24 Sep 2024 23:37:17 +0200 Subject: [PATCH 11/33] Cleanup Vertex + Chat (#2553) * Cleanup Vertex + Chat * logprobs defaults to false. * Parameters are optional * Fix docs. * Changing back this logprobs default. * Fixup doc. * Let's debug that. * Not unstable. * Updating Cargo ? * Wat? * Dummy change. * Trying some other install. * Trying smething. * Revert everything. * Update Cargo lock. * Fixing the pre-commit after rebase. --- .gitignore | 3 +- router/src/lib.rs | 108 +++++++++---- router/src/server.rs | 313 ++----------------------------------- router/src/vertex.rs | 360 +++++++++++++++++++++++++++++++++++++++++++ 4 files changed, 455 insertions(+), 329 deletions(-) create mode 100644 router/src/vertex.rs diff --git a/.gitignore b/.gitignore index edcc2f89..4270a1ae 100644 --- a/.gitignore +++ b/.gitignore @@ -3,9 +3,8 @@ target router/tokenizer.json *__pycache__* +backends/v2/src/client/pb backends/v3/src/client/pb -backends/client/src/v2/pb -backends/client/src/v3/pb # ROCm auto-generated files *.hip diff --git a/router/src/lib.rs b/router/src/lib.rs index ad8924df..0901bafa 100644 --- a/router/src/lib.rs +++ b/router/src/lib.rs @@ -9,7 +9,10 @@ mod kserve; pub mod logging; pub mod usage_stats; +mod vertex; +use crate::infer::{Infer, InferError}; +use crate::server::prepare_chat_input; use serde::{Deserialize, Serialize}; use tracing::warn; use utoipa::ToSchema; @@ -54,32 +57,6 @@ impl std::str::FromStr for Attention { } } -#[derive(Clone, Deserialize, ToSchema)] -pub(crate) struct GenerateVertexInstance { - #[schema(example = "What is Deep Learning?")] - pub inputs: String, - #[schema(nullable = true, default = "null", example = "null")] - pub parameters: Option, -} - -#[derive(Clone, Deserialize, ToSchema)] -#[serde(untagged)] -enum VertexInstance { - Generate(GenerateVertexInstance), - Chat(ChatRequest), -} - -#[derive(Deserialize, ToSchema)] -pub(crate) struct VertexRequest { - #[serde(rename = "instances")] - pub instances: Vec, -} - -#[derive(Clone, Deserialize, ToSchema, Serialize)] -pub(crate) struct VertexResponse { - pub predictions: Vec, -} - /// Hub type #[derive(Clone, Debug, Deserialize)] pub struct HubModelInfo { @@ -174,6 +151,7 @@ impl HubProcessorConfig { } #[derive(Clone, Debug, Deserialize, ToSchema, Serialize)] +#[cfg_attr(test, derive(PartialEq))] #[serde(tag = "type", content = "value")] pub(crate) enum GrammarType { /// A string that represents a [JSON Schema](https://json-schema.org/). @@ -230,6 +208,7 @@ pub struct Info { } #[derive(Clone, Debug, Deserialize, ToSchema, Default)] +#[cfg_attr(test, derive(PartialEq))] pub(crate) struct GenerateParameters { /// Generate best_of sequences and return the one if the highest token logprobs. #[serde(default)] @@ -774,6 +753,7 @@ impl ChatCompletionChunk { } #[derive(Clone, Deserialize, ToSchema, Serialize)] +#[cfg_attr(test, derive(Debug, PartialEq, Default))] pub(crate) struct ChatRequest { #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")] /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API. @@ -890,7 +870,82 @@ pub(crate) struct ChatRequest { pub stream_options: Option, } +impl ChatRequest { + fn try_into_generate(self, infer: &Infer) -> Result<(GenerateRequest, bool), InferError> { + let ChatRequest { + model, + max_tokens, + messages, + seed, + stop, + stream, + tools, + tool_choice, + tool_prompt, + temperature, + response_format, + guideline, + presence_penalty, + frequency_penalty, + top_p, + top_logprobs, + .. + } = self; + + let repetition_penalty = presence_penalty.map(|x| x + 2.0); + let max_new_tokens = max_tokens.or(Some(100)); + let tool_prompt = tool_prompt + .filter(|s| !s.is_empty()) + .unwrap_or_else(default_tool_prompt); + let stop = stop.unwrap_or_default(); + // enable greedy only when temperature is 0 + let (do_sample, temperature) = match temperature { + Some(temperature) if temperature == 0.0 => (false, None), + other => (true, other), + }; + let (inputs, grammar, using_tools) = prepare_chat_input( + infer, + response_format, + tools, + tool_choice, + &tool_prompt, + guideline, + messages, + )?; + + Ok(( + GenerateRequest { + inputs: inputs.to_string(), + add_special_tokens: false, + parameters: GenerateParameters { + best_of: None, + temperature, + repetition_penalty, + frequency_penalty, + top_k: None, + top_p, + typical_p: None, + do_sample, + max_new_tokens, + return_full_text: None, + stop, + truncate: None, + watermark: false, + details: true, + decoder_input_details: !stream, + seed, + top_n_tokens: top_logprobs, + grammar, + adapter_id: model.filter(|m| *m != "tgi").map(String::from), + }, + }, + using_tools, + )) + } +} + #[derive(Clone, Deserialize, ToSchema, Serialize)] +#[cfg_attr(test, derive(Debug, PartialEq))] struct StreamOptions { /// If set, an additional chunk will be streamed before the data: [DONE] message. The usage field on this chunk shows the token usage statistics for the entire request, and the choices field will always be an empty array. All other chunks will also include a usage field, but with a null value. #[schema(example = "true")] @@ -984,6 +1039,7 @@ pub(crate) struct FunctionDefinition { } #[derive(Clone, Debug, Deserialize, Serialize, ToSchema)] +#[cfg_attr(test, derive(PartialEq))] pub(crate) struct Tool { // The type of the tool. Currently, only 'function' is supported. #[schema(example = "function")] diff --git a/router/src/server.rs b/router/src/server.rs index 32c86e0f..7f1d746c 100644 --- a/router/src/server.rs +++ b/router/src/server.rs @@ -8,7 +8,8 @@ use crate::kserve::{ kserve_model_metadata, kserve_model_metadata_ready, }; use crate::validation::ValidationError; -use crate::{default_tool_prompt, ChatTokenizeResponse, VertexInstance}; +use crate::vertex::vertex_compatibility; +use crate::ChatTokenizeResponse; use crate::{ usage_stats, BestOfSequence, Details, ErrorResponse, FinishReason, FunctionName, GenerateParameters, GenerateRequest, GenerateResponse, GrammarType, HubModelInfo, @@ -20,8 +21,7 @@ use crate::{ ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete, ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob, ChatRequest, Chunk, CompatGenerateRequest, Completion, CompletionComplete, CompletionFinal, - CompletionRequest, CompletionType, DeltaToolCall, Function, Prompt, Tool, VertexRequest, - VertexResponse, + CompletionRequest, CompletionType, DeltaToolCall, Function, Prompt, Tool, }; use crate::{FunctionDefinition, HubPreprocessorConfig, ToolCall, ToolChoice, ToolType}; use crate::{ModelInfo, ModelsInfo}; @@ -149,63 +149,11 @@ async fn openai_get_model_info(info: Extension) -> Json { )] async fn get_chat_tokenize( Extension(infer): Extension, - Json(req): Json, + Json(chat): Json, ) -> Result<(HeaderMap, Json), (StatusCode, Json)> { metrics::counter!("tgi_request_count").increment(1); - let ChatRequest { - model, - max_tokens, - messages, - seed, - stop, - stream, - tools, - tool_choice, - tool_prompt, - temperature, - response_format, - guideline, - .. - } = req; - - let tool_prompt = tool_prompt.unwrap_or_default(); - let (inputs, _grammar, _using_tools) = prepare_chat_input( - &infer, - response_format, - tools, - tool_choice, - &tool_prompt, - guideline, - messages, - )?; - - let generate_request = GenerateRequest { - inputs, - add_special_tokens: false, - parameters: GenerateParameters { - best_of: None, - temperature, - repetition_penalty: None, - frequency_penalty: None, - top_k: None, - top_p: None, - typical_p: None, - do_sample: true, - max_new_tokens: max_tokens, - return_full_text: None, - stop: stop.unwrap_or_default(), - truncate: None, - watermark: false, - details: false, - decoder_input_details: !stream, - seed, - top_n_tokens: None, - grammar: _grammar, - adapter_id: model.as_ref().filter(|m| *m != "tgi").map(String::from), - }, - }; - + let generate_request: GenerateRequest = chat.try_into_generate(&infer)?.0; let input = generate_request.inputs.clone(); let encoding = infer.tokenize(generate_request).await?; if let Some(encoding) = encoding { @@ -1162,77 +1110,20 @@ async fn chat_completions( Extension(infer): Extension, Extension(compute_type): Extension, Extension(info): Extension, - Json(req): Json, + Json(chat): Json, ) -> Result)> { let span = tracing::Span::current(); metrics::counter!("tgi_request_count").increment(1); let ChatRequest { - model, - logprobs, - max_tokens, - messages, - presence_penalty, - seed, - stop, stream, stream_options, - tools, - tool_choice, - tool_prompt, - temperature, - response_format, - guideline, + logprobs, .. - } = req; + } = chat.clone(); + let (generate_request, using_tools): (GenerateRequest, bool) = + chat.try_into_generate(&infer)?; - let repetition_penalty = presence_penalty.map(|x| x + 2.0); - let max_new_tokens = max_tokens.or(Some(100)); - let logprobs = logprobs.unwrap_or(false); - let tool_prompt = tool_prompt - .filter(|s| !s.is_empty()) - .unwrap_or_else(default_tool_prompt); - let stop = stop.unwrap_or_default(); - // enable greedy only when temperature is 0 - let (do_sample, temperature) = match temperature { - Some(temperature) if temperature == 0.0 => (false, None), - other => (true, other), - }; - let (inputs, grammar, using_tools) = prepare_chat_input( - &infer, - response_format, - tools, - tool_choice, - &tool_prompt, - guideline, - messages, - )?; - - // build the request passing some parameters - let generate_request = GenerateRequest { - inputs: inputs.to_string(), - add_special_tokens: false, - parameters: GenerateParameters { - best_of: None, - temperature, - repetition_penalty, - frequency_penalty: req.frequency_penalty, - top_k: None, - top_p: req.top_p, - typical_p: None, - do_sample, - max_new_tokens, - return_full_text: None, - stop, - truncate: None, - watermark: false, - details: true, - decoder_input_details: !stream, - seed, - top_n_tokens: req.top_logprobs, - grammar, - adapter_id: model.filter(|m| *m != "tgi").map(String::from), - }, - }; + let logprobs = logprobs.unwrap_or_default(); // static values that will be returned in all cases let model_id = info.model_id.clone(); @@ -1385,186 +1276,6 @@ async fn chat_completions( } } -/// Generate tokens from Vertex request -#[utoipa::path( -post, -tag = "Text Generation Inference", -path = "/vertex", -request_body = VertexRequest, -responses( -(status = 200, description = "Generated Text", body = VertexResponse), -(status = 424, description = "Generation Error", body = ErrorResponse, -example = json ! ({"error": "Request failed during generation"})), -(status = 429, description = "Model is overloaded", body = ErrorResponse, -example = json ! ({"error": "Model is overloaded"})), -(status = 422, description = "Input validation error", body = ErrorResponse, -example = json ! ({"error": "Input validation error"})), -(status = 500, description = "Incomplete generation", body = ErrorResponse, -example = json ! ({"error": "Incomplete generation"})), -) -)] -#[instrument( - skip_all, - fields( - total_time, - validation_time, - queue_time, - inference_time, - time_per_token, - seed, - ) -)] -async fn vertex_compatibility( - Extension(infer): Extension, - Extension(compute_type): Extension, - Json(req): Json, -) -> Result)> { - let span = tracing::Span::current(); - metrics::counter!("tgi_request_count").increment(1); - - // check that theres at least one instance - if req.instances.is_empty() { - return Err(( - StatusCode::UNPROCESSABLE_ENTITY, - Json(ErrorResponse { - error: "Input validation error".to_string(), - error_type: "Input validation error".to_string(), - }), - )); - } - - // Prepare futures for all instances - let mut futures = Vec::with_capacity(req.instances.len()); - - for instance in req.instances.iter() { - let generate_request = match instance { - VertexInstance::Generate(instance) => GenerateRequest { - inputs: instance.inputs.clone(), - add_special_tokens: true, - parameters: GenerateParameters { - do_sample: true, - max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens), - seed: instance.parameters.as_ref().and_then(|p| p.seed), - details: true, - decoder_input_details: true, - ..Default::default() - }, - }, - VertexInstance::Chat(instance) => { - let ChatRequest { - model, - max_tokens, - messages, - seed, - stop, - stream, - tools, - tool_choice, - tool_prompt, - temperature, - response_format, - guideline, - presence_penalty, - frequency_penalty, - top_p, - top_logprobs, - .. - } = instance.clone(); - - let repetition_penalty = presence_penalty.map(|x| x + 2.0); - let max_new_tokens = max_tokens.or(Some(100)); - let tool_prompt = tool_prompt - .filter(|s| !s.is_empty()) - .unwrap_or_else(default_tool_prompt); - let stop = stop.unwrap_or_default(); - // enable greedy only when temperature is 0 - let (do_sample, temperature) = match temperature { - Some(temperature) if temperature == 0.0 => (false, None), - other => (true, other), - }; - let (inputs, grammar, _using_tools) = match prepare_chat_input( - &infer, - response_format, - tools, - tool_choice, - &tool_prompt, - guideline, - messages, - ) { - Ok(result) => result, - Err(e) => { - return Err(( - StatusCode::BAD_REQUEST, - Json(ErrorResponse { - error: format!("Failed to prepare chat input: {}", e), - error_type: "Input preparation error".to_string(), - }), - )); - } - }; - - GenerateRequest { - inputs: inputs.to_string(), - add_special_tokens: false, - parameters: GenerateParameters { - best_of: None, - temperature, - repetition_penalty, - frequency_penalty, - top_k: None, - top_p, - typical_p: None, - do_sample, - max_new_tokens, - return_full_text: None, - stop, - truncate: None, - watermark: false, - details: true, - decoder_input_details: !stream, - seed, - top_n_tokens: top_logprobs, - grammar, - adapter_id: model.filter(|m| *m != "tgi").map(String::from), - }, - } - } - }; - - let infer_clone = infer.clone(); - let compute_type_clone = compute_type.clone(); - let span_clone = span.clone(); - - futures.push(async move { - generate_internal( - Extension(infer_clone), - compute_type_clone, - Json(generate_request), - span_clone, - ) - .await - .map(|(_, Json(generation))| generation.generated_text) - .map_err(|_| { - ( - StatusCode::INTERNAL_SERVER_ERROR, - Json(ErrorResponse { - error: "Incomplete generation".into(), - error_type: "Incomplete generation".into(), - }), - ) - }) - }); - } - - // execute all futures in parallel, collect results, returning early if any error occurs - let results = futures::future::join_all(futures).await; - let predictions: Result, _> = results.into_iter().collect(); - let predictions = predictions?; - - let response = VertexResponse { predictions }; - Ok((HeaderMap::new(), Json(response)).into_response()) -} - /// Tokenize inputs #[utoipa::path( post, @@ -2637,7 +2348,7 @@ pub enum WebServerError { type PreparedInput = (String, Option, bool); -fn prepare_chat_input( +pub(crate) fn prepare_chat_input( infer: &Infer, response_format: Option, tools: Option>, diff --git a/router/src/vertex.rs b/router/src/vertex.rs new file mode 100644 index 00000000..0c1467fe --- /dev/null +++ b/router/src/vertex.rs @@ -0,0 +1,360 @@ +use crate::infer::Infer; +use crate::server::{generate_internal, ComputeType}; +use crate::{ + ChatRequest, ErrorResponse, GenerateParameters, GenerateRequest, GrammarType, Message, + StreamOptions, Tool, ToolChoice, +}; +use axum::extract::Extension; +use axum::http::{HeaderMap, StatusCode}; +use axum::response::{IntoResponse, Response}; +use axum::Json; +use serde::{Deserialize, Serialize}; +use tracing::instrument; +use utoipa::ToSchema; + +#[derive(Clone, Deserialize, ToSchema)] +#[cfg_attr(test, derive(Debug, PartialEq))] +pub(crate) struct GenerateVertexInstance { + #[schema(example = "What is Deep Learning?")] + pub inputs: String, + #[schema(nullable = true, default = "null", example = "null")] + pub parameters: Option, +} + +#[derive(Clone, Deserialize, ToSchema)] +#[cfg_attr(test, derive(Debug, PartialEq))] +pub(crate) struct VertexChat { + messages: Vec, + // Messages is ignored there. + #[serde(default)] + parameters: VertexParameters, +} + +#[derive(Clone, Deserialize, ToSchema, Serialize, Default)] +#[cfg_attr(test, derive(Debug, PartialEq))] +pub(crate) struct VertexParameters { + #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")] + /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API. + pub model: Option, + + /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, + /// decreasing the model's likelihood to repeat the same line verbatim. + #[serde(default)] + #[schema(example = "1.0")] + pub frequency_penalty: Option, + + /// UNUSED + /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens + /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically, + /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, + /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should + /// result in a ban or exclusive selection of the relevant token. + #[serde(default)] + pub logit_bias: Option>, + + /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each + /// output token returned in the content of message. + #[serde(default)] + #[schema(example = "false")] + pub logprobs: Option, + + /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with + /// an associated log probability. logprobs must be set to true if this parameter is used. + #[serde(default)] + #[schema(example = "5")] + pub top_logprobs: Option, + + /// The maximum number of tokens that can be generated in the chat completion. + #[serde(default)] + #[schema(example = "32")] + pub max_tokens: Option, + + /// UNUSED + /// How many chat completion choices to generate for each input message. Note that you will be charged based on the + /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs. + #[serde(default)] + #[schema(nullable = true, example = "2")] + pub n: Option, + + /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, + /// increasing the model's likelihood to talk about new topics + #[serde(default)] + #[schema(nullable = true, example = 0.1)] + pub presence_penalty: Option, + + /// Up to 4 sequences where the API will stop generating further tokens. + #[serde(default)] + #[schema(nullable = true, example = "null")] + pub stop: Option>, + + #[serde(default = "bool::default")] + pub stream: bool, + + #[schema(nullable = true, example = 42)] + pub seed: Option, + + /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while + /// lower values like 0.2 will make it more focused and deterministic. + /// + /// We generally recommend altering this or `top_p` but not both. + #[serde(default)] + #[schema(nullable = true, example = 1.0)] + pub temperature: Option, + + /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the + /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. + #[serde(default)] + #[schema(nullable = true, example = 0.95)] + pub top_p: Option, + + /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of + /// functions the model may generate JSON inputs for. + #[serde(default)] + #[schema(nullable = true, example = "null")] + pub tools: Option>, + + /// A prompt to be appended before the tools + #[serde(default)] + #[schema( + nullable = true, + example = "Given the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables." + )] + pub tool_prompt: Option, + + /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter. + #[serde(default)] + #[schema(nullable = true, example = "null")] + pub tool_choice: ToolChoice, + + /// Response format constraints for the generation. + /// + /// NOTE: A request can use `response_format` OR `tools` but not both. + #[serde(default)] + #[schema(nullable = true, default = "null", example = "null")] + pub response_format: Option, + + /// A guideline to be used in the chat_template + #[serde(default)] + #[schema(nullable = true, default = "null", example = "null")] + pub guideline: Option, + + /// Options for streaming response. Only set this when you set stream: true. + #[serde(default)] + #[schema(nullable = true, example = "null")] + pub stream_options: Option, +} + +impl From for ChatRequest { + fn from(val: VertexChat) -> Self { + Self { + messages: val.messages, + frequency_penalty: val.parameters.frequency_penalty, + guideline: val.parameters.guideline, + logit_bias: val.parameters.logit_bias, + logprobs: val.parameters.logprobs, + max_tokens: val.parameters.max_tokens, + model: val.parameters.model, + n: val.parameters.n, + presence_penalty: val.parameters.presence_penalty, + response_format: val.parameters.response_format, + seed: val.parameters.seed, + stop: val.parameters.stop, + stream_options: val.parameters.stream_options, + stream: val.parameters.stream, + temperature: val.parameters.temperature, + tool_choice: val.parameters.tool_choice, + tool_prompt: val.parameters.tool_prompt, + tools: val.parameters.tools, + top_logprobs: val.parameters.top_logprobs, + top_p: val.parameters.top_p, + } + } +} + +#[derive(Clone, Deserialize, ToSchema)] +#[cfg_attr(test, derive(Debug, PartialEq))] +#[serde(untagged)] +pub(crate) enum VertexInstance { + Generate(GenerateVertexInstance), + Chat(VertexChat), +} + +#[derive(Deserialize, ToSchema)] +#[cfg_attr(test, derive(Debug, PartialEq))] +pub(crate) struct VertexRequest { + #[serde(rename = "instances")] + pub instances: Vec, +} + +#[derive(Clone, Deserialize, ToSchema, Serialize)] +pub(crate) struct VertexResponse { + pub predictions: Vec, +} + +/// Generate tokens from Vertex request +#[utoipa::path( +post, +tag = "Text Generation Inference", +path = "/vertex", +request_body = VertexRequest, +responses( +(status = 200, description = "Generated Text", body = VertexResponse), +(status = 424, description = "Generation Error", body = ErrorResponse, +example = json ! ({"error": "Request failed during generation"})), +(status = 429, description = "Model is overloaded", body = ErrorResponse, +example = json ! ({"error": "Model is overloaded"})), +(status = 422, description = "Input validation error", body = ErrorResponse, +example = json ! ({"error": "Input validation error"})), +(status = 500, description = "Incomplete generation", body = ErrorResponse, +example = json ! ({"error": "Incomplete generation"})), +) +)] +#[instrument( + skip_all, + fields( + total_time, + validation_time, + queue_time, + inference_time, + time_per_token, + seed, + ) +)] +pub(crate) async fn vertex_compatibility( + Extension(infer): Extension, + Extension(compute_type): Extension, + Json(req): Json, +) -> Result)> { + let span = tracing::Span::current(); + metrics::counter!("tgi_request_count").increment(1); + + // check that theres at least one instance + if req.instances.is_empty() { + return Err(( + StatusCode::UNPROCESSABLE_ENTITY, + Json(ErrorResponse { + error: "Input validation error".to_string(), + error_type: "Input validation error".to_string(), + }), + )); + } + + // Prepare futures for all instances + let mut futures = Vec::with_capacity(req.instances.len()); + + for instance in req.instances.into_iter() { + let generate_request = match instance { + VertexInstance::Generate(instance) => GenerateRequest { + inputs: instance.inputs.clone(), + add_special_tokens: true, + parameters: GenerateParameters { + do_sample: true, + max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens), + seed: instance.parameters.as_ref().and_then(|p| p.seed), + details: true, + decoder_input_details: true, + ..Default::default() + }, + }, + VertexInstance::Chat(instance) => { + let chat_request: ChatRequest = instance.into(); + let (generate_request, _using_tools): (GenerateRequest, bool) = + chat_request.try_into_generate(&infer)?; + generate_request + } + }; + + let infer_clone = infer.clone(); + let compute_type_clone = compute_type.clone(); + let span_clone = span.clone(); + + futures.push(async move { + generate_internal( + Extension(infer_clone), + compute_type_clone, + Json(generate_request), + span_clone, + ) + .await + .map(|(_, Json(generation))| generation.generated_text) + .map_err(|_| { + ( + StatusCode::INTERNAL_SERVER_ERROR, + Json(ErrorResponse { + error: "Incomplete generation".into(), + error_type: "Incomplete generation".into(), + }), + ) + }) + }); + } + + // execute all futures in parallel, collect results, returning early if any error occurs + let results = futures::future::join_all(futures).await; + let predictions: Result, _> = results.into_iter().collect(); + let predictions = predictions?; + + let response = VertexResponse { predictions }; + Ok((HeaderMap::new(), Json(response)).into_response()) +} + +#[cfg(test)] +mod tests { + use super::*; + use crate::{Message, MessageContent}; + + #[test] + fn vertex_deserialization() { + let string = serde_json::json!({ + + "messages": [{"role": "user", "content": "What's Deep Learning?"}], + "parameters": { + "max_tokens": 128, + "top_p": 0.95, + "temperature": 0.7 + } + }); + + let _request: VertexChat = serde_json::from_value(string).expect("Can deserialize"); + + let string = serde_json::json!({ + "messages": [{"role": "user", "content": "What's Deep Learning?"}], + }); + + let _request: VertexChat = serde_json::from_value(string).expect("Can deserialize"); + + let string = serde_json::json!({ + + "instances": [ + { + "messages": [{"role": "user", "content": "What's Deep Learning?"}], + "parameters": { + "max_tokens": 128, + "top_p": 0.95, + "temperature": 0.7 + } + } + ] + + }); + let request: VertexRequest = serde_json::from_value(string).expect("Can deserialize"); + assert_eq!( + request, + VertexRequest { + instances: vec![VertexInstance::Chat(VertexChat { + messages: vec![Message { + role: "user".to_string(), + content: MessageContent::SingleText("What's Deep Learning?".to_string()), + name: None, + },], + parameters: VertexParameters { + max_tokens: Some(128), + top_p: Some(0.95), + temperature: Some(0.7), + ..Default::default() + } + })] + } + ); + } +} From dd8691b7c51bf4e5c7431403f50ab992a4eebc6f Mon Sep 17 00:00:00 2001 From: Nicolas Patry Date: Tue, 24 Sep 2024 23:57:26 +0200 Subject: [PATCH 12/33] More tensor cores. (#2558) * More tensor cores. * Fixing the logic. * Gemma is modified by this. --- .../test_flash_gemma/test_flash_gemma.json | 32 ++++---- .../test_flash_gemma_gptq_all_params.json | 74 +++++++++---------- .../layers/attention/flashinfer.py | 8 +- 3 files changed, 59 insertions(+), 55 deletions(-) diff --git a/integration-tests/models/__snapshots__/test_flash_gemma/test_flash_gemma.json b/integration-tests/models/__snapshots__/test_flash_gemma/test_flash_gemma.json index 8829f9fe..e322446b 100644 --- a/integration-tests/models/__snapshots__/test_flash_gemma/test_flash_gemma.json +++ b/integration-tests/models/__snapshots__/test_flash_gemma/test_flash_gemma.json @@ -24,13 +24,13 @@ "tokens": [ { "id": 1736, - "logprob": -2.03125, + "logprob": -2.109375, "special": false, "text": " form" }, { "id": 109, - "logprob": -1.8671875, + "logprob": -1.90625, "special": false, "text": "\n\n" }, @@ -42,48 +42,48 @@ }, { "id": 2121, - "logprob": -1.8125, + "logprob": -1.796875, "special": false, "text": " test" }, { "id": 3853, - "logprob": -0.24121094, + "logprob": -0.24511719, "special": false, "text": " request" }, { "id": 1736, - "logprob": -0.100097656, + "logprob": -0.09326172, "special": false, "text": " form" }, { "id": 603, - "logprob": -0.9453125, + "logprob": -0.95703125, "special": false, "text": " is" }, { - "id": 476, - "logprob": -1.703125, + "id": 1671, + "logprob": -1.5859375, "special": false, - "text": " a" + "text": " used" }, { - "id": 4551, - "logprob": -2.453125, + "id": 577, + "logprob": -0.39257812, "special": false, - "text": " document" + "text": " to" }, { - "id": 674, - "logprob": -0.796875, + "id": 3853, + "logprob": -1.25, "special": false, - "text": " that" + "text": " request" } ], "top_tokens": null }, - "generated_text": " form\n\nThe test request form is a document that" + "generated_text": " form\n\nThe test request form is used to request" } diff --git a/integration-tests/models/__snapshots__/test_flash_gemma_gptq/test_flash_gemma_gptq_all_params.json b/integration-tests/models/__snapshots__/test_flash_gemma_gptq/test_flash_gemma_gptq_all_params.json index bc80a0f9..a7019a43 100644 --- a/integration-tests/models/__snapshots__/test_flash_gemma_gptq/test_flash_gemma_gptq_all_params.json +++ b/integration-tests/models/__snapshots__/test_flash_gemma_gptq/test_flash_gemma_gptq_all_params.json @@ -11,12 +11,12 @@ }, { "id": 2015, - "logprob": -9.640625, + "logprob": -9.6484375, "text": "Test" }, { "id": 3853, - "logprob": -10.375, + "logprob": -10.3671875, "text": " request" } ], @@ -24,19 +24,19 @@ "tokens": [ { "id": 604, - "logprob": -0.2824707, + "logprob": -0.28271484, "special": false, "text": " for" }, { "id": 573, - "logprob": -0.19030762, + "logprob": -0.18493652, "special": false, "text": " the" }, { "id": 16819, - "logprob": -1.4892578, + "logprob": -1.4804688, "special": false, "text": " detection" }, @@ -46,44 +46,44 @@ "special": false, "text": " of" }, - { - "id": 573, - "logprob": -2.0195312, - "special": false, - "text": " the" - }, - { - "id": 8566, - "logprob": 0.0, - "special": false, - "text": " presence" - }, - { - "id": 689, - "logprob": -0.16491699, - "special": false, - "text": " or" - }, - { - "id": 14862, - "logprob": 0.0, - "special": false, - "text": " absence" - }, - { - "id": 576, - "logprob": -0.9946289, - "special": false, - "text": " of" - }, { "id": 671, - "logprob": -0.5263672, + "logprob": -2.1738281, "special": false, "text": " an" + }, + { + "id": 24646, + "logprob": -3.0449219, + "special": false, + "text": " RNA" + }, + { + "id": 12369, + "logprob": -0.19299316, + "special": false, + "text": " virus" + }, + { + "id": 575, + "logprob": -0.10632324, + "special": false, + "text": " in" + }, + { + "id": 6022, + "logprob": -0.98095703, + "special": false, + "text": " patients" + }, + { + "id": 1064, + "logprob": -1.3095703, + "special": false, + "text": " who" } ], "top_tokens": null }, - "generated_text": "Test request for the detection of the presence or absence of an" + "generated_text": "Test request for the detection of an RNA virus in patients who" } diff --git a/server/text_generation_server/layers/attention/flashinfer.py b/server/text_generation_server/layers/attention/flashinfer.py index e1ef62c5..5f8954ea 100644 --- a/server/text_generation_server/layers/attention/flashinfer.py +++ b/server/text_generation_server/layers/attention/flashinfer.py @@ -152,11 +152,13 @@ def create_decode_state( ): """Create a decode state.""" workspace_buffer = get_workspace(device) + num_groups = num_heads // num_kv_heads return flashinfer.BatchDecodeWithPagedKVCacheWrapper( workspace_buffer, kv_layout="NHD", use_cuda_graph=False, - use_tensor_cores=num_heads // num_kv_heads > 4, + # Taken from https://github.com/flashinfer-ai/flashinfer/blob/33ef95700981ba70f4cab63b8931e562bc795b21/python/flashinfer/decode.py#L57-L60 + use_tensor_cores=num_groups not in [1, 2, 4, 8], ) @@ -175,6 +177,7 @@ def create_decode_state_cuda_graphs( therefore stored as part of the state. """ workspace_buffer = get_workspace(device) + num_groups = num_heads // num_kv_heads return flashinfer.BatchDecodeWithPagedKVCacheWrapper( workspace_buffer, kv_layout="NHD", @@ -182,7 +185,8 @@ def create_decode_state_cuda_graphs( paged_kv_indices_buffer=block_tables, paged_kv_indptr_buffer=block_tables_ptr, paged_kv_last_page_len_buffer=last_page_len, - use_tensor_cores=num_heads // num_kv_heads > 4, + # Taken from https://github.com/flashinfer-ai/flashinfer/blob/33ef95700981ba70f4cab63b8931e562bc795b21/python/flashinfer/decode.py#L57-L60 + use_tensor_cores=num_groups not in [1, 2, 4, 8], ) From 7efcb5e0ed6403f08965b999626c5807680b46ed Mon Sep 17 00:00:00 2001 From: Nicholas Broad Date: Tue, 24 Sep 2024 16:20:15 -0700 Subject: [PATCH 13/33] remove LORA_ADAPTERS_PATH (#2563) specify how to call local adapters --- docs/source/conceptual/lora.md | 18 +++++++++++++++++- 1 file changed, 17 insertions(+), 1 deletion(-) diff --git a/docs/source/conceptual/lora.md b/docs/source/conceptual/lora.md index cfc2109b..0b7e3616 100644 --- a/docs/source/conceptual/lora.md +++ b/docs/source/conceptual/lora.md @@ -36,7 +36,7 @@ To use LoRA in TGI, when starting the server, you can specify the list of LoRA m LORA_ADAPTERS=predibase/customer_support,predibase/dbpedia ``` -additionally, you can specify the path to the LoRA models using the `LORA_ADAPTERS_PATH` environment variable. For example: +To use a locally stored lora adapter, use `adapter-name=/path/to/adapter`, as seen below. When you want to use this adapter, set `"parameters": {"adapter_id": "adapter-name"}"` ```bash LORA_ADAPTERS=myadapter=/some/path/to/adapter,myadapter2=/another/path/to/adapter @@ -72,6 +72,22 @@ curl 127.0.0.1:3000/generate \ }' ``` +If you are using a lora adapter stored locally that was set in the following manner: `LORA_ADAPTERS=myadapter=/some/path/to/adapter`, here is an example payload: + +```json +curl 127.0.0.1:3000/generate \ + -X POST \ + -H 'Content-Type: application/json' \ + -d '{ + "inputs": "Hello who are you?", + "parameters": { + "max_new_tokens": 40, + "adapter_id": "myadapter" + } +}' +``` + + > **Note:** The Lora feature is new and still being improved. If you encounter any issues or have any feedback, please let us know by opening an issue on the [GitHub repository](https://github.com/huggingface/text-generation-inference/issues/new/choose). Additionally documentation and an improved client library will be published soon. An updated tutorial with detailed examples will be published soon. Stay tuned! From 0b7df771783325d1c5c502cc0a29aac3f5487b26 Mon Sep 17 00:00:00 2001 From: Alvaro Bartolome <36760800+alvarobartt@users.noreply.github.com> Date: Thu, 26 Sep 2024 10:54:08 +0200 Subject: [PATCH 14/33] Add LoRA adapters support for Gemma2 (#2567) * Add LoRA adapters support for Gemma2 * Make `black` formatting happy --- .../custom_modeling/flash_gemma2_modeling.py | 84 +++++++++++++++---- 1 file changed, 70 insertions(+), 14 deletions(-) diff --git a/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py b/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py index e12bff00..887e187e 100644 --- a/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py @@ -38,6 +38,8 @@ from text_generation_server.layers import ( TensorParallelEmbedding, SpeculativeHead, get_linear, + TensorParallelMultiAdapterLinear, + TensorParallelAdapterRowLinear, ) from text_generation_server.layers.rotary import PositionRotaryEmbedding from text_generation_server.layers.layernorm import ( @@ -161,7 +163,9 @@ def _load_gqa(config, prefix: str, weights): class FlashGemma2Attention(torch.nn.Module): - def __init__(self, prefix: str, config, weights, causal: bool, is_sliding: bool): + def __init__( + self, prefix: str, config, weights, layer_id, causal: bool, is_sliding: bool + ): super().__init__() self.num_heads = config.num_attention_heads self.head_size = config.head_dim @@ -192,14 +196,32 @@ class FlashGemma2Attention(torch.nn.Module): ) self.softcap = config.attn_logit_softcapping - self.query_key_value = load_attention(config, prefix, weights) + query_key_value = load_attention(config, prefix, weights) + self.query_key_value = TensorParallelMultiAdapterLinear.load( + query_key_value, + layer_id, + ["q_proj", "k_proj", "v_proj"], + sizes=[ + self.head_size * config.num_attention_heads, + self.head_size * config.num_key_value_heads, + self.head_size * config.num_key_value_heads, + ], + process_group=weights.process_group, + ) - self.o_proj = TensorParallelRowLinear.load( + o_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.o_proj", weights=weights, bias=False, ) + self.o_proj = TensorParallelAdapterRowLinear.load( + o_proj, + layer_id, + "o_proj", + process_group=weights.process_group, + ) + self.num_groups = self.num_heads // self.num_key_value_heads self.kv_head_mapping = torch.arange( 0, self.num_key_value_heads, dtype=torch.int32, device=weights.device @@ -216,8 +238,9 @@ class FlashGemma2Attention(torch.nn.Module): slots, seqlen, max_s, + adapter_data, ): - qkv = self.query_key_value(hidden_states) + qkv = self.query_key_value(hidden_states, adapter_data) query, kv = qkv.split( [ self.head_size * self.num_heads, @@ -260,11 +283,13 @@ class FlashGemma2Attention(torch.nn.Module): softcap=self.softcap, ) - return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size)) + return self.o_proj( + attn_output.view(-1, self.num_heads * self.head_size), adapter_data + ) class Gemma2MLP(nn.Module): - def __init__(self, prefix, config, weights): + def __init__(self, prefix, config, weights, layer_id): super().__init__() act = config.hidden_activation self.act = ( @@ -278,40 +303,65 @@ class Gemma2MLP(nn.Module): ) ) # Fuse gate and up proj - self.gate_up_proj = TensorParallelColumnLinear.load_multi( + gate_up_proj = TensorParallelColumnLinear.load_multi( config, prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"], weights=weights, dim=0, bias=False, ) - self.down_proj = TensorParallelRowLinear.load( + self.gate_up_proj = TensorParallelMultiAdapterLinear.load( + gate_up_proj, + layer_id, + ["gate_proj", "up_proj"], + sizes=[ + config.intermediate_size, + config.intermediate_size, + ], + process_group=weights.process_group, + ) + + down_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.down_proj", weights=weights, bias=False, ) + self.down_proj = TensorParallelAdapterRowLinear.load( + down_proj, + layer_id, + "down_proj", + process_group=weights.process_group, + ) + self.intermediate_size = ( config.intermediate_size // weights.process_group.size() ) - def forward(self, hidden_states): - gate_up_states = self.gate_up_proj(hidden_states) + def forward(self, hidden_states, adapter_data): + gate_up_states = self.gate_up_proj(hidden_states, adapter_data) gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size) - return self.down_proj(self.act(gate_up_states[:, 0]) * gate_up_states[:, 1]) + return self.down_proj( + self.act(gate_up_states[:, 0]) * gate_up_states[:, 1], adapter_data + ) class FlashGemma2Layer(nn.Module): - def __init__(self, prefix: str, config, weights, causal: bool, is_sliding: bool): + def __init__( + self, prefix: str, config, weights, layer_id, causal: bool, is_sliding: bool + ): super().__init__() self.self_attn = FlashGemma2Attention( prefix=f"{prefix}.self_attn", config=config, weights=weights, + layer_id=layer_id, causal=causal, is_sliding=is_sliding, ) - self.mlp = Gemma2MLP(prefix=f"{prefix}.mlp", config=config, weights=weights) + self.mlp = Gemma2MLP( + prefix=f"{prefix}.mlp", config=config, weights=weights, layer_id=layer_id + ) self.input_layernorm = Gemma2FastRMSNorm.load( prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps @@ -344,6 +394,7 @@ class FlashGemma2Layer(nn.Module): slots, seqlen, max_s, + adapter_data, ): normed_hidden_states, res = self.input_layernorm(hidden_states, residual) @@ -358,6 +409,7 @@ class FlashGemma2Layer(nn.Module): slots, seqlen, max_s, + adapter_data, ) # faster post attention rms norm @@ -366,7 +418,7 @@ class FlashGemma2Layer(nn.Module): res = normed_attn_res_output pre_normed, _ = self.pre_feedforward_layernorm(normed_attn_res_output) - mlp_output = self.mlp(pre_normed) + mlp_output = self.mlp(pre_normed, adapter_data) post_hidden_states, _ = self.post_feedforward_layernorm(mlp_output) return post_hidden_states, normed_attn_res_output @@ -385,6 +437,7 @@ class FlashGemma2Model(torch.nn.Module): prefix=f"{prefix}.layers.{layer_id}", config=config, weights=weights, + layer_id=layer_id, causal=causal, is_sliding=layer_id % 2 == 0, ) @@ -409,6 +462,7 @@ class FlashGemma2Model(torch.nn.Module): slots: torch.Tensor, seqlen: Seqlen, max_s: int, + adapter_data: Optional[torch.Tensor] = None, ) -> torch.Tensor: hidden_states = inputs_embeds @@ -431,6 +485,7 @@ class FlashGemma2Model(torch.nn.Module): slots, seqlen, max_s, + adapter_data, ) hidden_states, _ = self.norm(hidden_states, residual) @@ -492,6 +547,7 @@ class FlashGemma2ForCausalLM(torch.nn.Module): slots, seqlen, max_s, + adapter_data, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] From 0aa66d693a85faed268be50ab8e662cf5516be30 Mon Sep 17 00:00:00 2001 From: Alvaro Bartolome <36760800+alvarobartt@users.noreply.github.com> Date: Thu, 26 Sep 2024 11:41:38 +0200 Subject: [PATCH 15/33] Fix build with `--features google` (#2566) * Fix `cargo build --features google` * Add `cargo test --features google` --- .github/workflows/tests.yaml | 3 +++ router/src/server.rs | 3 ++- 2 files changed, 5 insertions(+), 1 deletion(-) diff --git a/.github/workflows/tests.yaml b/.github/workflows/tests.yaml index 5f00180c..4eeca334 100644 --- a/.github/workflows/tests.yaml +++ b/.github/workflows/tests.yaml @@ -58,3 +58,6 @@ jobs: - name: Run Rust tests run: | cargo test + - name: Run Rust tests with google feature + run: | + cargo test --features google diff --git a/router/src/server.rs b/router/src/server.rs index 7f1d746c..cc896f99 100644 --- a/router/src/server.rs +++ b/router/src/server.rs @@ -2029,7 +2029,8 @@ async fn start( #[cfg(feature = "google")] { - use crate::VertexInstance; + use crate::vertex::__path_vertex_compatibility; + use crate::vertex::{VertexInstance, VertexRequest, VertexResponse}; #[derive(OpenApi)] #[openapi( From 5b6b74e21d6cfa961afe3338fc5cfd45fa357b50 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Fri, 27 Sep 2024 16:19:42 +0200 Subject: [PATCH 16/33] Improve support for GPUs with capability < 8 (#2575) * Improve support for GPUs with capability < 8 - For models that cannot use flashinfer, use flash-attn v1 + paged attention for models with a compute capability older than 8. - Disable prefix caching when using paged attention. - When using flash-attn v1, pass the key/value, rather than the cache, since v1 cannot use block tables. * nix: add flash-attn-v1 to the server environment * Move disabling prefix caching into the block of exceptions * Capability as `usize`s --- Cargo.lock | 1 + Cargo.toml | 1 + flake.lock | 14 ++--- flake.nix | 45 ++-------------- launcher/Cargo.toml | 1 + launcher/src/gpu.rs | 26 +++++++++ launcher/src/main.rs | 25 +++++++-- nix/impure-shell.nix | 54 +++++++++++++++++++ nix/server.nix | 1 + router/Cargo.toml | 2 +- .../layers/attention/__init__.py | 18 ++++++- .../layers/attention/cuda.py | 34 ++++++------ .../layers/attention/ipex.py | 1 + .../layers/attention/rocm.py | 4 +- .../custom_modeling/flash_cohere_modeling.py | 5 +- .../custom_modeling/flash_dbrx_modeling.py | 5 +- .../flash_deepseek_v2_modeling.py | 5 +- .../custom_modeling/flash_gemma2_modeling.py | 6 +-- .../custom_modeling/flash_gemma_modeling.py | 6 +-- .../custom_modeling/flash_gpt2_modeling.py | 6 +-- .../custom_modeling/flash_gptj_modeling.py | 5 +- .../custom_modeling/flash_llama_modeling.py | 5 +- .../custom_modeling/flash_mistral_modeling.py | 5 +- .../custom_modeling/flash_mixtral_modeling.py | 6 +-- .../custom_modeling/flash_neox_modeling.py | 6 +-- .../custom_modeling/flash_phi_modeling.py | 6 +-- .../custom_modeling/flash_qwen2_modeling.py | 6 +-- .../custom_modeling/flash_rw_modeling.py | 10 ++-- .../flash_santacoder_modeling.py | 6 +-- .../flash_starcoder2_modeling.py | 6 +-- 30 files changed, 205 insertions(+), 116 deletions(-) create mode 100644 launcher/src/gpu.rs create mode 100644 nix/impure-shell.nix diff --git a/Cargo.lock b/Cargo.lock index e535004e..6796212f 100644 --- a/Cargo.lock +++ b/Cargo.lock @@ -4243,6 +4243,7 @@ dependencies = [ "hf-hub", "nix 0.28.0", "once_cell", + "pyo3", "reqwest", "serde", "serde_json", diff --git a/Cargo.toml b/Cargo.toml index 032dc857..a783fadb 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -33,6 +33,7 @@ metrics = { version = "0.23.0" } metrics-exporter-prometheus = { version = "0.15.1", features = [] } minijinja = { version = "2.2.0", features = ["json"] } minijinja-contrib = { version = "2.0.2", features = ["pycompat"] } +pyo3 = { version = "0.22.2", features = ["auto-initialize"] } [profile.release] incremental = true diff --git a/flake.lock b/flake.lock index d811be5e..14e23b77 100644 --- a/flake.lock +++ b/flake.lock @@ -978,16 +978,16 @@ "nixpkgs": "nixpkgs_6" }, "locked": { - "lastModified": 1726743157, - "narHash": "sha256-7OczwJsA47o+aUftMwkoh8R31DlNSl2FgRjqE8zAggk=", - "owner": "danieldk", - "repo": "tgi-nix", - "rev": "bcc9fd01cf81bc42cebb999a736a377adfa8942f", + "lastModified": 1727353315, + "narHash": "sha256-yZovq/6P8Z199r7e+NbTXyCqRgK6grRkLxYHWHnHckI=", + "owner": "huggingface", + "repo": "text-generation-inference-nix", + "rev": "1d42c4125ebafb87707118168995675cc5050b9d", "type": "github" }, "original": { - "owner": "danieldk", - "repo": "tgi-nix", + "owner": "huggingface", + "repo": "text-generation-inference-nix", "type": "github" } } diff --git a/flake.nix b/flake.nix index 260b2554..1b396453 100644 --- a/flake.nix +++ b/flake.nix @@ -5,7 +5,7 @@ inputs.nixpkgs.follows = "tgi-nix/nixpkgs"; }; nix-filter.url = "github:numtide/nix-filter"; - tgi-nix.url = "github:danieldk/tgi-nix"; + tgi-nix.url = "github:huggingface/text-generation-inference-nix"; nixpkgs.follows = "tgi-nix/nixpkgs"; flake-utils.url = "github:numtide/flake-utils"; rust-overlay = { @@ -132,49 +132,12 @@ pre-commit ruff ]); - }; - impure = mkShell { - buildInputs = - [ - openssl.dev - pkg-config - (rust-bin.stable.latest.default.override { - extensions = [ - "rust-analyzer" - "rust-src" - ]; - }) - protobuf - ] - ++ (with python3.pkgs; [ - venvShellHook - docker - pip - ipdb - click - pyright - pytest - pytest-asyncio - redocly - ruff - syrupy - ]); + impure = callPackage ./nix/impure-shell.nix { inherit server; }; - inputsFrom = [ server ]; - - venvDir = "./.venv"; - - postVenvCreation = '' - unset SOURCE_DATE_EPOCH - ( cd server ; python -m pip install --no-dependencies -e . ) - ( cd clients/python ; python -m pip install --no-dependencies -e . ) - ''; - postShellHook = '' - unset SOURCE_DATE_EPOCH - export PATH=$PATH:~/.cargo/bin - ''; + impure-flash-attn-v1 = callPackage ./nix/impure-shell.nix { + server = server.override { flash-attn = python3.pkgs.flash-attn-v1; }; }; }; diff --git a/launcher/Cargo.toml b/launcher/Cargo.toml index eb219423..033a9a04 100644 --- a/launcher/Cargo.toml +++ b/launcher/Cargo.toml @@ -12,6 +12,7 @@ ctrlc = { version = "3.4.1", features = ["termination"] } hf-hub = "0.3.2" nix = { version = "0.28.0", features = ["signal"] } once_cell = "1.19.0" +pyo3 = { workspace = true } serde = { version = "1.0.188", features = ["derive"] } serde_json = "1.0.107" thiserror = "1.0.59" diff --git a/launcher/src/gpu.rs b/launcher/src/gpu.rs new file mode 100644 index 00000000..755d246a --- /dev/null +++ b/launcher/src/gpu.rs @@ -0,0 +1,26 @@ +use std::sync::LazyLock; + +pub static COMPUTE_CAPABILITY: LazyLock> = + LazyLock::new(get_cuda_capability); + +fn get_cuda_capability() -> Option<(usize, usize)> { + use pyo3::prelude::*; + + let py_get_capability = |py: Python| -> PyResult<(isize, isize)> { + let torch = py.import_bound("torch.cuda")?; + let get_device_capability = torch.getattr("get_device_capability")?; + get_device_capability.call0()?.extract() + }; + + match pyo3::Python::with_gil(py_get_capability) { + Ok((major, minor)) if major < 0 || minor < 0 => { + tracing::warn!("Ignoring negative GPU compute capabilities: {major}.{minor}"); + None + } + Ok((major, minor)) => Some((major as usize, minor as usize)), + Err(err) => { + tracing::warn!("Cannot determine GPU compute capability: {}", err); + None + } + } +} diff --git a/launcher/src/main.rs b/launcher/src/main.rs index deb18478..583220a6 100644 --- a/launcher/src/main.rs +++ b/launcher/src/main.rs @@ -26,6 +26,7 @@ use thiserror::Error; use tracing_subscriber::{filter::LevelFilter, EnvFilter}; mod env_runtime; +mod gpu; fn get_config( model_id: &str, @@ -65,6 +66,7 @@ fn get_config( } fn resolve_attention(config: &Option, lora_adapters: &Option) -> (String, String) { + let compute_capability = *gpu::COMPUTE_CAPABILITY; let mut prefix_caching: Option = std::env::var("USE_PREFIX_CACHING").ok(); let mut attention: Option = std::env::var("ATTENTION").ok(); if let Some(config) = config { @@ -77,6 +79,13 @@ fn resolve_attention(config: &Option, lora_adapters: &Option) -> prefix_caching = Some("0".to_string()); } } + + let fallback_attention = if matches!(compute_capability, Some((major, _)) if major < 8) { + "paged" + } else { + "flashdecoding" + }; + match config.head_dim { Some(h) if h == 64 || h == 128 || h == 256 => { if lora_adapters.is_some() && prefix_caching.is_none() { @@ -89,10 +98,14 @@ fn resolve_attention(config: &Option, lora_adapters: &Option) -> // flashinfer ? if attention.is_none() { tracing::info!( - "Forcing flash decoding because model {} requires it", + "Forcing attention to '{fallback_attention}' because model {} requires it", config.model_type.as_ref().unwrap() ); - attention = Some("flashdecoding".to_string()); + attention = Some(fallback_attention.to_string()); + } + if fallback_attention == "paged" && prefix_caching.is_none() { + tracing::info!("Disabling prefix caching because it is not supported with 'paged' attention"); + prefix_caching = Some("0".to_string()); } } Some("t5") => {} @@ -101,8 +114,8 @@ fn resolve_attention(config: &Option, lora_adapters: &Option) -> } _ => { if attention.is_none() { - tracing::info!("Forcing flash decoding because head dim is not supported by flashinfer, also disabling prefix caching"); - attention = Some("flashdecoding".to_string()); + tracing::info!("Forcing attention to '{fallback_attention}' because head dim is not supported by flashinfer, also disabling prefix caching"); + attention = Some(fallback_attention.to_string()); } if prefix_caching.is_none() { prefix_caching = Some("0".to_string()); @@ -110,8 +123,10 @@ fn resolve_attention(config: &Option, lora_adapters: &Option) -> } } } - let prefix_caching = prefix_caching.unwrap_or("true".to_string()); + let attention = attention.unwrap_or("flashinfer".to_string()); + let prefix_caching = prefix_caching.unwrap_or("true".to_string()); + (prefix_caching, attention) } diff --git a/nix/impure-shell.nix b/nix/impure-shell.nix new file mode 100644 index 00000000..a4dad4ba --- /dev/null +++ b/nix/impure-shell.nix @@ -0,0 +1,54 @@ +{ + mkShell, + openssl, + pkg-config, + protobuf, + python3, + pyright, + redocly, + ruff, + rust-bin, + server, +}: + +mkShell { + buildInputs = + [ + openssl.dev + pkg-config + (rust-bin.stable.latest.default.override { + extensions = [ + "rust-analyzer" + "rust-src" + ]; + }) + protobuf + pyright + redocly + ruff + ] + ++ (with python3.pkgs; [ + venvShellHook + docker + pip + ipdb + click + pytest + pytest-asyncio + syrupy + ]); + + inputsFrom = [ server ]; + + venvDir = "./.venv"; + + postVenvCreation = '' + unset SOURCE_DATE_EPOCH + ( cd server ; python -m pip install --no-dependencies -e . ) + ( cd clients/python ; python -m pip install --no-dependencies -e . ) + ''; + postShellHook = '' + unset SOURCE_DATE_EPOCH + export PATH=$PATH:~/.cargo/bin + ''; +} diff --git a/nix/server.nix b/nix/server.nix index 5921da7f..7406d563 100644 --- a/nix/server.nix +++ b/nix/server.nix @@ -13,6 +13,7 @@ flash-attn, flash-attn-layer-norm, flash-attn-rotary, + flash-attn-v1, grpc-interceptor, grpcio-reflection, grpcio-status, diff --git a/router/Cargo.toml b/router/Cargo.toml index 6a752db6..83d85327 100644 --- a/router/Cargo.toml +++ b/router/Cargo.toml @@ -61,7 +61,7 @@ uuid = { version = "1.9.1", default-features = false, features = [ ] } csv = "1.3.0" ureq = "=2.9" -pyo3 = { version = "0.22.2", features = ["auto-initialize"] } +pyo3 = { workspace = true } [build-dependencies] diff --git a/server/text_generation_server/layers/attention/__init__.py b/server/text_generation_server/layers/attention/__init__.py index 56fc5319..4f2b9807 100644 --- a/server/text_generation_server/layers/attention/__init__.py +++ b/server/text_generation_server/layers/attention/__init__.py @@ -11,11 +11,24 @@ if SYSTEM == "cuda": paged_attention, reshape_and_cache, SUPPORTS_WINDOWING, + PREFILL_IN_KV_CACHE, ) elif SYSTEM == "rocm": - from .rocm import attention, paged_attention, reshape_and_cache, SUPPORTS_WINDOWING + from .rocm import ( + attention, + paged_attention, + reshape_and_cache, + PREFILL_IN_KV_CACHE, + SUPPORTS_WINDOWING, + ) elif SYSTEM == "ipex": - from .ipex import attention, paged_attention, reshape_and_cache, SUPPORTS_WINDOWING + from .ipex import ( + attention, + paged_attention, + reshape_and_cache, + PREFILL_IN_KV_CACHE, + SUPPORTS_WINDOWING, + ) else: raise ImportError(f"System {SYSTEM} doesn't support flash/paged attention") @@ -24,6 +37,7 @@ __all__ = [ "attention", "paged_attention", "reshape_and_cache", + "PREFILL_IN_KV_CACHE", "SUPPORTS_WINDOWING", "Seqlen", ] diff --git a/server/text_generation_server/layers/attention/cuda.py b/server/text_generation_server/layers/attention/cuda.py index 4b588b5c..51af928d 100644 --- a/server/text_generation_server/layers/attention/cuda.py +++ b/server/text_generation_server/layers/attention/cuda.py @@ -287,16 +287,14 @@ elif V2: else: def attention( - q, - k, - v, - key_cache: torch.Tensor, - value_cache: torch.Tensor, - cu_seqlens, - max_s, - softmax_scale, - window_size_left=-1, - causal=None, + q: torch.Tensor, + k: torch.Tensor, + v: torch.Tensor, + seqlen: Seqlen, + block_tables: torch.Tensor, + softmax_scale: float, + window_size_left: int = -1, + causal: bool = True, softcap=None, ): if window_size_left != -1: @@ -338,16 +336,22 @@ else: k, v, out, - cu_seqlens, - cu_seqlens, - max_s, - max_s, + seqlen.cu_seqlen_q, + seqlen.cu_seqlen_q, + seqlen.max_q, + seqlen.max_k, 0.0, softmax_scale, False, - True, + causal, False, 0, None, ) return out + + +# Prefill in the cache with every kind of attention, unless we +# have a configuration that requires flash-attention v1, which +# does not support block tables. +PREFILL_IN_KV_CACHE = ATTENTION != "paged" or V2 diff --git a/server/text_generation_server/layers/attention/ipex.py b/server/text_generation_server/layers/attention/ipex.py index d0eadc75..657c90af 100644 --- a/server/text_generation_server/layers/attention/ipex.py +++ b/server/text_generation_server/layers/attention/ipex.py @@ -5,6 +5,7 @@ from text_generation_server.layers.attention import Seqlen from typing import Optional SUPPORTS_WINDOWING = False +PREFILL_IN_KV_CACHE = False def attention( diff --git a/server/text_generation_server/layers/attention/rocm.py b/server/text_generation_server/layers/attention/rocm.py index 16ce8d2b..9f24ac98 100644 --- a/server/text_generation_server/layers/attention/rocm.py +++ b/server/text_generation_server/layers/attention/rocm.py @@ -13,6 +13,9 @@ _PARTITION_SIZE = 512 use_triton = os.getenv("ROCM_USE_FLASH_ATTN_V2_TRITON", "").lower() in {"true", "1"} ENGINE = "triton" if use_triton else "ck" + +PREFILL_IN_KV_CACHE = False + try: from vllm._C import cache_ops except Exception as e: @@ -156,7 +159,6 @@ if ENGINE != "triton": "or install flash attention with `cd server && make install install-flash-attention`" ) from e else: - for idx in range(torch.cuda.device_count()): name = torch.cuda.get_device_name(idx) if "MI210" not in name and "MI250" not in name: diff --git a/server/text_generation_server/models/custom_modeling/flash_cohere_modeling.py b/server/text_generation_server/models/custom_modeling/flash_cohere_modeling.py index 374ccb10..30656038 100644 --- a/server/text_generation_server/models/custom_modeling/flash_cohere_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_cohere_modeling.py @@ -39,6 +39,7 @@ from text_generation_server.layers import ( SpeculativeHead, get_linear, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.layernorm import ( FastLayerNorm, ) @@ -297,8 +298,8 @@ class FlashCohereAttention(torch.nn.Module): # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else key, - kv_cache[1] if SYSTEM != "ipex" else value, + kv_cache[0] if PREFILL_IN_KV_CACHE else key, + kv_cache[1] if PREFILL_IN_KV_CACHE else value, seqlen, block_tables, self.softmax_scale, diff --git a/server/text_generation_server/models/custom_modeling/flash_dbrx_modeling.py b/server/text_generation_server/models/custom_modeling/flash_dbrx_modeling.py index 0dc88098..1137a453 100644 --- a/server/text_generation_server/models/custom_modeling/flash_dbrx_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_dbrx_modeling.py @@ -30,6 +30,7 @@ from text_generation_server.layers.attention import ( attention, reshape_and_cache, Seqlen, + PREFILL_IN_KV_CACHE, ) from text_generation_server.layers import ( FastLinear, @@ -336,8 +337,8 @@ class DbrxAttention(torch.nn.Module): # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv[:, 1], + kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, 0], + kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, 1], seqlen, block_tables, self.softmax_scale, diff --git a/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py b/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py index 2ca7cc24..ac191ec3 100644 --- a/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py @@ -35,6 +35,7 @@ from text_generation_server.layers.attention import ( paged_attention, reshape_and_cache, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.layernorm import FastRMSNorm from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer from text_generation_server.layers.rotary import PositionRotaryEmbedding, get_mscale @@ -327,8 +328,8 @@ class DeepseekV2Attention(torch.nn.Module): # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else key, - kv_cache[1] if SYSTEM != "ipex" else value, + kv_cache[0] if PREFILL_IN_KV_CACHE else key, + kv_cache[1] if PREFILL_IN_KV_CACHE else value, seqlen, block_tables, self.softmax_scale, diff --git a/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py b/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py index 887e187e..7a3d60c9 100644 --- a/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py @@ -25,7 +25,6 @@ from torch import nn from transformers.activations import ACT2FN from transformers.configuration_utils import PretrainedConfig from typing import Optional, List, Tuple -from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.layers.attention import ( paged_attention, attention, @@ -41,6 +40,7 @@ from text_generation_server.layers import ( TensorParallelMultiAdapterLinear, TensorParallelAdapterRowLinear, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.rotary import PositionRotaryEmbedding from text_generation_server.layers.layernorm import ( FastRMSNorm, @@ -260,8 +260,8 @@ class FlashGemma2Attention(torch.nn.Module): # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv[:, 1], + kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, 0], + kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, 1], seqlen, block_tables, self.softmax_scale, diff --git a/server/text_generation_server/models/custom_modeling/flash_gemma_modeling.py b/server/text_generation_server/models/custom_modeling/flash_gemma_modeling.py index 77ae4b35..4c1be6f6 100644 --- a/server/text_generation_server/models/custom_modeling/flash_gemma_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_gemma_modeling.py @@ -25,12 +25,12 @@ from torch import nn from transformers.activations import ACT2FN from transformers.configuration_utils import PretrainedConfig from typing import Optional, List, Tuple -from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.layers.attention import ( paged_attention, attention, reshape_and_cache, Seqlen, + PREFILL_IN_KV_CACHE, ) from text_generation_server.layers import ( TensorParallelRowLinear, @@ -231,8 +231,8 @@ class FlashGemmaAttention(torch.nn.Module): # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv[:, 1], + kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, 0], + kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, 1], seqlen, block_tables, self.softmax_scale, diff --git a/server/text_generation_server/models/custom_modeling/flash_gpt2_modeling.py b/server/text_generation_server/models/custom_modeling/flash_gpt2_modeling.py index 411c4ce1..44c015cf 100644 --- a/server/text_generation_server/models/custom_modeling/flash_gpt2_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_gpt2_modeling.py @@ -24,7 +24,7 @@ import torch.distributed from torch import nn from transformers.activations import ACT2FN from typing import Optional, List, Tuple -from text_generation_server.utils.import_utils import SYSTEM +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.attention import ( paged_attention, attention, @@ -231,8 +231,8 @@ class FlashGPT2Attention(torch.nn.Module): # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else key, - kv_cache[1] if SYSTEM != "ipex" else value, + kv_cache[0] if PREFILL_IN_KV_CACHE else key, + kv_cache[1] if PREFILL_IN_KV_CACHE else value, seqlen, block_tables, self.softmax_scale, diff --git a/server/text_generation_server/models/custom_modeling/flash_gptj_modeling.py b/server/text_generation_server/models/custom_modeling/flash_gptj_modeling.py index ef071d46..aca97004 100644 --- a/server/text_generation_server/models/custom_modeling/flash_gptj_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_gptj_modeling.py @@ -38,6 +38,7 @@ from text_generation_server.layers import ( SpeculativeHead, get_linear, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.rotary import ( PositionRotaryEmbedding, ) @@ -192,8 +193,8 @@ class FlashGPTJAttention(torch.nn.Module): # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else key, - kv_cache[1] if SYSTEM != "ipex" else value, + kv_cache[0] if PREFILL_IN_KV_CACHE else key, + kv_cache[1] if PREFILL_IN_KV_CACHE else value, seqlen, block_tables, self.softmax_scale, diff --git a/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py b/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py index 7d639e35..758e39aa 100644 --- a/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py @@ -27,6 +27,7 @@ import torch.distributed from torch import nn from transformers.activations import ACT2FN +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.layers.attention import ( paged_attention, @@ -220,8 +221,8 @@ class FlashLlamaAttention(torch.nn.Module): # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv[:, 1], + kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, 0], + kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, 1], seqlen, block_tables, self.softmax_scale, diff --git a/server/text_generation_server/models/custom_modeling/flash_mistral_modeling.py b/server/text_generation_server/models/custom_modeling/flash_mistral_modeling.py index cdd23796..3e16d371 100644 --- a/server/text_generation_server/models/custom_modeling/flash_mistral_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_mistral_modeling.py @@ -41,6 +41,7 @@ from text_generation_server.layers import ( TensorParallelMultiAdapterLinear, TensorParallelAdapterRowLinear, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.rotary import PositionRotaryEmbedding from text_generation_server.layers.layernorm import ( FastRMSNorm, @@ -218,8 +219,8 @@ class MistralAttention(torch.nn.Module): # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv_to_cache[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv_to_cache[:, 1], + kv_cache[0] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0], + kv_cache[1] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1], seqlen, block_tables, self.softmax_scale, diff --git a/server/text_generation_server/models/custom_modeling/flash_mixtral_modeling.py b/server/text_generation_server/models/custom_modeling/flash_mixtral_modeling.py index 02da1384..5836d30a 100644 --- a/server/text_generation_server/models/custom_modeling/flash_mixtral_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_mixtral_modeling.py @@ -39,10 +39,10 @@ from text_generation_server.layers.attention import ( paged_attention, reshape_and_cache, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.layernorm import FastRMSNorm from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer from text_generation_server.layers.rotary import PositionRotaryEmbedding -from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.utils.weights import UnquantizedWeight @@ -267,8 +267,8 @@ class MixtralAttention(torch.nn.Module): # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv_to_cache[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv_to_cache[:, 1], + kv_cache[0] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0], + kv_cache[1] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1], seqlen, block_tables, self.softmax_scale, diff --git a/server/text_generation_server/models/custom_modeling/flash_neox_modeling.py b/server/text_generation_server/models/custom_modeling/flash_neox_modeling.py index 454e45eb..ad4e382f 100644 --- a/server/text_generation_server/models/custom_modeling/flash_neox_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_neox_modeling.py @@ -26,7 +26,6 @@ from transformers.activations import ACT2FN from transformers.modeling_utils import PreTrainedModel from transformers.models.gpt_neox import GPTNeoXConfig as TransformersGPTNeoXConfig from typing import Optional, List, Tuple -from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.layers.attention import ( paged_attention, attention, @@ -40,6 +39,7 @@ from text_generation_server.layers import ( SpeculativeHead, get_linear, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.layernorm import ( FastLayerNorm, ) @@ -172,8 +172,8 @@ class FlashNeoxAttention(torch.nn.Module): # flash attention attn_output = attention( qkv[:, 0], - kv_cache[0] if SYSTEM != "ipex" else qkv[:, 1], - kv_cache[1] if SYSTEM != "ipex" else qkv[:, 2], + kv_cache[0] if PREFILL_IN_KV_CACHE else qkv[:, 1], + kv_cache[1] if PREFILL_IN_KV_CACHE else qkv[:, 2], seqlen, block_tables, self.softmax_scale, diff --git a/server/text_generation_server/models/custom_modeling/flash_phi_modeling.py b/server/text_generation_server/models/custom_modeling/flash_phi_modeling.py index e2d9bbbc..2a0dc606 100644 --- a/server/text_generation_server/models/custom_modeling/flash_phi_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_phi_modeling.py @@ -19,13 +19,13 @@ from text_generation_server.layers import ( SpeculativeHead, get_linear, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.layernorm import ( FastLayerNorm, ) from text_generation_server.layers.rotary import ( PositionRotaryEmbedding, ) -from text_generation_server.utils.import_utils import SYSTEM class PhiConfig(PretrainedConfig): @@ -194,8 +194,8 @@ class FlashPhiAttention(torch.nn.Module): if cu_seqlen_prefill is not None: attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv[:, 1], + kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, 0], + kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, 1], seqlen, block_tables, self.softmax_scale, diff --git a/server/text_generation_server/models/custom_modeling/flash_qwen2_modeling.py b/server/text_generation_server/models/custom_modeling/flash_qwen2_modeling.py index 999b72e7..02c788d3 100644 --- a/server/text_generation_server/models/custom_modeling/flash_qwen2_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_qwen2_modeling.py @@ -17,11 +17,11 @@ from text_generation_server.layers import ( TensorParallelEmbedding, SpeculativeHead, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.rotary import PositionRotaryEmbedding from text_generation_server.layers.layernorm import ( FastRMSNorm, ) -from text_generation_server.utils.import_utils import SYSTEM def load_attention(config, prefix, weights): @@ -137,8 +137,8 @@ class Qwen2Attention(torch.nn.Module): # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv_to_cache[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv_to_cache[:, 1], + kv_cache[0] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0], + kv_cache[1] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1], seqlen, block_tables, self.softmax_scale, diff --git a/server/text_generation_server/models/custom_modeling/flash_rw_modeling.py b/server/text_generation_server/models/custom_modeling/flash_rw_modeling.py index edc54c09..6671d85e 100644 --- a/server/text_generation_server/models/custom_modeling/flash_rw_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_rw_modeling.py @@ -5,7 +5,6 @@ import torch.distributed from torch import nn from transformers.configuration_utils import PretrainedConfig from transformers.modeling_utils import PreTrainedModel -from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.layers import ( SpeculativeHead, TensorParallelColumnLinear, @@ -13,6 +12,7 @@ from text_generation_server.layers import ( TensorParallelRowLinear, get_linear, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.layernorm import FastLayerNorm from text_generation_server.layers.rotary import PositionRotaryEmbedding from text_generation_server.layers.attention import ( @@ -207,8 +207,8 @@ class FlashRWAttention(torch.nn.Module): # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv[:, 1], + kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, 0], + kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, 1], seqlen, block_tables, self.softmax_scale, @@ -325,8 +325,8 @@ class FlashRWLargeAttention(torch.nn.Module): # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv[:, :, 0].contiguous(), - kv_cache[1] if SYSTEM != "ipex" else kv[:, :, 1].contiguous(), + kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, :, 0].contiguous(), + kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, :, 1].contiguous(), seqlen, block_tables, self.softmax_scale, diff --git a/server/text_generation_server/models/custom_modeling/flash_santacoder_modeling.py b/server/text_generation_server/models/custom_modeling/flash_santacoder_modeling.py index f97b4409..43eb9687 100644 --- a/server/text_generation_server/models/custom_modeling/flash_santacoder_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_santacoder_modeling.py @@ -18,11 +18,11 @@ from text_generation_server.layers import ( TensorParallelEmbedding, get_linear, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.gptq import GPTQWeightsLoader from text_generation_server.layers.layernorm import ( FastLayerNorm, ) -from text_generation_server.utils.import_utils import SYSTEM def load_multi_mqa( @@ -293,8 +293,8 @@ class FlashMQAttention(torch.nn.Module): # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else key_value[:, 0], - kv_cache[1] if SYSTEM != "ipex" else key_value[:, 1], + kv_cache[0] if PREFILL_IN_KV_CACHE else key_value[:, 0], + kv_cache[1] if PREFILL_IN_KV_CACHE else key_value[:, 1], seqlen, block_tables, self.softmax_scale, diff --git a/server/text_generation_server/models/custom_modeling/flash_starcoder2_modeling.py b/server/text_generation_server/models/custom_modeling/flash_starcoder2_modeling.py index 6aa7fa21..4975cf22 100644 --- a/server/text_generation_server/models/custom_modeling/flash_starcoder2_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_starcoder2_modeling.py @@ -39,6 +39,7 @@ from text_generation_server.layers import ( SpeculativeHead, get_linear, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.layernorm import ( FastLayerNorm, FastRMSNorm, @@ -47,7 +48,6 @@ from text_generation_server.layers.rotary import ( PositionRotaryEmbedding, ) from text_generation_server.utils.weights import UnquantizedWeight -from text_generation_server.utils.import_utils import SYSTEM class Starcoder2Config(PretrainedConfig): @@ -242,8 +242,8 @@ class Starcoder2Attention(torch.nn.Module): # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv_to_cache[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv_to_cache[:, 1], + kv_cache[0] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0], + kv_cache[1] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1], seqlen, block_tables, self.softmax_scale, From 1028996fb380f07ebb2a9de1d2795e176f845c59 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Sat, 28 Sep 2024 18:41:41 +0200 Subject: [PATCH 17/33] flashinfer: pass window size and dtype (#2574) --- .../layers/attention/flashinfer.py | 19 +++++++++++++------ .../models/flash_causal_lm.py | 4 ++++ 2 files changed, 17 insertions(+), 6 deletions(-) diff --git a/server/text_generation_server/layers/attention/flashinfer.py b/server/text_generation_server/layers/attention/flashinfer.py index 5f8954ea..d603c6f5 100644 --- a/server/text_generation_server/layers/attention/flashinfer.py +++ b/server/text_generation_server/layers/attention/flashinfer.py @@ -50,7 +50,8 @@ def use_prefill_with_paged_kv_state( num_kv_heads: int, head_size: int, page_size: int, - query_dtype: str = "float16", + dtype: torch.dtype, + window_left: int, ): """ Context manager to set the active flashinfer prefill state to the given @@ -90,8 +91,9 @@ def use_prefill_with_paged_kv_state( num_qo_heads=num_heads, num_kv_heads=num_kv_heads, head_dim=head_size, - q_data_type=query_dtype, + q_data_type=dtype, page_size=page_size, + window_left=window_left, ) yield finally: @@ -119,7 +121,8 @@ def use_prefill_state( num_heads: int, num_kv_heads: int, head_size: int, - query_dtype: str = "float16", + dtype: torch.dtype, + window_left: int, ): """ Context manager to set the active flashinfer prefill state to the given @@ -135,7 +138,8 @@ def use_prefill_state( num_qo_heads=num_heads, num_kv_heads=num_kv_heads, head_dim=head_size, - q_data_type=query_dtype, + q_data_type=dtype, + window_left=window_left, ) yield finally: @@ -200,7 +204,8 @@ def use_decode_state( num_kv_heads: int, head_size: int, page_size: int, - query_dtype: str = "float16", + dtype: torch.dtype, + window_left: int, ): """ Context manager to set the active flashinfer decoding state to the given @@ -235,7 +240,9 @@ def use_decode_state( num_kv_heads=num_kv_heads, head_dim=head_size, page_size=page_size, - q_data_type=query_dtype, + data_type=dtype, + q_data_type=dtype, + window_left=window_left, ) yield finally: diff --git a/server/text_generation_server/models/flash_causal_lm.py b/server/text_generation_server/models/flash_causal_lm.py index a2834962..57582ebc 100644 --- a/server/text_generation_server/models/flash_causal_lm.py +++ b/server/text_generation_server/models/flash_causal_lm.py @@ -1960,6 +1960,8 @@ class FlashCausalLM(Model): num_kv_heads=self.num_kv_heads, head_size=self.head_size, page_size=BLOCK_SIZE, + dtype=self.dtype, + window_left=self.sliding_window, ) else: assert input_lengths_tensor is not None @@ -1971,6 +1973,8 @@ class FlashCausalLM(Model): num_kv_heads=self.num_kv_heads, head_size=self.head_size, page_size=BLOCK_SIZE, + dtype=self.dtype, + window_left=self.sliding_window, ) From afc7ded84fbd50106847f84b68fdae6f6f17158c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Mon, 30 Sep 2024 08:48:47 +0200 Subject: [PATCH 18/33] Remove compute capability lazy cell (#2580) Remove compute capability lock We are only calling the `get_cuda_capability` function once, so avoiding the cost of multiple calls is not really necessary yet. --- launcher/src/gpu.rs | 7 +------ launcher/src/main.rs | 2 +- 2 files changed, 2 insertions(+), 7 deletions(-) diff --git a/launcher/src/gpu.rs b/launcher/src/gpu.rs index 755d246a..b565220e 100644 --- a/launcher/src/gpu.rs +++ b/launcher/src/gpu.rs @@ -1,9 +1,4 @@ -use std::sync::LazyLock; - -pub static COMPUTE_CAPABILITY: LazyLock> = - LazyLock::new(get_cuda_capability); - -fn get_cuda_capability() -> Option<(usize, usize)> { +pub fn get_cuda_capability() -> Option<(usize, usize)> { use pyo3::prelude::*; let py_get_capability = |py: Python| -> PyResult<(isize, isize)> { diff --git a/launcher/src/main.rs b/launcher/src/main.rs index 583220a6..474a72d3 100644 --- a/launcher/src/main.rs +++ b/launcher/src/main.rs @@ -66,7 +66,7 @@ fn get_config( } fn resolve_attention(config: &Option, lora_adapters: &Option) -> (String, String) { - let compute_capability = *gpu::COMPUTE_CAPABILITY; + let compute_capability = gpu::get_cuda_capability(); let mut prefix_caching: Option = std::env::var("USE_PREFIX_CACHING").ok(); let mut attention: Option = std::env::var("ATTENTION").ok(); if let Some(config) = config { From e790cfc0e42fd2a8b084969702a755faee31ac5f Mon Sep 17 00:00:00 2001 From: Ikram Ul Haq <44068298+ulhaqi12@users.noreply.github.com> Date: Mon, 30 Sep 2024 09:56:20 +0300 Subject: [PATCH 19/33] Update architecture.md (#2577) --- docs/source/architecture.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/source/architecture.md b/docs/source/architecture.md index 28c84f62..6660630d 100644 --- a/docs/source/architecture.md +++ b/docs/source/architecture.md @@ -10,7 +10,7 @@ This diagram shows well there are these separate components: - **The router**, also named `webserver`, that receives the client requests, buffers them, creates some batches, and prepares gRPC calls to a model server. - **The model server**, responsible of receiving the gRPC requests and to process the inference on the model. If the model is sharded across multiple accelerators (e.g.: multiple GPUs), the model server shards might be synchronized via NCCL or equivalent. -- **The launcher** is a helper thar will be able to launch one or several model servers (if model is sharded), and it launches the router with the compatible arguments. +- **The launcher** is a helper that will be able to launch one or several model servers (if model is sharded), and it launches the router with the compatible arguments. The router and the model server can be two different machines, they do not need to be deployed together. From f9e561ecedf9e3b9c3411a242f731f7bb8ef75ce Mon Sep 17 00:00:00 2001 From: Mohit Sharma Date: Mon, 30 Sep 2024 14:24:32 +0530 Subject: [PATCH 20/33] Update ROCM libs and improvements (#2579) * style * update torch * ix issues * fix clone * revert mkl * added custom PA * style * fix style * style * hide env vart * fix mixtral model * add skinny kernel and merge fixes * fixed style * fix issue for sliding window models * addressed review comments * fix import * improved error messag * updated default value * remove import * fix imports after rebase * float16 dep * improve dockerfile * cleaned dockerfile --- Dockerfile_amd | 175 +++++++++++++---- docs/source/installation_amd.md | 6 + server/Makefile-flash-att-v2 | 4 +- server/Makefile-vllm | 4 +- server/exllama_kernels/setup.py | 13 ++ server/exllamav2_kernels/setup.py | 6 +- .../layers/attention/common.py | 3 + .../layers/attention/rocm.py | 178 ++++++++++++------ .../text_generation_server/layers/linear.py | 48 +++-- .../layers/moe/__init__.py | 5 +- .../layers/moe/fused_moe_rocm.py | 52 +++++ .../layers/moe/unquantized.py | 15 +- .../flash_deepseek_v2_modeling.py | 1 + .../custom_modeling/flash_llama_modeling.py | 5 + .../custom_modeling/flash_mistral_modeling.py | 1 + .../models/flash_causal_lm.py | 19 +- 16 files changed, 418 insertions(+), 117 deletions(-) create mode 100644 server/text_generation_server/layers/moe/fused_moe_rocm.py diff --git a/Dockerfile_amd b/Dockerfile_amd index a79aae48..0b059f8c 100644 --- a/Dockerfile_amd +++ b/Dockerfile_amd @@ -41,7 +41,7 @@ COPY launcher launcher RUN cargo build --profile release-opt # Text Generation Inference base image for RoCm -FROM rocm/dev-ubuntu-22.04:6.1.1_hip_update AS base +FROM rocm/dev-ubuntu-22.04:6.2 AS base RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \ build-essential \ @@ -50,33 +50,34 @@ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-ins curl \ git \ make \ + libmsgpack-dev \ libssl-dev \ + llvm-dev \ g++ \ # Needed to build VLLM & flash. rocthrust-dev \ hipsparse-dev \ hipblas-dev \ - hipblaslt-dev \ + hipcub-dev \ rocblas-dev \ hiprand-dev \ + hipfft-dev \ rocrand-dev \ miopen-hip-dev \ - hipfft-dev \ - hipcub-dev \ hipsolver-dev \ rccl-dev \ cmake \ - python3.11-dev && \ + python3.11-venv && \ rm -rf /var/lib/apt/lists/* # Keep in sync with `server/pyproject.toml ARG MAMBA_VERSION=23.1.0-1 -ARG PYTORCH_VERSION='2.3.0' -ARG ROCM_VERSION='6.0.2' ARG PYTHON_VERSION='3.11.10' # Automatically set by buildx ARG TARGETPLATFORM -ENV PATH /opt/conda/bin:$PATH +ENV PATH=/opt/conda/bin:$PATH + +ARG PYTORCH_ROCM_ARCH="gfx90a;gfx942" # TGI seem to require libssl.so.1.1 instead of libssl.so.3 so we can't use ubuntu 22.04. Ubuntu 20.04 has python==3.8, and TGI requires python>=3.9, hence the need for miniconda. # Install mamba @@ -100,41 +101,132 @@ RUN case ${TARGETPLATFORM} in \ /opt/conda/bin/conda install -y "python=${PYTHON_VERSION}" ;; \ esac && \ /opt/conda/bin/conda clean -ya + # Install flash-attention, torch dependencies -RUN pip install numpy einops ninja --no-cache-dir +RUN python3 -m pip install --upgrade pip && pip install numpy einops ninja joblib msgpack cmake --no-cache-dir && rm -rf /var/lib/apt/lists/* -RUN pip uninstall -y triton && \ - git clone --depth 1 --single-branch https://github.com/ROCm/triton.git && \ - cd triton/python && \ - pip install . +RUN conda install mkl=2021 +ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/lib/:/opt/conda/lib/python3.11/site-packages/torch/lib:/opt/conda/lib/ -RUN git clone --depth 1 --recursive --single-branch --branch 2.3-patched https://github.com/fxmarty/pytorch.git pytorch && cd pytorch && pip install -r requirements.txt --no-cache-dir -ARG _GLIBCXX_USE_CXX11_ABI="1" -ARG CMAKE_PREFIX_PATH="/opt/conda" +ARG COMMON_WORKDIR=/ +WORKDIR ${COMMON_WORKDIR} + + +# Install HIPBLASLt +FROM base AS build_hipblaslt +ARG HIPBLASLT_BRANCH="e6da924" +RUN git clone https://github.com/ROCm/hipBLASLt.git \ + && cd hipBLASLt \ + && git checkout ${HIPBLASLT_BRANCH} \ + && SCCACHE_IDLE_TIMEOUT=1800 ./install.sh --architecture ${PYTORCH_ROCM_ARCH} --legacy_hipblas_direct \ + && cd build/release \ + && make package + +FROM scratch AS export_hipblaslt +ARG COMMON_WORKDIR +COPY --from=build_hipblaslt ${COMMON_WORKDIR}/hipBLASLt/build/release/*.deb / + +# RCCL build stages +FROM base AS build_rccl +ARG RCCL_BRANCH="rocm-6.2.0" +RUN git clone https://github.com/ROCm/rccl \ + && cd rccl \ + && git checkout ${RCCL_BRANCH} \ + && ./install.sh -p --amdgpu_targets ${PYTORCH_ROCM_ARCH} +FROM scratch AS export_rccl +ARG COMMON_WORKDIR +COPY --from=build_rccl ${COMMON_WORKDIR}/rccl/build/release/*.deb / + +# Triton build stages +FROM base AS build_triton +ARG TRITON_BRANCH="e192dba" +ARG TRITON_REPO="https://github.com/triton-lang/triton.git" +RUN python3 -m pip install ninja cmake wheel pybind11 && git clone ${TRITON_REPO} \ + && cd triton \ + && git checkout ${TRITON_BRANCH} \ + && cd python \ + && python3 setup.py bdist_wheel --dist-dir=dist +FROM scratch AS export_triton +ARG COMMON_WORKDIR +COPY --from=build_triton ${COMMON_WORKDIR}/triton/python/dist/*.whl / + +# # AMD-SMI build stages +FROM base AS build_amdsmi +RUN cd /opt/rocm/share/amd_smi \ + && pip wheel . --wheel-dir=dist +FROM scratch AS export_amdsmi +COPY --from=build_amdsmi /opt/rocm/share/amd_smi/dist/*.whl / + + +FROM base as build_pytorch + +RUN --mount=type=bind,from=export_hipblaslt,src=/,target=/install \ + if ls /install/*.deb; then \ + dpkg -i /install/*.deb \ + && sed -i 's/, hipblaslt-dev \(.*\), hipcub-dev/, hipcub-dev/g' /var/lib/dpkg/status \ + && sed -i 's/, hipblaslt \(.*\), hipfft/, hipfft/g' /var/lib/dpkg/status; \ + fi + +ARG BUILD_ENVIRONMENT=pytorch-linux-jammy-rocm6.2-py3.11 ARG PYTORCH_ROCM_ARCH="gfx90a;gfx942" -ARG BUILD_CAFFE2="0" \ - BUILD_CAFFE2_OPS="0" \ - USE_CUDA="0" \ - USE_ROCM="1" \ - BUILD_TEST="0" \ - USE_FBGEMM="0" \ - USE_NNPACK="0" \ - USE_QNNPACK="0" \ - USE_XNNPACK="0" \ - USE_FLASH_ATTENTION="1" \ - USE_MEM_EFF_ATTENTION="0" -RUN cd pytorch && python tools/amd_build/build_amd.py && python setup.py install +# A commit to fix the output scaling factor issue in _scaled_mm +# Not yet in 2.5.0-rc1 +ARG PYTORCH_BRANCH="cedc116" +ARG PYTORCH_VISION_BRANCH="v0.19.1" +ARG PYTORCH_REPO="https://github.com/ROCm/pytorch.git" -# Set AS recommended: https://github.com/ROCm/triton/wiki/A-script-to-set-program-execution-environment-in-ROCm -ENV HIP_FORCE_DEV_KERNARG=1 +RUN git clone ${PYTORCH_REPO} pytorch \ + && cd pytorch && git checkout ${PYTORCH_BRANCH} && git submodule update --init --recursive \ + && pip install -r requirements.txt --no-cache-dir \ + && python tools/amd_build/build_amd.py \ + && CMAKE_PREFIX_PATH=$(python3 -c 'import sys; print(sys.prefix)') python3 setup.py bdist_wheel --dist-dir=dist +FROM scratch as export_pytorch +ARG COMMON_WORKDIR +COPY --from=build_pytorch ${COMMON_WORKDIR}/pytorch/dist/*.whl / -# On MI250 and MI300, performances for flash with Triton FA are slightly better than CK. -# However, Triton requires a tunning for each prompt length, which is prohibitive. -ENV ROCM_USE_FLASH_ATTN_V2_TRITON=0 +FROM base AS install_deps -FROM base AS kernel-builder +ARG COMMON_WORKDIR + +# Install hipblaslt +RUN --mount=type=bind,from=export_hipblaslt,src=/,target=/install \ + if ls /install/*.deb; then \ + dpkg -i /install/*.deb \ + && sed -i 's/, hipblaslt-dev \(.*\), hipcub-dev/, hipcub-dev/g' /var/lib/dpkg/status \ + && sed -i 's/, hipblaslt \(.*\), hipfft/, hipfft/g' /var/lib/dpkg/status; \ + fi + +RUN --mount=type=bind,from=export_rccl,src=/,target=/install \ + if ls /install/*.deb; then \ + dpkg -i /install/*.deb \ + # RCCL needs to be installed twice + && dpkg -i /install/*.deb \ + && sed -i 's/, rccl-dev \(.*\), rocalution/, rocalution/g' /var/lib/dpkg/status \ + && sed -i 's/, rccl \(.*\), rocalution/, rocalution/g' /var/lib/dpkg/status; \ + fi + +RUN --mount=type=bind,from=export_triton,src=/,target=/install \ + if ls /install/*.whl; then \ + # Preemptively uninstall to prevent pip same-version no-installs + pip uninstall -y triton \ + && pip install /install/*.whl; \ + fi + +RUN --mount=type=bind,from=export_amdsmi,src=/,target=/install \ + # Preemptively uninstall to prevent pip same-version no-installs + pip uninstall -y amdsmi \ + && pip install /install/*.whl; + +RUN --mount=type=bind,from=export_pytorch,src=/,target=/install \ + if ls /install/*.whl; then \ + # Preemptively uninstall to prevent pip same-version no-installs + pip uninstall -y torch torchvision \ + && pip install /install/*.whl; \ + fi + +FROM install_deps AS kernel-builder # # Build vllm kernels FROM kernel-builder AS vllm-builder @@ -174,7 +266,7 @@ COPY server/exllamav2_kernels/ . RUN python setup.py build -FROM base AS base-copy +FROM install_deps AS base-copy # Text Generation Inference base env ENV HF_HOME=/data \ @@ -224,6 +316,19 @@ ENTRYPOINT ["./entrypoint.sh"] # Final image FROM base-copy +# Set AS recommended: https://github.com/ROCm/triton/wiki/A-script-to-set-program-execution-environment-in-ROCm +ENV HIP_FORCE_DEV_KERNARG=1 + +# On MI250 and MI300, performances for flash with Triton FA are slightly better than CK. +# However, Triton requires a tunning for each prompt length, which is prohibitive. +ENV ROCM_USE_FLASH_ATTN_V2_TRITON=0 +ENV ROCM_USE_CUSTOM_PAGED_ATTN=1 +ENV PYTORCH_TUNABLEOP_TUNING_AFTER_WARMUP=0 +ENV VLLM_MOE_PADDING=0 +ENV ATTENTION=paged +ENV USE_PREFIX_CACHING=0 +ENV ROCM_USE_SKINNY_GEMM=1 + COPY ./tgi-entrypoint.sh /tgi-entrypoint.sh RUN chmod +x /tgi-entrypoint.sh diff --git a/docs/source/installation_amd.md b/docs/source/installation_amd.md index 544beffc..6806bac9 100644 --- a/docs/source/installation_amd.md +++ b/docs/source/installation_amd.md @@ -31,6 +31,12 @@ Two implementations of Flash Attention are available for ROCm, the first is [ROC By default, the Composable Kernel implementation is used. However, the Triton implementation has slightly lower latency on MI250 and MI300, but requires a warmup which can be prohibitive as it needs to be done again for each new prompt length. If needed, FA Triton impelmentation can be enabled with `--env ROCM_USE_FLASH_ATTN_V2_TRITON="0"` when launching TGI's docker container. +## Custom PagedAttention + +For better performance on ROCm, a custom Paged Attention kernel is available and is enabled by default. To disable it and fall back to the PagedAttention v2 kernel, set the environment variable `ROCM_USE_CUSTOM_PAGED_ATTN=0`. + +The custom kernel supports bf16 and fp16 data types, block size of 16, head size of 128, a maximum context length of 16k, and GQA ratios between 1 and 16. For other configurations, we use the PagedAttention v2 kernel. + ## Unsupported features The following features are currently not supported in the ROCm version of TGI, and the supported may be extended in the future: diff --git a/server/Makefile-flash-att-v2 b/server/Makefile-flash-att-v2 index dbddd0f4..a9cdf782 100644 --- a/server/Makefile-flash-att-v2 +++ b/server/Makefile-flash-att-v2 @@ -1,5 +1,5 @@ flash_att_v2_commit_cuda := v2.6.1 -flash_att_v2_commit_rocm := 2554f490101742ccdc56620a938f847f61754be6 +flash_att_v2_commit_rocm := 2092111b9f975b3347c652ff7fabd431130256c4 build-flash-attention-v2-cuda: pip install -U packaging wheel @@ -11,7 +11,7 @@ install-flash-attention-v2-cuda: build-flash-attention-v2-cuda build-flash-attention-v2-rocm: if [ ! -d 'flash-attention-v2' ]; then \ pip install -U packaging ninja --no-cache-dir && \ - git clone https://github.com/ROCm/flash-attention.git flash-attention-v2 && \ + git clone https://github.com/mht-sharma/flash-attention.git flash-attention-v2 && \ cd flash-attention-v2 && git fetch && git checkout $(flash_att_v2_commit_rocm) && \ git submodule update --init --recursive && GPU_ARCHS="gfx90a;gfx942" PYTORCH_ROCM_ARCH="gfx90a;gfx942" python setup.py build; \ fi diff --git a/server/Makefile-vllm b/server/Makefile-vllm index f1f80529..18dcc4a0 100644 --- a/server/Makefile-vllm +++ b/server/Makefile-vllm @@ -1,5 +1,5 @@ commit_cuda := d243e9dc7e2c9c2e36a4150ec8e64809cb55c01b -commit_rocm := c6ee53b1be97e3bbc791b95f22827501297f8921 +commit_rocm := 4e0929e6e4fa0a3d09d358715c288020ea9dc247 build-vllm-cuda: if [ ! -d 'vllm' ]; then \ pip install -U ninja packaging --no-cache-dir && \ @@ -13,7 +13,7 @@ install-vllm-cuda: build-vllm-cuda build-vllm-rocm: if [ ! -d 'vllm' ]; then \ pip install -U ninja packaging --no-cache-dir && \ - git clone https://github.com/fxmarty/rocm-vllm.git vllm; \ + git clone https://github.com/mht-sharma/vllm.git vllm; \ fi cd vllm && git fetch && git checkout $(commit_rocm) && \ PYTORCH_ROCM_ARCH="gfx90a;gfx942" python setup.py build diff --git a/server/exllama_kernels/setup.py b/server/exllama_kernels/setup.py index 987d181e..cc307bf0 100644 --- a/server/exllama_kernels/setup.py +++ b/server/exllama_kernels/setup.py @@ -1,5 +1,17 @@ from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension +import torch + +extra_cuda_cflags = [] +extra_cflags = [] +if torch.version.hip: + extra_cflags = ["-DLEGACY_HIPBLAS_DIRECT=ON"] + extra_cuda_cflags = ["-DLEGACY_HIPBLAS_DIRECT=ON"] + +extra_compile_args = { + "cxx": extra_cflags, + "nvcc": extra_cuda_cflags, +} setup( name="exllama_kernels", @@ -13,6 +25,7 @@ setup( "exllama_kernels/cuda_func/q4_matmul.cu", "exllama_kernels/cuda_func/q4_matrix.cu", ], + extra_compile_args=extra_compile_args, ) ], cmdclass={"build_ext": BuildExtension}, diff --git a/server/exllamav2_kernels/setup.py b/server/exllamav2_kernels/setup.py index 4a16b546..56ffa973 100644 --- a/server/exllamav2_kernels/setup.py +++ b/server/exllamav2_kernels/setup.py @@ -3,11 +3,13 @@ from torch.utils.cpp_extension import BuildExtension, CUDAExtension import torch extra_cuda_cflags = ["-lineinfo", "-O3"] - +extra_cflags = [] if torch.version.hip: - extra_cuda_cflags += ["-DHIPBLAS_USE_HIP_HALF"] + extra_cflags = ["-DLEGACY_HIPBLAS_DIRECT=ON"] + extra_cuda_cflags += ["-DHIPBLAS_USE_HIP_HALF", "-DLEGACY_HIPBLAS_DIRECT=ON"] extra_compile_args = { + "cxx": extra_cflags, "nvcc": extra_cuda_cflags, } diff --git a/server/text_generation_server/layers/attention/common.py b/server/text_generation_server/layers/attention/common.py index 855f4dfc..d6e512c0 100644 --- a/server/text_generation_server/layers/attention/common.py +++ b/server/text_generation_server/layers/attention/common.py @@ -1,4 +1,5 @@ from dataclasses import dataclass +from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.models.globals import ATTENTION import torch from typing import Optional @@ -65,5 +66,7 @@ else: max_k: int def clamp(self, max): + if SYSTEM == "rocm": + return self raise NotImplementedError("Not implemented seqlen for paged") return Seqlen(torch.clamp(self.input_lengths, max=max)) diff --git a/server/text_generation_server/layers/attention/rocm.py b/server/text_generation_server/layers/attention/rocm.py index 9f24ac98..646a763d 100644 --- a/server/text_generation_server/layers/attention/rocm.py +++ b/server/text_generation_server/layers/attention/rocm.py @@ -1,4 +1,5 @@ import os +from typing import Optional import torch from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.models.globals import ATTENTION @@ -8,16 +9,28 @@ from loguru import logger major, minor = torch.cuda.get_device_capability() is_sm75 = major == 7 and minor == 5 -_PARTITION_SIZE = 512 + +_PARTITION_SIZE_V1V2 = 512 +_PARTITION_SIZE_CUSTOM = 256 use_triton = os.getenv("ROCM_USE_FLASH_ATTN_V2_TRITON", "").lower() in {"true", "1"} ENGINE = "triton" if use_triton else "ck" - PREFILL_IN_KV_CACHE = False +use_rocm_custom_paged_attn = os.getenv("ROCM_USE_CUSTOM_PAGED_ATTN", "1") != "0" try: - from vllm._C import cache_ops + if use_rocm_custom_paged_attn: + from vllm._custom_C import paged_attention_custom +except ImportError as e: + log_master( + logger.info, + f"Custom Paged Attention not available. Complete error: {e}", + ) + use_rocm_custom_paged_attn = False + +try: + import vllm._custom_ops as ops except Exception as e: raise ImportError( f"Could not import vllm paged attention. Make sure your installation is correct. Complete error: {e}" @@ -36,9 +49,7 @@ def reshape_and_cache( key_cache.view(-1, shape[-2], shape[-1])[slots] = key value_cache.view(-1, shape[-2], shape[-1])[slots] = value else: - cache_ops.reshape_and_cache( - key, value, key_cache, value_cache, slots, "auto", 1.0 - ) + ops.reshape_and_cache(key, value, key_cache, value_cache, slots, "auto", 1.0) def paged_attention( @@ -48,8 +59,9 @@ def paged_attention( kv_head_mapping: torch.Tensor, softmax_scale: float, block_tables: torch.Tensor, - input_lengths: Seqlen, + seqlen: Seqlen, max_s: int, + softcap: Optional[float] = None, ): # Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py # Copyright 2023 The vLLM team. All rights @@ -68,11 +80,31 @@ def paged_attention( # limitations under the License. # + if softcap is not None: + raise RuntimeError("Paged attention doesn't support softcapping") + # value_cache => [num_blocks, num_heads, head_size, block_size] block_size = value_cache.shape[3] num_seqs, num_heads, head_size = query.shape + + num_kv_heads = key_cache.shape[1] + gqa_ratio = num_heads // num_kv_heads + use_custom = ( + use_rocm_custom_paged_attn + and (query.dtype == torch.half or query.dtype == torch.bfloat16) + and (head_size == 128 or head_size == 64) + and (block_size == 16 or block_size == 32) + and (gqa_ratio >= 1 and gqa_ratio <= 16) + and max_s <= 32768 + ) + + if not use_custom: + _PARTITION_SIZE = _PARTITION_SIZE_V1V2 + else: + _PARTITION_SIZE = _PARTITION_SIZE_CUSTOM + max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE - input_lengths = input_lengths.input_lengths + input_lengths = seqlen.input_lengths out = torch.empty_like(query) @@ -81,9 +113,13 @@ def paged_attention( # V1 to avoid the overhead of reduction. Also, if the number of # sequences or heads is large, we use V1 since there is enough work # to parallelize. - from vllm._C import ops + import vllm._custom_ops as ops - use_v1 = max_s <= 8192 and (max_num_partitions == 1 or num_seqs * num_heads > 512) + use_v1 = ( + max_s <= 8192 + and (max_num_partitions == 1 or num_seqs * num_heads > 512) + and not use_custom + ) if use_v1: ops.paged_attention_v1( out, @@ -115,24 +151,44 @@ def paged_attention( ) max_logits = torch.empty_like(exp_sums) - ops.paged_attention_v2( - out, - exp_sums, - max_logits, - tmp_output, - query, - key_cache, - value_cache, - kv_head_mapping, - softmax_scale, - block_tables, - input_lengths, - block_size, - max_s, - None, - "auto", - 1.0, - ) + if not use_custom: + ops.paged_attention_v2( + out, + exp_sums, + max_logits, + tmp_output, + query, + key_cache, + value_cache, + kv_head_mapping, + softmax_scale, + block_tables, + input_lengths, + block_size, + max_s, + None, + "auto", + 1.0, + ) + else: + paged_attention_custom( + out, + exp_sums, + max_logits, + tmp_output, + query, + key_cache, + value_cache, + num_kv_heads, + softmax_scale, + block_tables, + input_lengths, + block_size, + max_s, + None, + "auto", + ) + return out @@ -175,13 +231,14 @@ if ENGINE == "ck": def attention( q, - k, - v, - cu_seqlens, - max_s, - softmax_scale, - window_size_left=-1, - causal=True, + key_cache: torch.Tensor, + value_cache: torch.Tensor, + seqlen: Seqlen, + block_tables: torch.Tensor, + softmax_scale: float, + window_size_left: int = -1, + causal: bool = True, + softcap: float = 0.0, ): if window_size_left <= 0 and window_size_left != -1: raise ValueError("`window_size_left` must be > 0 or -1") @@ -191,46 +248,57 @@ if ENGINE == "ck": # We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load. return flash_attn_2_cuda.varlen_fwd( q, - k, - v, + key_cache, + value_cache, out, - cu_seqlens, - cu_seqlens, - max_s, - max_s, + seqlen.cu_seqlen_q, + seqlen.cu_seqlen_q, + None, + None, + None, + None, + seqlen.max_q, + seqlen.max_k, 0.0, softmax_scale, False, causal, + window_size_left, + 0, + softcap, False, None, - ) + )[0] elif ENGINE == "triton": from .flash_attn_triton import triton_attention def attention( q, - k, - v, - cu_seqlens, - max_s, - softmax_scale, - window_size_left=-1, - causal=True, + key_cache: torch.Tensor, + value_cache: torch.Tensor, + seqlen: Seqlen, + block_tables: torch.Tensor, + softmax_scale: float, + window_size_left: int = -1, + causal: bool = True, + softcap: Optional[float] = None, ): + if softcap is not None: + raise NotImplementedError("softcap is only available with CK flash attn") + out = torch.empty_like(q) # We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load. output, _ = triton_attention( q, - k, - v, + key_cache, + value_cache, out, - cu_seqlens, - cu_seqlens, - max_s, - max_s, + seqlen.cu_seqlen_q, + seqlen.cu_seqlen_q, + seqlen.max_q, + seqlen.max_k, causal, softmax_scale, ) diff --git a/server/text_generation_server/layers/linear.py b/server/text_generation_server/layers/linear.py index 12d7f83a..08306d57 100644 --- a/server/text_generation_server/layers/linear.py +++ b/server/text_generation_server/layers/linear.py @@ -1,12 +1,21 @@ import torch from text_generation_server.utils.import_utils import SYSTEM from torch.nn import functional as F +import os if SYSTEM == "rocm": - try: - from vllm import _custom_C - except Exception as e: - raise ImportError(f"Could not load `vllm._custom_C`. Full error: {e}") + ROCM_USE_SKINNY_GEMM = os.getenv("ROCM_USE_SKINNY_GEMM", "True").lower() in ( + "true", + "1", + ) + + if ROCM_USE_SKINNY_GEMM: + try: + from vllm import _custom_C + except Exception as e: + raise ImportError( + f"Could not load `vllm._custom_C` for ROCm skinny gemm. Full error: {e}" + ) class FastLinear(torch.nn.Module): @@ -48,6 +57,14 @@ class FastLinearROCm(torch.nn.Module): else: self.bias = None + self.cu_count = torch.cuda.get_device_properties( + device="cuda" + ).multi_processor_count + self.use_skinny_gemm = ( + ROCM_USE_SKINNY_GEMM + and "gfx1" not in torch.cuda.get_device_properties("cuda").gcnArchName + ) + @classmethod def load(cls, config, prefix: str, weights, bias: bool): weight = weights.get_tensor(f"{prefix}.weight") @@ -61,7 +78,11 @@ class FastLinearROCm(torch.nn.Module): weight = self.weight bias = self.bias - if SYSTEM == "rocm" and inp.numel() // inp.shape[-1] == 1: + if ( + self.use_skinny_gemm + and inp.dtype == torch.float16 + and inp.shape[-1] % 8 == 0 + ): batched = False inp_shape = inp.shape @@ -69,13 +90,16 @@ class FastLinearROCm(torch.nn.Module): inp = inp.view(-1, inp_shape[-1]) batched = True - m, k = weight.shape[0], inp_shape[1] - out = torch.empty( - inp_shape[0], weight.shape[0], dtype=inp.dtype, device="cuda" - ) - if (k == 8192 and (m == 1280 or m == 7168)) or (k == 3584 and m == 8192): - _custom_C.LLMM1(weight, inp, out, 8) - elif k <= 8192 and k % 8 == 0 and m % 4 == 0: + m, n, k = weight.shape[0], inp_shape[0], inp_shape[1] + if m > 8 and n <= 4: + out = torch.empty( + inp_shape[0], weight.shape[0], dtype=inp.dtype, device=weight.device + ) + _custom_C.wvSpltK(weight, inp, out, n, self.cu_count) + elif m % 4 == 0 and n == 1 and k <= 8192: + out = torch.empty( + inp_shape[0], weight.shape[0], dtype=inp.dtype, device=weight.device + ) _custom_C.LLMM1(weight, inp, out, 4) else: out = F.linear(inp, weight) diff --git a/server/text_generation_server/layers/moe/__init__.py b/server/text_generation_server/layers/moe/__init__.py index 3171af90..7e8ac2c8 100644 --- a/server/text_generation_server/layers/moe/__init__.py +++ b/server/text_generation_server/layers/moe/__init__.py @@ -19,7 +19,10 @@ from text_generation_server.utils.weights import ( Weights, ) -if SYSTEM != "ipex": +if SYSTEM == "rocm": + from .fused_moe_rocm import grouped_topk + from vllm.model_executor.layers.fused_moe import fused_topk +elif SYSTEM != "ipex": from moe_kernels.fused_moe import fused_topk, grouped_topk diff --git a/server/text_generation_server/layers/moe/fused_moe_rocm.py b/server/text_generation_server/layers/moe/fused_moe_rocm.py new file mode 100644 index 00000000..68accb99 --- /dev/null +++ b/server/text_generation_server/layers/moe/fused_moe_rocm.py @@ -0,0 +1,52 @@ +# coding=utf-8 +# Copyright 2023, 2024 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Tuple + +import torch +import torch.distributed + + +# TODO: Remove the functions once moe_kernel are built for ROCM +def grouped_topk( + hidden_states: torch.Tensor, + gating_output: torch.Tensor, + topk: int, + renormalize: bool, + num_expert_group: int = 0, + topk_group: int = 0, +) -> Tuple[torch.Tensor, torch.Tensor]: + scores = torch.softmax(gating_output, dim=-1) + num_token = scores.shape[0] + group_scores = ( + scores.view(num_token, num_expert_group, -1).max(dim=-1).values + ) # [n, n_group] + group_idx = torch.topk(group_scores, k=topk_group, dim=-1, sorted=False)[ + 1 + ] # [n, top_k_group] + group_mask = torch.zeros_like(group_scores) # [n, n_group] + group_mask.scatter_(1, group_idx, 1) # [n, n_group] + score_mask = ( + group_mask.unsqueeze(-1) + .expand(num_token, num_expert_group, scores.shape[-1] // num_expert_group) + .reshape(num_token, -1) + ) # [n, e] + tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e] + topk_weights, topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False) + + if renormalize: + topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True) + + return topk_weights, topk_ids diff --git a/server/text_generation_server/layers/moe/unquantized.py b/server/text_generation_server/layers/moe/unquantized.py index 8f1d9b3f..d9d62c0e 100644 --- a/server/text_generation_server/layers/moe/unquantized.py +++ b/server/text_generation_server/layers/moe/unquantized.py @@ -6,7 +6,9 @@ import torch.nn as nn from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.utils.weights import UnquantizedWeight, Weights -if SYSTEM != "ipex": +if SYSTEM == "rocm": + from vllm.model_executor.layers.fused_moe import fused_moe +elif SYSTEM != "ipex": from moe_kernels.fused_moe import fused_moe @@ -52,6 +54,17 @@ class UnquantizedSparseMoELayer(nn.Module): ) def forward(self, x: torch.Tensor, *, gating_output: torch.Tensor) -> torch.Tensor: + if SYSTEM == "rocm": + return fused_moe( + x, + self.gate_up_proj, + self.down_proj, + gating_output, + self.topk, + renormalize=self.renormalize, + inplace=True, + ) + return fused_moe( x, w1=self.gate_up_proj, diff --git a/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py b/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py index ac191ec3..88c2cf80 100644 --- a/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py @@ -390,6 +390,7 @@ class DeepseekV2MLP(nn.Module): if ( SYSTEM == "rocm" and self.hidden_act == "silu" + and hidden_states.dtype == torch.float16 and hidden_states.shape[0] == 1 and not self.quantize ): diff --git a/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py b/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py index 758e39aa..df48c6f7 100644 --- a/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py @@ -316,12 +316,17 @@ class LlamaMLP(nn.Module): # TODO: This is a hotfix to be removed & properly refactored. self.quantize = config.quantize + self.hidden_size = config.hidden_size + def forward(self, hidden_states, adapter_data): if ( SYSTEM == "rocm" and self.hidden_act == "silu" + and hidden_states.dtype == torch.float16 and hidden_states.shape[0] == 1 and not self.quantize + and self.hidden_size + != 16384 # TODO: Temporary workaround for `LLMM_Silu` kernel not working with LLama3.1 405B; needs refactoring once fixed. ): out = torch.empty( hidden_states.shape[0], diff --git a/server/text_generation_server/models/custom_modeling/flash_mistral_modeling.py b/server/text_generation_server/models/custom_modeling/flash_mistral_modeling.py index 3e16d371..341a2352 100644 --- a/server/text_generation_server/models/custom_modeling/flash_mistral_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_mistral_modeling.py @@ -303,6 +303,7 @@ class MistralMLP(nn.Module): if ( SYSTEM == "rocm" and self.hidden_act == "silu" + and hidden_states.dtype == torch.float16 and hidden_states.shape[0] == 1 and not self.quantize ): diff --git a/server/text_generation_server/models/flash_causal_lm.py b/server/text_generation_server/models/flash_causal_lm.py index 57582ebc..bc9d44a0 100644 --- a/server/text_generation_server/models/flash_causal_lm.py +++ b/server/text_generation_server/models/flash_causal_lm.py @@ -1125,12 +1125,12 @@ class FlashCausalLM(Model): else: self.kv_cache = [ ( - torch.empty( + torch.zeros( (num_blocks, num_heads, head_size // x, BLOCK_SIZE, x), dtype=dtype, device=device, ), - torch.empty( + torch.zeros( (num_blocks, num_heads, head_size, BLOCK_SIZE), dtype=dtype, device=device, @@ -1320,8 +1320,7 @@ class FlashCausalLM(Model): elif CUDA_GRAPHS is not None: tuning_sequences = CUDA_GRAPHS else: - # For seqlen = 1, we dispatch to LLMM1 kernel. - tuning_sequences = [2, 3, 4, 5, 6, 7] + tuning_sequences = [1, 2, 3, 4, 5, 6, 7] tunableop_filepath = os.path.join( HUGGINGFACE_HUB_CACHE, @@ -1330,7 +1329,11 @@ class FlashCausalLM(Model): log_master( logger.info, - f"PyTorch TunableOp (https://github.com/fxmarty/pytorch/tree/2.3-patched/aten/src/ATen/cuda/tunable) is enabled. The warmup may take several minutes, picking the ROCm optimal matrix multiplication kernel for the target lengths {', '.join([str(seqlen) for seqlen in tuning_sequences])}, with typical 5-8% latency improvement for small sequence lengths. The picked GEMMs are saved in the file {tunableop_filepath}. To disable TunableOp, please launch TGI with `PYTORCH_TUNABLEOP_ENABLED=0`.", + f"PyTorch TunableOp is enabled. The warmup may take several minutes, picking the ROCm optimal matrix multiplication kernel for the target lengths {', '.join([str(seqlen) for seqlen in tuning_sequences])}, with typical 5-8% latency improvement for small sequence lengths. The picked GEMMs are saved in the file {tunableop_filepath}. To disable TunableOp, please launch TGI with `PYTORCH_TUNABLEOP_ENABLED=0`.", + ) + + torch.cuda.tunable.set_filename( + tunableop_filepath, insert_device_ordinal=False ) if os.path.isfile(tunableop_filepath): @@ -1346,7 +1349,8 @@ class FlashCausalLM(Model): log_master(logger.info, f"Warming up TunableOp for seqlen={seqlen}") self.tunableop_warmup(seqlen) torch.cuda.tunable.write_file(tunableop_filepath) - torch.cuda.tunable.tuning_enable(False) + if os.environ.get("PYTORCH_TUNABLEOP_TUNING_AFTER_WARMUP") != "1": + torch.cuda.tunable.tuning_enable(False) else: log_master( logger.info, @@ -1382,6 +1386,7 @@ class FlashCausalLM(Model): cu_seqlen_prefill = torch.tensor( [0, seqlen], device=self.device, dtype=torch.int32 ) + max_s = seqlen seqlen = Seqlen( input_lengths=input_lengths, prefix_lengths=prefix_lens_tensor, @@ -1399,7 +1404,7 @@ class FlashCausalLM(Model): block_tables=None, seqlen=seqlen, slots=slots, - max_s=seqlen, + max_s=max_s, lm_head_indices=None, prefill_cache_indices=None, ) From 90a1d04a2f560df25a2786fcc1f117a05650dd7d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Mon, 30 Sep 2024 11:14:32 +0200 Subject: [PATCH 21/33] Add support for GPTQ-quantized MoE models using MoE Marlin (#2557) This change add support for MoE models that use GPTQ quantization. Currently only models with the following properties are supported: - No `desc_act` with tensor parallelism, unless `group_size=-1`. - No asymmetric quantization. - No AWQ. --- flake.lock | 15 +- flake.nix | 2 +- .../test_flash_mixtral_gptq.json | 89 +++++ .../test_flash_mixtral_gptq_all_params.json | 89 +++++ .../test_flash_mixtral_gptq_load.json | 358 ++++++++++++++++++ .../models/test_flash_mixtral_gptq.py | 60 +++ server/poetry.lock | 24 +- server/pyproject.toml | 8 +- .../layers/moe/__init__.py | 30 +- .../layers/moe/gptq_marlin.py | 225 +++++++++++ 10 files changed, 870 insertions(+), 30 deletions(-) create mode 100644 integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq.json create mode 100644 integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq_all_params.json create mode 100644 integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq_load.json create mode 100644 integration-tests/models/test_flash_mixtral_gptq.py create mode 100644 server/text_generation_server/layers/moe/gptq_marlin.py diff --git a/flake.lock b/flake.lock index 14e23b77..934ec3d0 100644 --- a/flake.lock +++ b/flake.lock @@ -978,16 +978,17 @@ "nixpkgs": "nixpkgs_6" }, "locked": { - "lastModified": 1727353315, - "narHash": "sha256-yZovq/6P8Z199r7e+NbTXyCqRgK6grRkLxYHWHnHckI=", - "owner": "huggingface", - "repo": "text-generation-inference-nix", - "rev": "1d42c4125ebafb87707118168995675cc5050b9d", + "lastModified": 1727681169, + "narHash": "sha256-ssoGLmRoyQ+8d5utr5fwLox+/eQ789iVtUj1xrukIC0=", + "owner": "danieldk", + "repo": "tgi-nix", + "rev": "88ba4cfe378d8fb08222f640ff2b62ac0ee6569d", "type": "github" }, "original": { - "owner": "huggingface", - "repo": "text-generation-inference-nix", + "owner": "danieldk", + "ref": "moe-kernels-0.4.0", + "repo": "tgi-nix", "type": "github" } } diff --git a/flake.nix b/flake.nix index 1b396453..ed2dedc9 100644 --- a/flake.nix +++ b/flake.nix @@ -5,7 +5,7 @@ inputs.nixpkgs.follows = "tgi-nix/nixpkgs"; }; nix-filter.url = "github:numtide/nix-filter"; - tgi-nix.url = "github:huggingface/text-generation-inference-nix"; + tgi-nix.url = "github:danieldk/tgi-nix/moe-kernels-0.4.0"; nixpkgs.follows = "tgi-nix/nixpkgs"; flake-utils.url = "github:numtide/flake-utils"; rust-overlay = { diff --git a/integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq.json b/integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq.json new file mode 100644 index 00000000..993bdadd --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq.json @@ -0,0 +1,89 @@ +{ + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1, + "logprob": null, + "text": "" + }, + { + "id": 3735, + "logprob": -11.0078125, + "text": "Test" + }, + { + "id": 2159, + "logprob": -13.59375, + "text": "request" + } + ], + "seed": null, + "tokens": [ + { + "id": 13, + "logprob": -1.7089844, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.68847656, + "special": false, + "text": "\n" + }, + { + "id": 28771, + "logprob": -1.9394531, + "special": false, + "text": "#" + }, + { + "id": 3735, + "logprob": -2.8808594, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.37280273, + "special": false, + "text": " request" + }, + { + "id": 13, + "logprob": -0.26098633, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.0017137527, + "special": false, + "text": "\n" + }, + { + "id": 1064, + "logprob": -2.2695312, + "special": false, + "text": "##" + }, + { + "id": 3735, + "logprob": -1.9238281, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.48828125, + "special": false, + "text": " request" + } + ], + "top_tokens": null + }, + "generated_text": "\n\n# Test request\n\n## Test request" +} diff --git a/integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq_all_params.json b/integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq_all_params.json new file mode 100644 index 00000000..94411eef --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq_all_params.json @@ -0,0 +1,89 @@ +{ + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1, + "logprob": null, + "text": "" + }, + { + "id": 3735, + "logprob": -11.0078125, + "text": "Test" + }, + { + "id": 2159, + "logprob": -13.59375, + "text": "request" + } + ], + "seed": 0, + "tokens": [ + { + "id": 13, + "logprob": -0.34838867, + "special": false, + "text": "\n" + }, + { + "id": 13940, + "logprob": -0.38916016, + "special": false, + "text": "``" + }, + { + "id": 28832, + "logprob": 0.0, + "special": false, + "text": "`" + }, + { + "id": 3371, + "logprob": -1.2529297, + "special": false, + "text": "json" + }, + { + "id": 13, + "logprob": 0.0, + "special": false, + "text": "\n" + }, + { + "id": 28751, + "logprob": 0.0, + "special": false, + "text": "{" + }, + { + "id": 13, + "logprob": 0.0, + "special": false, + "text": "\n" + }, + { + "id": 2287, + "logprob": 0.0, + "special": false, + "text": " " + }, + { + "id": 345, + "logprob": 0.0, + "special": false, + "text": " \"" + }, + { + "id": 3134, + "logprob": -0.640625, + "special": false, + "text": "request" + } + ], + "top_tokens": null + }, + "generated_text": "Test request\n```json\n{\n \"request" +} diff --git a/integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq_load.json b/integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq_load.json new file mode 100644 index 00000000..19e306a3 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq_load.json @@ -0,0 +1,358 @@ +[ + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1, + "logprob": null, + "text": "" + }, + { + "id": 3735, + "logprob": -11.0078125, + "text": "Test" + }, + { + "id": 2159, + "logprob": -13.59375, + "text": "request" + } + ], + "seed": null, + "tokens": [ + { + "id": 13, + "logprob": -1.7089844, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.68847656, + "special": false, + "text": "\n" + }, + { + "id": 28771, + "logprob": -1.9394531, + "special": false, + "text": "#" + }, + { + "id": 3735, + "logprob": -2.8828125, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.37329102, + "special": false, + "text": " request" + }, + { + "id": 13, + "logprob": -0.2602539, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.0017185211, + "special": false, + "text": "\n" + }, + { + "id": 1064, + "logprob": -2.2753906, + "special": false, + "text": "##" + }, + { + "id": 3735, + "logprob": -1.9316406, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.48217773, + "special": false, + "text": " request" + } + ], + "top_tokens": null + }, + "generated_text": "\n\n# Test request\n\n## Test request" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1, + "logprob": null, + "text": "" + }, + { + "id": 3735, + "logprob": -11.0078125, + "text": "Test" + }, + { + "id": 2159, + "logprob": -13.59375, + "text": "request" + } + ], + "seed": null, + "tokens": [ + { + "id": 13, + "logprob": -1.7089844, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.68847656, + "special": false, + "text": "\n" + }, + { + "id": 28771, + "logprob": -1.9394531, + "special": false, + "text": "#" + }, + { + "id": 3735, + "logprob": -2.8828125, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.37329102, + "special": false, + "text": " request" + }, + { + "id": 13, + "logprob": -0.2602539, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.0017185211, + "special": false, + "text": "\n" + }, + { + "id": 1064, + "logprob": -2.2753906, + "special": false, + "text": "##" + }, + { + "id": 3735, + "logprob": -1.9316406, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.48217773, + "special": false, + "text": " request" + } + ], + "top_tokens": null + }, + "generated_text": "\n\n# Test request\n\n## Test request" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1, + "logprob": null, + "text": "" + }, + { + "id": 3735, + "logprob": -11.0078125, + "text": "Test" + }, + { + "id": 2159, + "logprob": -13.59375, + "text": "request" + } + ], + "seed": null, + "tokens": [ + { + "id": 13, + "logprob": -1.7089844, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.68847656, + "special": false, + "text": "\n" + }, + { + "id": 28771, + "logprob": -1.9394531, + "special": false, + "text": "#" + }, + { + "id": 3735, + "logprob": -2.8828125, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.37329102, + "special": false, + "text": " request" + }, + { + "id": 13, + "logprob": -0.2602539, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.0017185211, + "special": false, + "text": "\n" + }, + { + "id": 1064, + "logprob": -2.2753906, + "special": false, + "text": "##" + }, + { + "id": 3735, + "logprob": -1.9316406, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.48217773, + "special": false, + "text": " request" + } + ], + "top_tokens": null + }, + "generated_text": "\n\n# Test request\n\n## Test request" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1, + "logprob": null, + "text": "" + }, + { + "id": 3735, + "logprob": -11.0078125, + "text": "Test" + }, + { + "id": 2159, + "logprob": -13.59375, + "text": "request" + } + ], + "seed": null, + "tokens": [ + { + "id": 13, + "logprob": -1.7089844, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.68847656, + "special": false, + "text": "\n" + }, + { + "id": 28771, + "logprob": -1.9394531, + "special": false, + "text": "#" + }, + { + "id": 3735, + "logprob": -2.8828125, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.37329102, + "special": false, + "text": " request" + }, + { + "id": 13, + "logprob": -0.2602539, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.0017185211, + "special": false, + "text": "\n" + }, + { + "id": 1064, + "logprob": -2.2753906, + "special": false, + "text": "##" + }, + { + "id": 3735, + "logprob": -1.9316406, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.48217773, + "special": false, + "text": " request" + } + ], + "top_tokens": null + }, + "generated_text": "\n\n# Test request\n\n## Test request" + } +] diff --git a/integration-tests/models/test_flash_mixtral_gptq.py b/integration-tests/models/test_flash_mixtral_gptq.py new file mode 100644 index 00000000..eb880628 --- /dev/null +++ b/integration-tests/models/test_flash_mixtral_gptq.py @@ -0,0 +1,60 @@ +import pytest + + +@pytest.fixture(scope="module") +def flash_mixtral_gptq_handle(launcher): + with launcher("TheBloke/Mixtral-8x7B-Instruct-v0.1-GPTQ", num_shard=2) as handle: + yield handle + + +@pytest.fixture(scope="module") +async def flash_mixtral_gptq(flash_mixtral_gptq_handle): + await flash_mixtral_gptq_handle.health(300) + return flash_mixtral_gptq_handle.client + + +@pytest.mark.asyncio +async def test_flash_mixtral_gptq(flash_mixtral_gptq, response_snapshot): + response = await flash_mixtral_gptq.generate( + "Test request", max_new_tokens=10, decoder_input_details=True + ) + + assert response == response_snapshot + + +@pytest.mark.asyncio +async def test_flash_mixtral_gptq_all_params(flash_mixtral_gptq, response_snapshot): + response = await flash_mixtral_gptq.generate( + "Test request", + max_new_tokens=10, + repetition_penalty=1.2, + return_full_text=True, + stop_sequences=["test"], + temperature=0.5, + top_p=0.9, + top_k=10, + truncate=5, + typical_p=0.9, + watermark=True, + decoder_input_details=True, + seed=0, + ) + + assert response.details.generated_tokens == 10 + assert response == response_snapshot + + +@pytest.mark.asyncio +async def test_flash_mixtral_gptq_load( + flash_mixtral_gptq, generate_load, response_snapshot +): + responses = await generate_load( + flash_mixtral_gptq, "Test request", max_new_tokens=10, n=4 + ) + + assert len(responses) == 4 + assert all( + [r.generated_text == responses[0].generated_text for r in responses] + ), f"{[r.generated_text for r in responses]}" + + assert responses == response_snapshot diff --git a/server/poetry.lock b/server/poetry.lock index 8d0e31f8..e1b0b3d5 100644 --- a/server/poetry.lock +++ b/server/poetry.lock @@ -1244,12 +1244,12 @@ files = [ [[package]] name = "moe-kernels" -version = "0.3.1" +version = "0.4.0" description = "MoE kernels" optional = true python-versions = ">=3.7" files = [ - {file = "moe_kernels-0.3.1+cu123torch2.4-cp310-cp310-linux_x86_64.whl", hash = "sha256:b679984a53807127f25af053ec0a2c07dec97ec196f76363a8bfdc3fbb3d1a9a"}, + {file = "moe_kernels-0.4.0+cu123torch2.4-cp310-cp310-linux_x86_64.whl", hash = "sha256:3fc0475bb3b9c09bbf08f6f6e9767d10eaba55b558f67a605fe70ae0cbb5e6a4"}, ] [package.dependencies] @@ -1259,16 +1259,16 @@ triton = "*" [package.source] type = "url" -url = "https://github.com/danieldk/moe-kernels/releases/download/v0.3.1/moe_kernels-0.3.1+cu123torch2.4-cp310-cp310-linux_x86_64.whl" +url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp310-cp310-linux_x86_64.whl" [[package]] name = "moe-kernels" -version = "0.3.1" +version = "0.4.0" description = "MoE kernels" optional = true python-versions = ">=3.7" files = [ - {file = "moe_kernels-0.3.1+cu123torch2.4-cp311-cp311-linux_x86_64.whl", hash = "sha256:29684f81495f6e032085295c86d160022f03d5d9a9981446f311ca94fbbbc2cd"}, + {file = "moe_kernels-0.4.0+cu123torch2.4-cp311-cp311-linux_x86_64.whl", hash = "sha256:8ca72a064ceb84a23a3437cc6e6363907ad41588877f6acb1febc010fc7beb22"}, ] [package.dependencies] @@ -1278,16 +1278,16 @@ triton = "*" [package.source] type = "url" -url = "https://github.com/danieldk/moe-kernels/releases/download/v0.3.1/moe_kernels-0.3.1+cu123torch2.4-cp311-cp311-linux_x86_64.whl" +url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp311-cp311-linux_x86_64.whl" [[package]] name = "moe-kernels" -version = "0.3.1" +version = "0.4.0" description = "MoE kernels" optional = true python-versions = ">=3.7" files = [ - {file = "moe_kernels-0.3.1+cu123torch2.4-cp312-cp312-linux_x86_64.whl", hash = "sha256:9dfdbef48b5b7e97912aaa7420b1b694876a3281f5edfe7d4ca9a69e1f48bff2"}, + {file = "moe_kernels-0.4.0+cu123torch2.4-cp312-cp312-linux_x86_64.whl", hash = "sha256:d302d6b16bb4905b2312dc68da6a6f51e87d0cd3c4bf1f23d995501162399a8e"}, ] [package.dependencies] @@ -1297,16 +1297,16 @@ triton = "*" [package.source] type = "url" -url = "https://github.com/danieldk/moe-kernels/releases/download/v0.3.1/moe_kernels-0.3.1+cu123torch2.4-cp312-cp312-linux_x86_64.whl" +url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp312-cp312-linux_x86_64.whl" [[package]] name = "moe-kernels" -version = "0.3.1" +version = "0.4.0" description = "MoE kernels" optional = true python-versions = ">=3.7" files = [ - {file = "moe_kernels-0.3.1+cu123torch2.4-cp39-cp39-linux_x86_64.whl", hash = "sha256:f7d0fc8f191c905a668f3d2eb889999ee988048d08bfd7062d64bca3876588ae"}, + {file = "moe_kernels-0.4.0+cu123torch2.4-cp39-cp39-linux_x86_64.whl", hash = "sha256:6aee3e723efa5113c338b40e6cb20fa62da6c442c65c1a6cc97751d34158a93a"}, ] [package.dependencies] @@ -1316,7 +1316,7 @@ triton = "*" [package.source] type = "url" -url = "https://github.com/danieldk/moe-kernels/releases/download/v0.3.1/moe_kernels-0.3.1+cu123torch2.4-cp39-cp39-linux_x86_64.whl" +url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp39-cp39-linux_x86_64.whl" [[package]] name = "mpmath" diff --git a/server/pyproject.toml b/server/pyproject.toml index 6bdd2385..9be06fa5 100644 --- a/server/pyproject.toml +++ b/server/pyproject.toml @@ -47,10 +47,10 @@ marlin-kernels = [ { url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.2.0/marlin_kernels-0.2.0+cu123torch2.4-cp312-cp312-linux_x86_64.whl", python = "~3.12", optional = true }, ] moe-kernels = [ - { url = "https://github.com/danieldk/moe-kernels/releases/download/v0.3.1/moe_kernels-0.3.1+cu123torch2.4-cp39-cp39-linux_x86_64.whl", python = "~3.9", optional = true }, - { url = "https://github.com/danieldk/moe-kernels/releases/download/v0.3.1/moe_kernels-0.3.1+cu123torch2.4-cp310-cp310-linux_x86_64.whl", python = "~3.10", optional = true }, - { url = "https://github.com/danieldk/moe-kernels/releases/download/v0.3.1/moe_kernels-0.3.1+cu123torch2.4-cp311-cp311-linux_x86_64.whl", python = "~3.11", optional = true }, - { url = "https://github.com/danieldk/moe-kernels/releases/download/v0.3.1/moe_kernels-0.3.1+cu123torch2.4-cp312-cp312-linux_x86_64.whl", python = "~3.12", optional = true }, + { url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp39-cp39-linux_x86_64.whl", python = "~3.9", optional = true }, + { url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp310-cp310-linux_x86_64.whl", python = "~3.10", optional = true }, + { url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp311-cp311-linux_x86_64.whl", python = "~3.11", optional = true }, + { url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp312-cp312-linux_x86_64.whl", python = "~3.12", optional = true }, ] rich = "^13.7.1" diff --git a/server/text_generation_server/layers/moe/__init__.py b/server/text_generation_server/layers/moe/__init__.py index 7e8ac2c8..ca71ebab 100644 --- a/server/text_generation_server/layers/moe/__init__.py +++ b/server/text_generation_server/layers/moe/__init__.py @@ -10,13 +10,18 @@ from text_generation_server.layers import ( TensorParallelRowLinear, ) from text_generation_server.layers.fp8 import HybridFP8UnquantLoader +from text_generation_server.layers.marlin import GPTQMarlinWeightsLoader +from text_generation_server.layers.moe.gptq_marlin import ( + GPTQMarlinSparseMoELayer, + can_use_marlin_moe_gemm, +) from text_generation_server.layers.moe.unquantized import UnquantizedSparseMoELayer from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.utils.log import log_once from text_generation_server.utils.weights import ( DefaultWeightsLoader, - UnquantizedWeight, Weights, + UnquantizedWeight, ) if SYSTEM == "rocm": @@ -205,14 +210,18 @@ class SparseMoELayer(nn.Module): and isinstance(weights.loader.weight_class, UnquantizedWeight) ) or isinstance(weights.loader, HybridFP8UnquantLoader): cls = UnquantizedSparseMoELayer - # Once we wire up GPTQ-Marlin MoE: - # elif isinstance(weights.loader, GPTQMarlinWeightsLoader) and weights.loader.sym: - # cls = GPTQMarlinSparseMoELayer + elif isinstance(weights.loader, GPTQMarlinWeightsLoader) and weights.loader.sym: + cls = GPTQMarlinSparseMoELayer else: raise ValueError( f"Unsupported weights loader: {weights.loader}, sparse MoE is only supported for unquantized and GPTQ weights" ) + log_once( + logger.info, + "Using MoE layer wih fused gemm", + ) + self.moe = cls( n_expert_group=n_expert_group, n_experts=n_experts, @@ -237,6 +246,15 @@ class SparseMoELayer(nn.Module): and isinstance(weights.loader.weight_class, UnquantizedWeight) ) or isinstance(weights.loader, HybridFP8UnquantLoader) - # Once we wire up GPTQ-Marlin MoE: - # or isinstance(weights.loader, GPTQMarlinWeightsLoader) + or ( + isinstance(weights.loader, GPTQMarlinWeightsLoader) + and can_use_marlin_moe_gemm( + desc_act=weights.loader.desc_act, + groupsize=weights.loader.groupsize, + quant_method=weights.loader.quant_method, + quantize=weights.loader.quantize, + sym=weights.loader.sym, + use_tp=weights.process_group.size() > 1, + ) + ) ) diff --git a/server/text_generation_server/layers/moe/gptq_marlin.py b/server/text_generation_server/layers/moe/gptq_marlin.py new file mode 100644 index 00000000..3fc06cb2 --- /dev/null +++ b/server/text_generation_server/layers/moe/gptq_marlin.py @@ -0,0 +1,225 @@ +from dataclasses import dataclass +from typing import List, Optional + +import torch +import torch.nn as nn + +from text_generation_server.utils.import_utils import SYSTEM +from text_generation_server.utils.weights import Weights +from text_generation_server.layers.marlin.gptq import ( + GPTQMarlinWeight, + GPTQMarlinWeightsLoader, +) + +if SYSTEM == "cuda": + from moe_kernels.fused_marlin_moe import fused_marlin_moe +else: + fused_marlin_moe = None + + +try: + major, _minor = torch.cuda.get_device_capability() + has_sm_8_0 = major >= 8 +except Exception: + has_sm_8_0 = False + + +def can_use_marlin_moe_gemm( + *, + desc_act: bool, + groupsize: int, + quant_method: str, + quantize: str, + sym: bool, + use_tp: bool, +): + return ( + SYSTEM == "cuda" + and fused_marlin_moe is not None + and has_sm_8_0 + and quantize == "gptq" + and quant_method == "gptq" + and sym + and is_full_k(desc_act, groupsize, use_tp) + ) + + +def is_full_k(desc_act: bool, groupsize: int, use_tp: bool): + if groupsize == -1: + return True + return not (desc_act and use_tp) + + +@dataclass +class GPTQMarlinMoEWeight: + qweight: torch.Tensor + qzeros: torch.Tensor + scales: torch.Tensor + g_idx: torch.Tensor + perm: torch.Tensor + is_full_k: bool + + +class GPTQMarlinSparseMoELayer(nn.Module): + """ + MoE layer that uses a fused GPTQ-Marlin kernel. + """ + + def __init__( + self, + *, + n_expert_group: Optional[int], + n_experts: int, + prefix: str, + renormalize: bool, + topk: int, + topk_group: Optional[int], + weights: Weights, + gate_proj_name: str = "gate_proj", + up_proj_name: str = "up_proj", + down_proj_name: str = "down_proj", + ): + super().__init__() + + if not ( + isinstance(weights.loader, GPTQMarlinWeightsLoader) and weights.loader.sym + ): + raise ValueError( + f"Unsupported weights loader: {weights.loader}, only GPTQMarlinWeightsLoader with symmetric quantization is supported" + ) + + assert (n_expert_group is None) == ( + topk_group is None + ), "n_expert_group and topk_group must both be None or have some value" + + self.n_expert_group = n_expert_group + self.topk = topk + self.topk_group = topk_group + self.renormalize = renormalize + + self.gate_up_proj = _load_expert_multi_weights_col( + prefix=prefix, + n_experts=n_experts, + names=[gate_proj_name, up_proj_name], + weights=weights, + ) + + self.down_proj = _load_expert_weights_row( + prefix=prefix, n_experts=n_experts, name=down_proj_name, weights=weights + ) + + self.bits = weights.loader.bits + + def forward(self, x: torch.Tensor, *, gating_output: torch.Tensor) -> torch.Tensor: + return fused_marlin_moe( + x, + w1=self.gate_up_proj.qweight, + w2=self.down_proj.qweight, + g_idx1=self.gate_up_proj.g_idx, + g_idx2=self.down_proj.g_idx, + perm1=self.gate_up_proj.perm, + perm2=self.down_proj.perm, + w1_scale=self.gate_up_proj.scales, + w2_scale=self.down_proj.scales, + is_full_k1=self.gate_up_proj.is_full_k, + is_full_k2=self.down_proj.is_full_k, + gating_output=gating_output, + topk=self.topk, + renormalize=self.renormalize, + use_grouped_topk=self.n_expert_group is not None, + num_expert_group=self.n_expert_group, + topk_group=self.topk_group, + num_bits=self.bits, + ) + + +def _load_expert_multi_weights_col( + *, + prefix: str, + n_experts: int, + names: List[str], + weights: Weights, +) -> GPTQMarlinMoEWeight: + moe_weight = None + for i in range(n_experts): + weight = weights.get_multi_weights_col( + [f"{prefix}.{i}.{name}" for name in names], 0 + ) + assert isinstance(weight, GPTQMarlinWeight) + moe_weight = _pack_weight( + n_experts=n_experts, expert=i, weight=weight, moe_weight=moe_weight + ) + assert moe_weight is not None + return moe_weight + + +def _load_expert_weights_row( + *, + prefix: str, + n_experts: int, + name: str, + weights: Weights, +) -> GPTQMarlinMoEWeight: + moe_weight = None + for i in range(n_experts): + weight = weights.get_weights_row( + f"{prefix}.{i}.{name}", + ) + assert isinstance(weight, GPTQMarlinWeight) + moe_weight = _pack_weight( + n_experts=n_experts, expert=i, weight=weight, moe_weight=moe_weight + ) + assert moe_weight is not None + return moe_weight + + +def _pack_weight( + *, + n_experts: int, + expert: int, + moe_weight: Optional[GPTQMarlinMoEWeight], + weight: GPTQMarlinWeight, +) -> GPTQMarlinMoEWeight: + if moe_weight is None: + qweight = torch.empty( + (n_experts,) + weight.qweight.shape, + dtype=weight.qweight.dtype, + device=weight.qweight.device, + ) + qzeros = torch.empty( + (n_experts,) + weight.qzeros.shape, + dtype=weight.qzeros.dtype, + device=weight.qzeros.device, + ) + scales = torch.empty( + (n_experts,) + weight.scales.shape, + dtype=weight.scales.dtype, + device=weight.scales.device, + ) + g_idx = torch.empty( + (n_experts,) + weight.g_idx.shape, + dtype=weight.g_idx.dtype, + device=weight.g_idx.device, + ) + perm = torch.empty( + (n_experts,) + weight.perm.shape, + dtype=weight.perm.dtype, + device=weight.perm.device, + ) + + moe_weight = GPTQMarlinMoEWeight( + qweight=qweight, + qzeros=qzeros, + scales=scales, + g_idx=g_idx, + perm=perm, + is_full_k=weight.is_full_k, + ) + + moe_weight.qweight[expert] = weight.qweight + moe_weight.qzeros[expert] = weight.qzeros + moe_weight.scales[expert] = weight.scales + moe_weight.g_idx[expert] = weight.g_idx + moe_weight.perm[expert] = weight.perm + + return moe_weight From 93a7042d7e7b40ef204b8752dc817c6fe192a825 Mon Sep 17 00:00:00 2001 From: drbh Date: Mon, 30 Sep 2024 11:15:09 +0200 Subject: [PATCH 22/33] feat: support phi3.5 moe (#2479) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * feat: support phi3.5 moe model loading * fix: prefer llama base model and improve rotary logic * feat: return reasonable generation and add integration test * fix: run lint and update docs * fix: rerun lint for openapi docs * fix: prefer do_sample false unless temp is set by user, and update chat tests * fix: small typo adjustments * fix: consolidate long rope paths * fix: revert greedy by default and test changes * Vendor configuration so that we don't have to `trust_remote_code` * Use SparseMoELayer * Add support for dense MoE * Some type annotations * Add the usual model tests * Ruff. --------- Co-authored-by: Daniël de Kok Co-authored-by: Nicolas Patry --- docs/source/supported_models.md | 1 + .../test_flash_phi35_moe.json | 109 +++++ .../test_flash_phi35_moe_all_params.json | 99 ++++ .../test_flash_phi35_moe_load.json | 438 ++++++++++++++++++ .../models/test_flash_phi35_moe.py | 75 +++ integration-tests/models/test_tools_llama.py | 6 +- router/src/config.rs | 1 + .../text_generation_server/layers/rotary.py | 73 ++- .../text_generation_server/models/__init__.py | 31 ++ .../custom_modeling/flash_llama_modeling.py | 94 +++- .../custom_modeling/flash_phi_moe_modeling.py | 254 ++++++++++ 11 files changed, 1164 insertions(+), 17 deletions(-) create mode 100644 integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe.json create mode 100644 integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe_all_params.json create mode 100644 integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe_load.json create mode 100644 integration-tests/models/test_flash_phi35_moe.py create mode 100644 server/text_generation_server/models/custom_modeling/flash_phi_moe_modeling.py diff --git a/docs/source/supported_models.md b/docs/source/supported_models.md index 832f88ef..3fa78ee9 100644 --- a/docs/source/supported_models.md +++ b/docs/source/supported_models.md @@ -20,6 +20,7 @@ Text Generation Inference enables serving optimized models on specific hardware - [Mixtral](https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1) - [Gpt Bigcode](https://huggingface.co/bigcode/gpt_bigcode-santacoder) - [Phi](https://huggingface.co/microsoft/phi-1_5) +- [PhiMoe](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct) - [Baichuan](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat) - [Falcon](https://huggingface.co/tiiuae/falcon-7b-instruct) - [StarCoder 2](https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1) diff --git a/integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe.json b/integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe.json new file mode 100644 index 00000000..0d6dca31 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe.json @@ -0,0 +1,109 @@ +{ + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1724, + "logprob": null, + "text": "What" + }, + { + "id": 338, + "logprob": -0.7133789, + "text": "is" + }, + { + "id": 16030, + "logprob": -13.9296875, + "text": "gradient" + }, + { + "id": 26815, + "logprob": -0.048919678, + "text": "descent" + }, + { + "id": 29973, + "logprob": -3.0078125, + "text": "?" + }, + { + "id": 13, + "logprob": -2.8105469, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.84521484, + "text": "\n" + } + ], + "seed": null, + "tokens": [ + { + "id": 25584, + "logprob": -0.017028809, + "special": false, + "text": "Grad" + }, + { + "id": 993, + "logprob": -0.0027313232, + "special": false, + "text": "ient" + }, + { + "id": 26815, + "logprob": -0.023254395, + "special": false, + "text": " descent" + }, + { + "id": 338, + "logprob": -2.0623207e-05, + "special": false, + "text": " is" + }, + { + "id": 263, + "logprob": -0.5361328, + "special": false, + "text": " a" + }, + { + "id": 937, + "logprob": -0.17578125, + "special": false, + "text": " first" + }, + { + "id": 29899, + "logprob": 0.0, + "special": false, + "text": "-" + }, + { + "id": 2098, + "logprob": -0.00011539459, + "special": false, + "text": "order" + }, + { + "id": 13883, + "logprob": -0.47436523, + "special": false, + "text": " optimization" + }, + { + "id": 5687, + "logprob": -0.00027680397, + "special": false, + "text": " algorithm" + } + ], + "top_tokens": null + }, + "generated_text": "Gradient descent is a first-order optimization algorithm" +} diff --git a/integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe_all_params.json b/integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe_all_params.json new file mode 100644 index 00000000..38b80335 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe_all_params.json @@ -0,0 +1,99 @@ +{ + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 16030, + "logprob": null, + "text": "gradient" + }, + { + "id": 26815, + "logprob": -6.4960938, + "text": "descent" + }, + { + "id": 29973, + "logprob": -5.1484375, + "text": "?" + }, + { + "id": 13, + "logprob": -4.0351562, + "text": "\n" + }, + { + "id": 13, + "logprob": -5.2265625, + "text": "\n" + } + ], + "seed": 0, + "tokens": [ + { + "id": 10994, + "logprob": -1.1542969, + "special": false, + "text": "Hello" + }, + { + "id": 29991, + "logprob": 0.0, + "special": false, + "text": "!" + }, + { + "id": 739, + "logprob": 0.0, + "special": false, + "text": " It" + }, + { + "id": 2444, + "logprob": -0.42260742, + "special": false, + "text": " seems" + }, + { + "id": 366, + "logprob": 0.0, + "special": false, + "text": " you" + }, + { + "id": 29915, + "logprob": 0.0, + "special": false, + "text": "'" + }, + { + "id": 276, + "logprob": -0.9838867, + "special": false, + "text": "re" + }, + { + "id": 3211, + "logprob": 0.0, + "special": false, + "text": " address" + }, + { + "id": 292, + "logprob": 0.0, + "special": false, + "text": "ing" + }, + { + "id": 263, + "logprob": -0.15124512, + "special": false, + "text": " a" + } + ], + "top_tokens": null + }, + "generated_text": "What is gradient descent?\n\nHello! It seems you're addressing a" +} diff --git a/integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe_load.json b/integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe_load.json new file mode 100644 index 00000000..f1f81152 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe_load.json @@ -0,0 +1,438 @@ +[ + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1724, + "logprob": null, + "text": "What" + }, + { + "id": 338, + "logprob": -0.7133789, + "text": "is" + }, + { + "id": 16030, + "logprob": -13.9296875, + "text": "gradient" + }, + { + "id": 26815, + "logprob": -0.048919678, + "text": "descent" + }, + { + "id": 29973, + "logprob": -3.0078125, + "text": "?" + }, + { + "id": 13, + "logprob": -2.8105469, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.84521484, + "text": "\n" + } + ], + "seed": null, + "tokens": [ + { + "id": 25584, + "logprob": -0.017028809, + "special": false, + "text": "Grad" + }, + { + "id": 993, + "logprob": -0.0028476715, + "special": false, + "text": "ient" + }, + { + "id": 26815, + "logprob": -0.023971558, + "special": false, + "text": " descent" + }, + { + "id": 338, + "logprob": -2.0384789e-05, + "special": false, + "text": " is" + }, + { + "id": 263, + "logprob": -0.5229492, + "special": false, + "text": " a" + }, + { + "id": 937, + "logprob": -0.17602539, + "special": false, + "text": " first" + }, + { + "id": 29899, + "logprob": 0.0, + "special": false, + "text": "-" + }, + { + "id": 2098, + "logprob": -0.000116467476, + "special": false, + "text": "order" + }, + { + "id": 13883, + "logprob": -0.47436523, + "special": false, + "text": " optimization" + }, + { + "id": 5687, + "logprob": -0.00027871132, + "special": false, + "text": " algorithm" + } + ], + "top_tokens": null + }, + "generated_text": "Gradient descent is a first-order optimization algorithm" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1724, + "logprob": null, + "text": "What" + }, + { + "id": 338, + "logprob": -0.7128906, + "text": "is" + }, + { + "id": 16030, + "logprob": -13.9375, + "text": "gradient" + }, + { + "id": 26815, + "logprob": -0.05053711, + "text": "descent" + }, + { + "id": 29973, + "logprob": -3.0058594, + "text": "?" + }, + { + "id": 13, + "logprob": -2.8242188, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.84521484, + "text": "\n" + } + ], + "seed": null, + "tokens": [ + { + "id": 25584, + "logprob": -0.018859863, + "special": false, + "text": "Grad" + }, + { + "id": 993, + "logprob": -0.002822876, + "special": false, + "text": "ient" + }, + { + "id": 26815, + "logprob": -0.023254395, + "special": false, + "text": " descent" + }, + { + "id": 338, + "logprob": -2.0384789e-05, + "special": false, + "text": " is" + }, + { + "id": 263, + "logprob": -0.5229492, + "special": false, + "text": " a" + }, + { + "id": 937, + "logprob": -0.17126465, + "special": false, + "text": " first" + }, + { + "id": 29899, + "logprob": 0.0, + "special": false, + "text": "-" + }, + { + "id": 2098, + "logprob": -0.0001155138, + "special": false, + "text": "order" + }, + { + "id": 13883, + "logprob": -0.47436523, + "special": false, + "text": " optimization" + }, + { + "id": 5687, + "logprob": -0.00027036667, + "special": false, + "text": " algorithm" + } + ], + "top_tokens": null + }, + "generated_text": "Gradient descent is a first-order optimization algorithm" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1724, + "logprob": null, + "text": "What" + }, + { + "id": 338, + "logprob": -0.71484375, + "text": "is" + }, + { + "id": 16030, + "logprob": -13.9375, + "text": "gradient" + }, + { + "id": 26815, + "logprob": -0.049346924, + "text": "descent" + }, + { + "id": 29973, + "logprob": -3.0078125, + "text": "?" + }, + { + "id": 13, + "logprob": -2.8242188, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.86328125, + "text": "\n" + } + ], + "seed": null, + "tokens": [ + { + "id": 25584, + "logprob": -0.017196655, + "special": false, + "text": "Grad" + }, + { + "id": 993, + "logprob": -0.0028438568, + "special": false, + "text": "ient" + }, + { + "id": 26815, + "logprob": -0.023254395, + "special": false, + "text": " descent" + }, + { + "id": 338, + "logprob": -2.026558e-05, + "special": false, + "text": " is" + }, + { + "id": 263, + "logprob": -0.5229492, + "special": false, + "text": " a" + }, + { + "id": 937, + "logprob": -0.17602539, + "special": false, + "text": " first" + }, + { + "id": 29899, + "logprob": 0.0, + "special": false, + "text": "-" + }, + { + "id": 2098, + "logprob": -0.00011622906, + "special": false, + "text": "order" + }, + { + "id": 13883, + "logprob": -0.48608398, + "special": false, + "text": " optimization" + }, + { + "id": 5687, + "logprob": -0.00027894974, + "special": false, + "text": " algorithm" + } + ], + "top_tokens": null + }, + "generated_text": "Gradient descent is a first-order optimization algorithm" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1724, + "logprob": null, + "text": "What" + }, + { + "id": 338, + "logprob": -0.7192383, + "text": "is" + }, + { + "id": 16030, + "logprob": -13.9375, + "text": "gradient" + }, + { + "id": 26815, + "logprob": -0.050445557, + "text": "descent" + }, + { + "id": 29973, + "logprob": -3.0078125, + "text": "?" + }, + { + "id": 13, + "logprob": -2.8242188, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.8276367, + "text": "\n" + } + ], + "seed": null, + "tokens": [ + { + "id": 25584, + "logprob": -0.01727295, + "special": false, + "text": "Grad" + }, + { + "id": 993, + "logprob": -0.0027542114, + "special": false, + "text": "ient" + }, + { + "id": 26815, + "logprob": -0.023254395, + "special": false, + "text": " descent" + }, + { + "id": 338, + "logprob": -2.0384789e-05, + "special": false, + "text": " is" + }, + { + "id": 263, + "logprob": -0.5229492, + "special": false, + "text": " a" + }, + { + "id": 937, + "logprob": -0.17126465, + "special": false, + "text": " first" + }, + { + "id": 29899, + "logprob": 0.0, + "special": false, + "text": "-" + }, + { + "id": 2098, + "logprob": -0.00011301041, + "special": false, + "text": "order" + }, + { + "id": 13883, + "logprob": -0.48608398, + "special": false, + "text": " optimization" + }, + { + "id": 5687, + "logprob": -0.00027894974, + "special": false, + "text": " algorithm" + } + ], + "top_tokens": null + }, + "generated_text": "Gradient descent is a first-order optimization algorithm" + } +] diff --git a/integration-tests/models/test_flash_phi35_moe.py b/integration-tests/models/test_flash_phi35_moe.py new file mode 100644 index 00000000..2173740a --- /dev/null +++ b/integration-tests/models/test_flash_phi35_moe.py @@ -0,0 +1,75 @@ +import pytest + + +@pytest.fixture(scope="module") +def flash_phi35_moe_handle(launcher): + with launcher( + "microsoft/Phi-3.5-MoE-instruct", + num_shard=4, + ) as handle: + yield handle + + +@pytest.fixture(scope="module") +async def flash_phi35_moe(flash_phi35_moe_handle): + await flash_phi35_moe_handle.health(300) + return flash_phi35_moe_handle.client + + +@pytest.mark.asyncio +async def test_flash_phi35_moe(flash_phi35_moe, response_snapshot): + response = await flash_phi35_moe.generate( + "What is gradient descent?\n\n", max_new_tokens=10, decoder_input_details=True + ) + + assert response.details.generated_tokens == 10 + assert ( + response.generated_text + == "Gradient descent is a first-order optimization algorithm" + ) + assert response == response_snapshot + + +@pytest.mark.asyncio +async def test_flash_phi35_moe_all_params(flash_phi35_moe, response_snapshot): + response = await flash_phi35_moe.generate( + "What is gradient descent?\n\n", + max_new_tokens=10, + repetition_penalty=1.2, + return_full_text=True, + stop_sequences=["test"], + temperature=0.5, + top_p=0.9, + top_k=10, + truncate=5, + typical_p=0.9, + watermark=True, + decoder_input_details=True, + seed=0, + ) + + assert response.details.generated_tokens == 10 + assert ( + response.generated_text + == "What is gradient descent?\n\nHello! It seems you're addressing a" + ) + assert response == response_snapshot + + +@pytest.mark.asyncio +async def test_flash_phi35_moe_load(flash_phi35_moe, generate_load, response_snapshot): + responses = await generate_load( + flash_phi35_moe, "What is gradient descent?\n\n", max_new_tokens=10, n=4 + ) + + assert len(responses) == 4 + assert responses[0].details.generated_tokens == 10 + assert ( + responses[0].generated_text + == "Gradient descent is a first-order optimization algorithm" + ) + assert all( + [r.generated_text == responses[0].generated_text for r in responses] + ), f"{[r.generated_text for r in responses]}" + + assert responses == response_snapshot diff --git a/integration-tests/models/test_tools_llama.py b/integration-tests/models/test_tools_llama.py index 9855cfda..c337afa1 100644 --- a/integration-tests/models/test_tools_llama.py +++ b/integration-tests/models/test_tools_llama.py @@ -4,7 +4,9 @@ import pytest @pytest.fixture(scope="module") def flash_llama_grammar_tools_handle(launcher): with launcher( - "TinyLlama/TinyLlama-1.1B-Chat-v1.0", num_shard=2, disable_grammar_support=False + "meta-llama/Meta-Llama-3.1-8B-Instruct", + num_shard=2, + disable_grammar_support=False, ) as handle: yield handle @@ -208,7 +210,7 @@ async def test_flash_llama_grammar_tools_stream( async for response in responses: count += 1 - assert count == 48 + assert count == 28 assert response == response_snapshot diff --git a/router/src/config.rs b/router/src/config.rs index 5d0be9c8..9b770d06 100644 --- a/router/src/config.rs +++ b/router/src/config.rs @@ -159,6 +159,7 @@ pub enum Config { #[serde(rename = "phi-msft")] PhiMsft, Phi3, + PhiMoe, Llama, Baichuan, Paligemma(Paligemma), diff --git a/server/text_generation_server/layers/rotary.py b/server/text_generation_server/layers/rotary.py index fc4a59b9..a2076bb2 100644 --- a/server/text_generation_server/layers/rotary.py +++ b/server/text_generation_server/layers/rotary.py @@ -166,6 +166,20 @@ class PositionRotaryEmbedding(nn.Module): 1 + math.log(scale) / math.log(original_max_position_embeddings) ) + # if short_mscale and long_mscale are provided we need to scale the freqs + # using the Phi3LongRoPEScaledRotaryEmbedding + if ("short_mscale" in rope_scaling) and ("long_mscale" in rope_scaling): + short_mscale = rope_scaling["short_mscale"] + long_mscale = rope_scaling["long_mscale"] + return Phi3LongRoPEScaledRotaryEmbedding( + short_inv_freq=short_inv_freq, + long_inv_freq=long_inv_freq, + max_position_embeddings=config.max_position_embeddings, + short_mscale=short_mscale, + long_mscale=long_mscale, + original_max_position_embeddings=original_max_position_embeddings, + ) + return SuRotaryEmbedding( short_inv_freq=short_inv_freq, long_inv_freq=long_inv_freq, @@ -287,6 +301,7 @@ class SuRotaryEmbedding(PositionRotaryEmbedding): # or if we're on a new device (possibly due to tracing for instance) if ( seqlen > self._seq_len_cached + or self._cos_cached is None or self._cos_cached.device != device or self._cos_cached.dtype != dtype ): @@ -308,6 +323,63 @@ class SuRotaryEmbedding(PositionRotaryEmbedding): self._sin_cached = (torch.sin(freqs) * self.scaling_factor).to(dtype) +class Phi3LongRoPEScaledRotaryEmbedding(PositionRotaryEmbedding): + def __init__( + self, + short_inv_freq: torch.Tensor, + long_inv_freq: torch.Tensor, + max_position_embeddings: int, + short_mscale: float, + long_mscale: float, + original_max_position_embeddings: int, + ): + super(PositionRotaryEmbedding, self).__init__() + self.short_inv_freq = short_inv_freq + self.long_inv_freq = long_inv_freq + self.max_position_embeddings = max_position_embeddings + self.short_mscale = short_mscale + self.long_mscale = long_mscale + self.original_max_position_embeddings = original_max_position_embeddings + + # cache + self._seq_len_cached = 0 + self._cos_cached = None + self._sin_cached = None + self._cos_k_cached = None + self._sin_k_cached = None + self.dynamic_args = None + + def _update_cos_sin_cache(self, dtype, device, seqlen): + if ( + seqlen > self._seq_len_cached + or self._cos_cached is None + or self._cos_cached.device != device + or self._cos_cached.dtype != dtype + ): + self._seq_len_cached = seqlen + t = torch.arange(seqlen, device=device, dtype=self.short_inv_freq.dtype) + + short_freqs = torch.outer( + t[: self.original_max_position_embeddings], + self.short_inv_freq.to(device=t.device), + ) + + long_freqs = torch.outer( + t[self.original_max_position_embeddings :], + self.long_inv_freq.to(device=t.device), + ) + + short_freqs = short_freqs * self.short_mscale + long_freqs = long_freqs * self.long_mscale + + freqs = torch.empty((seqlen, short_freqs.shape[1]), device=device) + freqs[: self.original_max_position_embeddings] = short_freqs + freqs[self.original_max_position_embeddings :] = long_freqs + + self._cos_cached = torch.cos(freqs).to(dtype) + self._sin_cached = torch.sin(freqs).to(dtype) + + class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding): def __init__(self, dim, max_position_embeddings, base, device, scaling_factor): inv_freq = _create_inv_freq(dim, base, device) @@ -467,7 +539,6 @@ def apply_llama3_scaling( elif wavelen > low_freq_wavelen: new_freqs.append(freq / scaling_factor) else: - assert low_freq_wavelen != high_freq_wavelen smooth = (original_max_position_embeddings / wavelen - low_freq_factor) / ( high_freq_factor - low_freq_factor diff --git a/server/text_generation_server/models/__init__.py b/server/text_generation_server/models/__init__.py index e5e5aabb..99a6ba76 100644 --- a/server/text_generation_server/models/__init__.py +++ b/server/text_generation_server/models/__init__.py @@ -32,6 +32,9 @@ from text_generation_server.models.custom_modeling.phi_modeling import ( PhiConfig, PhiForCausalLM, ) +from text_generation_server.models.custom_modeling.flash_phi_moe_modeling import ( + PhiMoEConfig, +) from text_generation_server.models.custom_modeling.t5_modeling import ( T5ForConditionalGeneration, ) @@ -237,6 +240,11 @@ class ModelType(enum.Enum): "name": "Phi", "url": "https://huggingface.co/microsoft/phi-1_5", } + PHI_MOE = { + "type": "phimoe", + "name": "PhiMoe", + "url": "https://huggingface.co/microsoft/Phi-3.5-MoE-instruct", + } BAICHUAN = { "type": "baichuan", "name": "Baichuan", @@ -768,6 +776,29 @@ def get_model( trust_remote_code=trust_remote_code, ) + elif model_type == PHI_MOE: + if FLASH_ATTENTION: + return FlashCausalLM( + model_id=model_id, + model_class=FlashLlamaForCausalLM, + config_class=PhiMoEConfig, + revision=revision, + quantize=quantize, + speculator=speculator, + dtype=dtype, + trust_remote_code=trust_remote_code, + lora_adapter_ids=lora_adapter_ids, + ) + else: + return CausalLM.fallback( + model_id, + revision, + quantize=quantize, + speculator=speculator, + dtype=dtype, + trust_remote_code=trust_remote_code, + ) + elif model_type == "phi-msft": if FLASH_ATTENTION: raise NotImplementedError( diff --git a/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py b/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py index df48c6f7..358fbbaa 100644 --- a/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py @@ -19,7 +19,7 @@ # limitations under the License. from contextlib import contextmanager -from typing import List, Optional, Tuple +from typing import List, Optional, Tuple, Type import torch import torch.distributed @@ -28,6 +28,7 @@ from torch import nn from transformers.activations import ACT2FN from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE +from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.layers.attention import ( paged_attention, @@ -46,12 +47,19 @@ from text_generation_server.layers import ( from text_generation_server.layers.rotary import PositionRotaryEmbedding from text_generation_server.layers.layernorm import ( FastRMSNorm, + FastLayerNorm, +) +from text_generation_server.layers import ( + FastLinear, ) from text_generation_server.utils.weights import ( Weights, ) from text_generation_server.layers.fp8 import HybridFP8UnquantLoader +if SYSTEM != "ipex": + pass + if SYSTEM == "rocm": try: from vllm import _custom_C @@ -245,6 +253,42 @@ class FlashLlamaAttention(torch.nn.Module): ) +class Phi3MoE(nn.Module): + def __init__( + self, prefix: str, config, moe_layer_cls: Type[MoELayer], weights: Weights + ): + super().__init__() + + # gating + self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False) + + self.moe = moe_layer_cls( + prefix=f"{prefix}.experts", + n_experts=config.num_local_experts, + n_expert_group=None, + renormalize=True, + topk=config.num_experts_per_tok, + topk_group=None, + weights=weights, + gate_proj_name="w1", + up_proj_name="w3", + down_proj_name="w2", + ) + + self.process_group = weights.process_group + + def forward(self, x, adapter_data) -> torch.Tensor: + # router_logits: (num_tokens, n_experts) + router_logits = self.gate(x) + out = self.moe(x, gating_output=router_logits) + + # Reduce sum + if self.process_group.size() > 1: + torch.distributed.all_reduce(out, group=self.process_group) + + return out.view(*x.shape) + + class LlamaMLP(nn.Module): def __init__(self, prefix, config, weights, index): super().__init__() @@ -358,18 +402,40 @@ class FlashLlamaLayer(nn.Module): weights=weights, ) - self.mlp = LlamaMLP( - prefix=f"{prefix}.mlp", config=config, weights=weights, index=index - ) - - self.input_layernorm = FastRMSNorm.load( - prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps - ) - self.post_attention_layernorm = FastRMSNorm.load( - prefix=f"{prefix}.post_attention_layernorm", - weights=weights, - eps=config.rms_norm_eps, - ) + if config.model_type == "phimoe": + moe_layer_cls = ( + SparseMoELayer + if SparseMoELayer.is_supported(weights) + else DenseMoELayer + ) + self.dense = Phi3MoE( + f"{prefix}.block_sparse_moe", config, moe_layer_cls, weights + ) + # with moe the layernorms are are not rmsnorms and they have bias + self.input_layernorm = FastLayerNorm.load( + prefix=f"{prefix}.input_layernorm", + weights=weights, + eps=config.rms_norm_eps, + ) + self.post_attention_layernorm = FastLayerNorm.load( + prefix=f"{prefix}.post_attention_layernorm", + weights=weights, + eps=config.rms_norm_eps, + ) + else: + self.dense = LlamaMLP( + prefix=f"{prefix}.mlp", config=config, weights=weights, index=index + ) + self.input_layernorm = FastRMSNorm.load( + prefix=f"{prefix}.input_layernorm", + weights=weights, + eps=config.rms_norm_eps, + ) + self.post_attention_layernorm = FastRMSNorm.load( + prefix=f"{prefix}.post_attention_layernorm", + weights=weights, + eps=config.rms_norm_eps, + ) def forward( self, @@ -406,7 +472,7 @@ class FlashLlamaLayer(nn.Module): attn_output, res ) - mlp_output = self.mlp(normed_attn_res_output, adapter_data) + mlp_output = self.dense(normed_attn_res_output, adapter_data) return mlp_output, attn_res diff --git a/server/text_generation_server/models/custom_modeling/flash_phi_moe_modeling.py b/server/text_generation_server/models/custom_modeling/flash_phi_moe_modeling.py new file mode 100644 index 00000000..bb585cc4 --- /dev/null +++ b/server/text_generation_server/models/custom_modeling/flash_phi_moe_modeling.py @@ -0,0 +1,254 @@ +# coding=utf-8 +# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""PyTorch Phi-MoE model.""" + +from transformers.configuration_utils import PretrainedConfig +from transformers.utils import logging + + +logger = logging.get_logger(__name__) + + +PHIMOE_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "microsoft/Phi-3.5-MoE-instruct": "https://huggingface.co/microsoft/Phi-3.5-MoE-instruct/resolve/main/config.json", +} + + +class PhiMoEConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`PhiMoEModel`]. It is used to instantiate a Phi-MoE + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the + [microsoft/Phi-3.5-MoE-instruct](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct). + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 32064): + Vocabulary size of the PhiMoE model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`PhiMoEModel`] + hidden_size (`int`, *optional*, defaults to 4096): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 6400): + Dimension of the MLP representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads for each attention layer in the Transformer encoder. + num_key_value_heads (`int`, *optional*, defaults to 8): + This is the number of key_value heads that should be used to implement Grouped Query Attention. If + `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if + `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When + converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed + by meanpooling all the original heads within that group. For more details checkout [this + paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to `4096*32`): + The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention + allows sequence of up to 4096*32 tokens. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + rms_norm_eps (`float`, *optional*, defaults to 1e-05): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + pad_token_id (`int`, *optional*): + The id of the padding token. + bos_token_id (`int`, *optional*, defaults to 1): + The id of the "beginning-of-sequence" token. + eos_token_id (`int`, *optional*, defaults to 2): + The id of the "end-of-sequence" token. + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether the model's input and output word embeddings should be tied. + rope_theta (`float`, *optional*, defaults to 10000.0): + The base period of the RoPE embeddings. + rope_scaling (`dict`, *optional*): + The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must + contain the following keys: `type`, `short_factor`, `long_factor`, `short_mscale`, `long_mscale` and + `original_max_position_embeddings`. The `type` must be `longrope`, the `short_mscale` and `long_scale` must + be numbers, the `short_factor` and `long_factor` must be lists of numbers with the same length as half of + the attention head size and the `original_max_position_embeddings` must be an integer. + sliding_window (`int`, *optional*): + Sliding window attention window size. If not specified, will default to `262144`. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + num_experts_per_tok (`int`, *optional*, defaults to 2): + The number of experts to root per-token, can be also interpreted as the `top-p` routing + parameter + num_local_experts (`int`, *optional*, defaults to 16): + Number of experts per Sparse MLP layer. + output_router_logits (`bool`, *optional*, defaults to `False`): + Whether or not the router logits should be returned by the model. Enabeling this will also + allow the model to output the auxiliary loss. See [here]() for more details + router_aux_loss_coef (`float`, *optional*, defaults to 0.0): + The aux loss factor for the total loss. + router_jitter_noise (`float`, *optional*, defaults to 0.01): + Amount of noise to add to the router. + + ```python + >>> from transformers import PhiMoEModel, PhiMoEConfig + + >>> # Initializing a Phi-3 style configuration + >>> configuration = PhiMoEConfig.from_pretrained("microsoft/Phi-3.5-MoE-instruct") + + >>> # Initializing a model from the configuration + >>> model = PhiMoEModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "phimoe" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + vocab_size=32064, + hidden_size=4096, + intermediate_size=6400, + num_hidden_layers=32, + num_attention_heads=32, + num_key_value_heads=8, + hidden_act="silu", + max_position_embeddings=4096 * 32, + initializer_range=0.02, + rms_norm_eps=1e-5, + use_cache=True, + pad_token_id=None, + bos_token_id=1, + eos_token_id=2, + tie_word_embeddings=False, + rope_theta=1e6, + rope_scaling=None, + sliding_window=None, + attention_dropout=0.0, + num_experts_per_tok=2, + num_local_experts=16, + output_router_logits=False, + router_aux_loss_coef=0.001, + router_jitter_noise=0.01, + input_jitter_noise=0.0, + attention_bias=False, + lm_head_bias=False, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.sliding_window = sliding_window + self.attention_bias = attention_bias + self.lm_head_bias = lm_head_bias + # for backward compatibility + if num_key_value_heads is None: + num_key_value_heads = num_attention_heads + + self.num_key_value_heads = num_key_value_heads + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.rms_norm_eps = rms_norm_eps + self.use_cache = use_cache + self.rope_theta = rope_theta + self.attention_dropout = attention_dropout + + self.num_experts_per_tok = num_experts_per_tok + self.num_local_experts = num_local_experts + self.output_router_logits = output_router_logits + self.router_aux_loss_coef = router_aux_loss_coef + self.router_jitter_noise = router_jitter_noise + self.input_jitter_noise = input_jitter_noise + + self.rope_scaling = rope_scaling + self._rope_scaling_validation() + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) + + def _rope_scaling_validation(self): + """ + Validate the `rope_scaling` configuration. + """ + if self.rope_scaling is None: + return + + if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 6: + raise ValueError( + "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor`, `long_factor`, " + f"`short_mscale`, `long_mscale` and `original_max_position_embeddings`, got {self.rope_scaling}" + ) + rope_scaling_type = self.rope_scaling.get("type", None) + rope_scaling_short_factor = self.rope_scaling.get("short_factor", None) + rope_scaling_long_factor = self.rope_scaling.get("long_factor", None) + rope_scaling_short_mscale = self.rope_scaling.get("short_mscale", None) + rope_scaling_long_mscale = self.rope_scaling.get("long_mscale", None) + original_max_position_embeddings = self.rope_scaling.get( + "original_max_position_embeddings", None + ) + if rope_scaling_type is None or rope_scaling_type not in ["longrope"]: + raise ValueError( + f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}" + ) + if not ( + isinstance(rope_scaling_short_factor, list) + and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor) + ): + raise ValueError( + f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}" + ) + if ( + not len(rope_scaling_short_factor) + == self.hidden_size // self.num_attention_heads // 2 + ): + raise ValueError( + f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}" + ) + if not ( + isinstance(rope_scaling_long_factor, list) + and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor) + ): + raise ValueError( + f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}" + ) + if ( + not len(rope_scaling_long_factor) + == self.hidden_size // self.num_attention_heads // 2 + ): + raise ValueError( + f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}" + ) + if not isinstance(rope_scaling_short_mscale, (int, float)): + raise ValueError( + f"`rope_scaling`'s short_mscale field must be a number, got {rope_scaling_short_mscale}" + ) + if not isinstance(rope_scaling_long_mscale, (int, float)): + raise ValueError( + f"`rope_scaling`'s long_mscale field must be a number, got {rope_scaling_long_mscale}" + ) + if not isinstance(original_max_position_embeddings, int): + raise ValueError( + f"`rope_scaling`'s original_max_position_embeddings field must be an integer, got {original_max_position_embeddings}" + ) From d1f257ac56f7a38ac964d499932e5ab5242b3363 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Mon, 30 Sep 2024 11:39:41 +0200 Subject: [PATCH 23/33] Move flake back to tgi-nix `main` (#2586) --- flake.lock | 5 ++--- flake.nix | 2 +- 2 files changed, 3 insertions(+), 4 deletions(-) diff --git a/flake.lock b/flake.lock index 934ec3d0..fd6f3a54 100644 --- a/flake.lock +++ b/flake.lock @@ -978,16 +978,15 @@ "nixpkgs": "nixpkgs_6" }, "locked": { - "lastModified": 1727681169, + "lastModified": 1727687740, "narHash": "sha256-ssoGLmRoyQ+8d5utr5fwLox+/eQ789iVtUj1xrukIC0=", "owner": "danieldk", "repo": "tgi-nix", - "rev": "88ba4cfe378d8fb08222f640ff2b62ac0ee6569d", + "rev": "5e884ba50c26a7c93337bc0876f69da961c10374", "type": "github" }, "original": { "owner": "danieldk", - "ref": "moe-kernels-0.4.0", "repo": "tgi-nix", "type": "github" } diff --git a/flake.nix b/flake.nix index ed2dedc9..42fb3c6a 100644 --- a/flake.nix +++ b/flake.nix @@ -5,7 +5,7 @@ inputs.nixpkgs.follows = "tgi-nix/nixpkgs"; }; nix-filter.url = "github:numtide/nix-filter"; - tgi-nix.url = "github:danieldk/tgi-nix/moe-kernels-0.4.0"; + tgi-nix.url = "github:danieldk/tgi-nix"; nixpkgs.follows = "tgi-nix/nixpkgs"; flake-utils.url = "github:numtide/flake-utils"; rust-overlay = { From 1c84a30fe6353c8691f4809f64ec77c2cfeeb246 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Mon, 30 Sep 2024 19:40:25 +0200 Subject: [PATCH 24/33] MoE Marlin: support `desc_act` for `groupsize != -1` (#2590) This change uses the updated Marlin MoE kernel from vLLM to support MoE with activation sorting and groups. --- flake.lock | 7 ++++--- flake.nix | 2 +- server/text_generation_server/layers/marlin/gptq.py | 3 +-- server/text_generation_server/layers/moe/__init__.py | 3 --- .../text_generation_server/layers/moe/gptq_marlin.py | 10 ---------- 5 files changed, 6 insertions(+), 19 deletions(-) diff --git a/flake.lock b/flake.lock index fd6f3a54..e6361fda 100644 --- a/flake.lock +++ b/flake.lock @@ -978,15 +978,16 @@ "nixpkgs": "nixpkgs_6" }, "locked": { - "lastModified": 1727687740, - "narHash": "sha256-ssoGLmRoyQ+8d5utr5fwLox+/eQ789iVtUj1xrukIC0=", + "lastModified": 1727710820, + "narHash": "sha256-BuSafCxoFQhkp7lnvNtpquxSK43rIbnouL2HypIUC+o=", "owner": "danieldk", "repo": "tgi-nix", - "rev": "5e884ba50c26a7c93337bc0876f69da961c10374", + "rev": "4f4dc4b85dd856fd7904e8e3e486a2ff153584a2", "type": "github" }, "original": { "owner": "danieldk", + "ref": "moe-kernels-0.5.0", "repo": "tgi-nix", "type": "github" } diff --git a/flake.nix b/flake.nix index 42fb3c6a..be19e908 100644 --- a/flake.nix +++ b/flake.nix @@ -5,7 +5,7 @@ inputs.nixpkgs.follows = "tgi-nix/nixpkgs"; }; nix-filter.url = "github:numtide/nix-filter"; - tgi-nix.url = "github:danieldk/tgi-nix"; + tgi-nix.url = "github:danieldk/tgi-nix/moe-kernels-0.5.0"; nixpkgs.follows = "tgi-nix/nixpkgs"; flake-utils.url = "github:numtide/flake-utils"; rust-overlay = { diff --git a/server/text_generation_server/layers/marlin/gptq.py b/server/text_generation_server/layers/marlin/gptq.py index c7663b60..0a785d94 100644 --- a/server/text_generation_server/layers/marlin/gptq.py +++ b/server/text_generation_server/layers/marlin/gptq.py @@ -109,7 +109,6 @@ class GPTQMarlinWeightsLoader(WeightsLoader): prefix: str, block_sizes: Union[int, List[int]], ): - try: qweight = weights.get_packed_sharded( f"{prefix}.qweight", dim=1, block_sizes=block_sizes @@ -352,7 +351,7 @@ def repack_gptq_for_marlin( scales = permute_scales(scales) - is_full_k = not (desc_act and sharded_infeatures) + is_full_k = not (desc_act and groupsize != -1 and sharded_infeatures) return GPTQMarlinWeight( qweight=repacked, diff --git a/server/text_generation_server/layers/moe/__init__.py b/server/text_generation_server/layers/moe/__init__.py index ca71ebab..2c46ca02 100644 --- a/server/text_generation_server/layers/moe/__init__.py +++ b/server/text_generation_server/layers/moe/__init__.py @@ -249,12 +249,9 @@ class SparseMoELayer(nn.Module): or ( isinstance(weights.loader, GPTQMarlinWeightsLoader) and can_use_marlin_moe_gemm( - desc_act=weights.loader.desc_act, - groupsize=weights.loader.groupsize, quant_method=weights.loader.quant_method, quantize=weights.loader.quantize, sym=weights.loader.sym, - use_tp=weights.process_group.size() > 1, ) ) ) diff --git a/server/text_generation_server/layers/moe/gptq_marlin.py b/server/text_generation_server/layers/moe/gptq_marlin.py index 3fc06cb2..3217cdc2 100644 --- a/server/text_generation_server/layers/moe/gptq_marlin.py +++ b/server/text_generation_server/layers/moe/gptq_marlin.py @@ -26,12 +26,9 @@ except Exception: def can_use_marlin_moe_gemm( *, - desc_act: bool, - groupsize: int, quant_method: str, quantize: str, sym: bool, - use_tp: bool, ): return ( SYSTEM == "cuda" @@ -40,16 +37,9 @@ def can_use_marlin_moe_gemm( and quantize == "gptq" and quant_method == "gptq" and sym - and is_full_k(desc_act, groupsize, use_tp) ) -def is_full_k(desc_act: bool, groupsize: int, use_tp: bool): - if groupsize == -1: - return True - return not (desc_act and use_tp) - - @dataclass class GPTQMarlinMoEWeight: qweight: torch.Tensor From 584b4d7a68a00991a61134b602364f6db33587a0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Tue, 1 Oct 2024 18:02:06 +0200 Subject: [PATCH 25/33] nix: experimental support for building a Docker container (#2470) * nix: experimental support for building a Docker image Run using something like: ``` docker run \ --device nvidia.com/gpu=all \ -it --rm -p 8080:80 \ -v $PWD/data:/data \ -v $PWD/tmp:/tmp \ tgi-docker:latest \ --model-id ``` * Example of building the Docker image using Nix inside Docker * Stream to make the builder image smaller This avoids storing a Docker image tarball in the image. Instead, stream the layers while doing `docker run`. * Don't spam journalctl on Linux * Other dockerfile. --------- Co-authored-by: Nicolas Patry --- .dockerignore | 1 + Dockerfile.nix | 24 ++++++++++++++++++++++++ flake.nix | 29 ++++++++++++++++++++--------- nix/docker.nix | 23 +++++++++++++++++++++++ 4 files changed, 68 insertions(+), 9 deletions(-) create mode 100644 Dockerfile.nix create mode 100644 nix/docker.nix diff --git a/.dockerignore b/.dockerignore index 1c641e7a..0b495924 100644 --- a/.dockerignore +++ b/.dockerignore @@ -4,3 +4,4 @@ server/transformers server/flash-attention cmake-build-debug/ cmake-build-release/ +Dockerfile* diff --git a/Dockerfile.nix b/Dockerfile.nix new file mode 100644 index 00000000..f1e7e0f5 --- /dev/null +++ b/Dockerfile.nix @@ -0,0 +1,24 @@ +# Build the image and get out the docker file: +# +# docker build -t tgi-nix-builder -f Dockerfile.nix +# docker run --log-driver=none tgi-nix-builder | docker load + +FROM nixos/nix:2.18.8 AS builder +RUN echo "experimental-features = nix-command flakes" >> /etc/nix/nix.conf +RUN nix profile install nixpkgs#cachix +RUN cachix use text-generation-inference +WORKDIR /root +ADD . . +RUN nix build . +RUN mkdir /tmp/nix-store-closure +RUN cp -R $(nix-store -qR result/) /tmp/nix-store-closure + +FROM ubuntu:24.04 + +WORKDIR /app + +# Copy /nix/store +COPY --from=builder /tmp/nix-store-closure /nix/store +COPY --from=builder /root/result /app +RUN ldconfig +CMD ["ldconfig", "/app/bin/text-generation-launcher"] diff --git a/flake.nix b/flake.nix index be19e908..b18a5765 100644 --- a/flake.nix +++ b/flake.nix @@ -141,15 +141,26 @@ }; }; - packages.default = pkgs.writeShellApplication { - name = "text-generation-inference"; - runtimeInputs = [ - server - router - ]; - text = '' - ${launcher}/bin/text-generation-launcher "$@" - ''; + packages = rec { + default = pkgs.writeShellApplication { + name = "text-generation-inference"; + runtimeInputs = [ + server + router + ]; + text = '' + ${launcher}/bin/text-generation-launcher "$@" + ''; + }; + + dockerImage = pkgs.callPackage nix/docker.nix { + text-generation-inference = default; + }; + + dockerImageStreamed = pkgs.callPackage nix/docker.nix { + text-generation-inference = default; + stream = true; + }; }; } ); diff --git a/nix/docker.nix b/nix/docker.nix new file mode 100644 index 00000000..c4b1d899 --- /dev/null +++ b/nix/docker.nix @@ -0,0 +1,23 @@ +{ + dockerTools, + cacert, + text-generation-inference, + stream ? false, +}: + +let + build = if stream then dockerTools.streamLayeredImage else dockerTools.buildLayeredImage; +in +build { + name = "tgi-docker"; + tag = "latest"; + config = { + EntryPoint = [ "${text-generation-inference}/bin/text-generation-inference" ]; + Env = [ + "HF_HOME=/data" + "PORT=80" + ]; + + }; + contents = [ cacert ]; +} From d18ed5cfc5f404dd7e8c1d719e8293e713c1fb4c Mon Sep 17 00:00:00 2001 From: Nicolas Patry Date: Wed, 2 Oct 2024 11:22:13 +0200 Subject: [PATCH 26/33] Mllama flash version (#2585) * Working loading state. * Preprocessing. * Working state ? (Broke idefics1 temporarily). * Cleaner condition. * Fix idefics. * Updating config, removing TODO * Mllama * Ugrade transformers 4.45 * Flashing mllama. * Starting to get there. * Working state. * Integrations tests for mllama (cutting to 10 tokens because there seems' to be instability after (meaning size of the batch matters. * Updating model link. * Earlier assert. * Fix vlm ? * remove log. * Force ignore all images but last. * Default dtype bfloat16. * Update integration test after switch to bf16. * Remove dead code. * Removed dead code. * Upgrade the flake to latest transformers/tokenizers * Move to hf tgi-nix * Upgrade to 0.5.0 --- Cargo.lock | 181 +- clients/python/text_generation/types.py | 8 +- docs/source/supported_models.md | 1 + flake.lock | 33 +- flake.nix | 2 +- .../test_mllama/test_mllama_load.json | 106 + .../test_mllama/test_mllama_simpl.json | 26 + integration-tests/models/test_mllama.py | 105 + router/src/config.rs | 1 + router/src/infer/chat_template.rs | 2 +- router/src/validation.rs | 3 +- server/poetry.lock | 2564 +++++++++-------- server/pyproject.toml | 6 +- server/requirements_cuda.txt | 40 +- server/requirements_intel.txt | 40 +- server/requirements_rocm.txt | 40 +- .../text_generation_server/models/__init__.py | 33 +- .../custom_modeling/flash_llama_modeling.py | 52 +- .../flash_pali_gemma_modeling.py | 2 +- .../models/custom_modeling/mllama.py | 995 +++++++ .../text_generation_server/models/idefics.py | 105 - .../models/idefics_causal_lm.py | 88 +- .../models/mllama_causal_lm.py | 357 +++ server/text_generation_server/server.py | 8 +- 24 files changed, 3238 insertions(+), 1560 deletions(-) create mode 100644 integration-tests/models/__snapshots__/test_mllama/test_mllama_load.json create mode 100644 integration-tests/models/__snapshots__/test_mllama/test_mllama_simpl.json create mode 100644 integration-tests/models/test_mllama.py create mode 100644 server/text_generation_server/models/custom_modeling/mllama.py delete mode 100644 server/text_generation_server/models/idefics.py create mode 100644 server/text_generation_server/models/mllama_causal_lm.py diff --git a/Cargo.lock b/Cargo.lock index 6796212f..fa6afc29 100644 --- a/Cargo.lock +++ b/Cargo.lock @@ -133,7 +133,7 @@ checksum = "0ae92a5119aa49cdbcf6b9f893fe4e1d98b04ccbf82ee0584ad948a44a734dea" dependencies = [ "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -172,7 +172,7 @@ checksum = "16e62a023e7c117e27523144c5d2459f4397fcc3cab0085af8e2224f643a0193" dependencies = [ "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -183,7 +183,7 @@ checksum = "721cae7de5c34fbb2acd27e21e6d2cf7b886dce0c27388d46c4e6c47ea4318dd" dependencies = [ "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -205,9 +205,9 @@ dependencies = [ [[package]] name = "autocfg" -version = "1.3.0" +version = "1.4.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "0c4b4d0bd25bd0b74681c0ad21497610ce1b7c91b1022cd21c80c6fbdd9476b0" +checksum = "ace50bade8e6234aa140d9a2f552bbee1db4d353f69b8217bc503490fc1a9f26" [[package]] name = "av1-grain" @@ -316,12 +316,12 @@ dependencies = [ [[package]] name = "axum" -version = "0.7.6" +version = "0.7.7" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "8f43644eed690f5374f1af436ecd6aea01cd201f6fbdf0178adaf6907afb2cec" +checksum = "504e3947307ac8326a5437504c517c4b56716c9d98fac0028c2acc7ca47d70ae" dependencies = [ "async-trait", - "axum-core 0.4.4", + "axum-core 0.4.5", "bytes", "futures-util", "http 1.1.0", @@ -367,9 +367,9 @@ dependencies = [ [[package]] name = "axum-core" -version = "0.4.4" +version = "0.4.5" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "5e6b8ba012a258d63c9adfa28b9ddcf66149da6f986c5b5452e629d5ee64bf00" +checksum = "09f2bd6146b97ae3359fa0cc6d6b376d9539582c7b4220f041a33ec24c226199" dependencies = [ "async-trait", "bytes", @@ -392,7 +392,7 @@ version = "0.16.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "bdad298231394729042d1f155b93f9fdf0b5ee1aea0b62404c4d7341f7d8fe08" dependencies = [ - "axum 0.7.6", + "axum 0.7.7", "futures-core", "futures-util", "http 1.1.0", @@ -456,7 +456,7 @@ dependencies = [ "regex", "rustc-hash", "shlex", - "syn 2.0.77", + "syn 2.0.79", "which", ] @@ -605,9 +605,9 @@ dependencies = [ [[package]] name = "cc" -version = "1.1.21" +version = "1.1.22" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "07b1695e2c7e8fc85310cde85aeaab7e3097f593c91d209d3f9df76c928100f0" +checksum = "9540e661f81799159abee814118cc139a2004b3a3aa3ea37724a1b66530b90e0" dependencies = [ "jobserver", "libc", @@ -704,7 +704,7 @@ dependencies = [ "heck 0.5.0", "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -971,7 +971,7 @@ dependencies = [ "proc-macro2", "quote", "scratch", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -988,7 +988,7 @@ checksum = "98532a60dedaebc4848cb2cba5023337cc9ea3af16a5b062633fabfd9f18fb60" dependencies = [ "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -1012,7 +1012,7 @@ dependencies = [ "proc-macro2", "quote", "strsim", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -1023,7 +1023,7 @@ checksum = "d336a2a514f6ccccaa3e09b02d41d35330c07ddf03a62165fcec10bb561c7806" dependencies = [ "darling_core", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -1053,7 +1053,7 @@ dependencies = [ "darling", "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -1063,7 +1063,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "4abae7035bf79b9877b779505d8cf3749285b80c43941eda66604841889451dc" dependencies = [ "derive_builder_core", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -1192,9 +1192,9 @@ checksum = "e8c02a5121d4ea3eb16a80748c74f5549a5665e4c21333c6098f283870fbdea6" [[package]] name = "fdeflate" -version = "0.3.4" +version = "0.3.5" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "4f9bfee30e4dedf0ab8b422f03af778d9612b63f502710fc500a334ebe2de645" +checksum = "d8090f921a24b04994d9929e204f50b498a33ea6ba559ffaa05e04f7ee7fb5ab" dependencies = [ "simd-adler32", ] @@ -1207,9 +1207,9 @@ checksum = "0ce7134b9999ecaf8bcd65542e436736ef32ddca1b3e06094cb6ec5755203b80" [[package]] name = "flate2" -version = "1.0.33" +version = "1.0.34" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "324a1be68054ef05ad64b861cc9eaf1d623d2d8cb25b4bf2cb9cdd902b4bf253" +checksum = "a1b589b4dc103969ad3cf85c950899926ec64300a1a46d76c03a6072957036f0" dependencies = [ "crc32fast", "miniz_oxide 0.8.0", @@ -1338,7 +1338,7 @@ checksum = "87750cf4b7a4c0625b1529e4c543c2182106e4dedc60a2a6455e00d212c489ac" dependencies = [ "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -1864,7 +1864,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "b23a0c8dfe501baac4adf6ebbfa6eddf8f0c07f56b058cc1288017e32397846c" dependencies = [ "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -1884,7 +1884,7 @@ checksum = "c34819042dc3d3971c46c2190835914dfbe0c3c13f61449b2997f4e9722dfa60" dependencies = [ "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -2270,7 +2270,6 @@ source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "b8a240ddb74feaf34a79a7add65a741f3167852fba007066dcac1ca548d89c08" dependencies = [ "adler", - "simd-adler32", ] [[package]] @@ -2280,6 +2279,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "e2d80299ef12ff69b16a84bb182e3b9df68b5a91574d3d4fa6e41b65deec4df1" dependencies = [ "adler2", + "simd-adler32", ] [[package]] @@ -2319,7 +2319,7 @@ checksum = "a7ce64b975ed4f123575d11afd9491f2e37bbd5813fbfbc0f09ae1fbddea74e0" dependencies = [ "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -2519,7 +2519,7 @@ checksum = "ed3955f1a9c7c0c15e092f9c887db08b1fc683305fdf6eb6684f22555355e202" dependencies = [ "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -2599,9 +2599,12 @@ dependencies = [ [[package]] name = "once_cell" -version = "1.19.0" +version = "1.20.1" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "3fdb12b2476b595f9358c5161aa467c2438859caa136dec86c26fdd2efe17b92" +checksum = "82881c4be219ab5faaf2ad5e5e5ecdff8c66bd7402ca3160975c93b24961afd1" +dependencies = [ + "portable-atomic", +] [[package]] name = "onig" @@ -2654,7 +2657,7 @@ checksum = "a948666b637a0f465e8564c73e89d4dde00d72d4d473cc972f390fc3dcee7d9c" dependencies = [ "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -2808,7 +2811,7 @@ dependencies = [ "glob", "once_cell", "opentelemetry 0.21.0", - "ordered-float 4.2.2", + "ordered-float 4.3.0", "percent-encoding", "rand", "thiserror", @@ -2828,7 +2831,7 @@ dependencies = [ "lazy_static", "once_cell", "opentelemetry 0.23.0", - "ordered-float 4.2.2", + "ordered-float 4.3.0", "percent-encoding", "rand", "thiserror", @@ -2851,9 +2854,9 @@ dependencies = [ [[package]] name = "ordered-float" -version = "4.2.2" +version = "4.3.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "4a91171844676f8c7990ce64959210cd2eaef32c2612c50f9fae9f8aaa6065a6" +checksum = "44d501f1a72f71d3c063a6bbc8f7271fa73aa09fe5d6283b6571e2ed176a2537" dependencies = [ "num-traits", ] @@ -2937,7 +2940,7 @@ checksum = "2f38a4412a78282e09a2cf38d195ea5420d15ba0602cb375210efbc877243965" dependencies = [ "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -2988,22 +2991,22 @@ dependencies = [ [[package]] name = "png" -version = "0.17.13" +version = "0.17.14" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "06e4b0d3d1312775e782c86c91a111aa1f910cbb65e1337f9975b5f9a554b5e1" +checksum = "52f9d46a34a05a6a57566bc2bfae066ef07585a6e3fa30fbbdff5936380623f0" dependencies = [ "bitflags 1.3.2", "crc32fast", "fdeflate", "flate2", - "miniz_oxide 0.7.4", + "miniz_oxide 0.8.0", ] [[package]] name = "portable-atomic" -version = "1.8.0" +version = "1.9.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "d30538d42559de6b034bc76fd6dd4c38961b1ee5c6c56e3808c50128fdbc22ce" +checksum = "cc9c68a3f6da06753e9335d63e27f6b9754dd1920d941135b7ea8224f141adb2" [[package]] name = "powerfmt" @@ -3027,7 +3030,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "479cf940fbbb3426c32c5d5176f62ad57549a0bb84773423ba8be9d089f5faba" dependencies = [ "proc-macro2", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -3079,7 +3082,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "8021cf59c8ec9c432cfc2526ac6b8aa508ecaf29cd415f271b8406c1b851c3fd" dependencies = [ "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -3119,7 +3122,7 @@ dependencies = [ "prost 0.12.6", "prost-types", "regex", - "syn 2.0.77", + "syn 2.0.79", "tempfile", ] @@ -3146,7 +3149,7 @@ dependencies = [ "itertools 0.12.1", "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -3205,7 +3208,7 @@ dependencies = [ "proc-macro2", "pyo3-macros-backend", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -3218,7 +3221,7 @@ dependencies = [ "proc-macro2", "pyo3-build-config", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -3402,9 +3405,9 @@ dependencies = [ [[package]] name = "redox_syscall" -version = "0.5.5" +version = "0.5.7" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "62871f2d65009c0256aed1b9cfeeb8ac272833c404e13d53d400cd0dad7a2ac0" +checksum = "9b6dfecf2c74bce2466cabf93f6664d6998a69eb21e39f4207930065b27b771f" dependencies = [ "bitflags 2.6.0", ] @@ -3422,14 +3425,14 @@ dependencies = [ [[package]] name = "regex" -version = "1.10.6" +version = "1.11.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "4219d74c6b67a3654a9fbebc4b419e22126d13d2f3c4a07ee0cb61ff79a79619" +checksum = "38200e5ee88914975b69f657f0801b6f6dccafd44fd9326302a4aaeecfacb1d8" dependencies = [ "aho-corasick", "memchr", - "regex-automata 0.4.7", - "regex-syntax 0.8.4", + "regex-automata 0.4.8", + "regex-syntax 0.8.5", ] [[package]] @@ -3443,13 +3446,13 @@ dependencies = [ [[package]] name = "regex-automata" -version = "0.4.7" +version = "0.4.8" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "38caf58cc5ef2fed281f89292ef23f6365465ed9a41b7a7754eb4e26496c92df" +checksum = "368758f23274712b504848e9d5a6f010445cc8b87a7cdb4d7cbee666c1288da3" dependencies = [ "aho-corasick", "memchr", - "regex-syntax 0.8.4", + "regex-syntax 0.8.5", ] [[package]] @@ -3460,9 +3463,9 @@ checksum = "f162c6dd7b008981e4d40210aca20b4bd0f9b60ca9271061b07f78537722f2e1" [[package]] name = "regex-syntax" -version = "0.8.4" +version = "0.8.5" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "7a66a03ae7c801facd77a29370b4faec201768915ac14a721ba36f20bc9c209b" +checksum = "2b15c43186be67a4fd63bee50d0303afffcef381492ebe2c5d87f324e1b8815c" [[package]] name = "reqwest" @@ -3563,7 +3566,7 @@ dependencies = [ "proc-macro2", "quote", "rust-embed-utils", - "syn 2.0.77", + "syn 2.0.79", "walkdir", ] @@ -3686,9 +3689,9 @@ dependencies = [ [[package]] name = "rustls-pki-types" -version = "1.8.0" +version = "1.9.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "fc0a2ce646f8655401bb81e7927b812614bd5d91dbc968696be50603510fcaf0" +checksum = "0e696e35370c65c9c541198af4543ccd580cf17fc25d8e05c5a242b202488c55" [[package]] name = "rustls-webpki" @@ -3813,7 +3816,7 @@ checksum = "243902eda00fad750862fc144cea25caca5e20d615af0a81bee94ca738f1df1f" dependencies = [ "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -3840,9 +3843,9 @@ dependencies = [ [[package]] name = "serde_spanned" -version = "0.6.7" +version = "0.6.8" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "eb5b1b31579f3811bf615c144393417496f152e12ac8b7663bf664f4a815306d" +checksum = "87607cb1398ed59d48732e575a4c28a7a8ebf2454b964fe3f224f2afc07909e1" dependencies = [ "serde", ] @@ -4028,7 +4031,7 @@ dependencies = [ "proc-macro2", "quote", "rustversion", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -4050,9 +4053,9 @@ dependencies = [ [[package]] name = "syn" -version = "2.0.77" +version = "2.0.79" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "9f35bcdf61fd8e7be6caf75f429fdca8beb3ed76584befb503b1569faee373ed" +checksum = "89132cd0bf050864e1d38dc3bbc07a0eb8e7530af26344d3d2bbbef83499f590" dependencies = [ "proc-macro2", "quote", @@ -4152,9 +4155,9 @@ checksum = "61c41af27dd6d1e27b1b16b489db798443478cef1f06a660c96db617ba5de3b1" [[package]] name = "tempfile" -version = "3.12.0" +version = "3.13.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "04cbcdd0c794ebb0d4cf35e88edd2f7d2c4c3e9a5a6dab322839b321c6a87a64" +checksum = "f0f2c9fc62d0beef6951ccffd757e241266a2c833136efbe35af6cd2567dca5b" dependencies = [ "cfg-if", "fastrand", @@ -4259,7 +4262,7 @@ version = "2.3.1-dev0" dependencies = [ "async-stream", "async-trait", - "axum 0.7.6", + "axum 0.7.7", "axum-tracing-opentelemetry", "base64 0.22.1", "clap 4.5.18", @@ -4308,7 +4311,7 @@ version = "2.3.1-dev0" dependencies = [ "async-stream", "async-trait", - "axum 0.7.6", + "axum 0.7.7", "axum-tracing-opentelemetry", "base64 0.22.1", "clap 4.5.18", @@ -4357,7 +4360,7 @@ version = "2.3.1-dev0" dependencies = [ "async-stream", "async-trait", - "axum 0.7.6", + "axum 0.7.7", "axum-tracing-opentelemetry", "base64 0.22.1", "clap 4.5.18", @@ -4428,7 +4431,7 @@ checksum = "08904e7672f5eb876eaaf87e0ce17857500934f4981c4a0ab2b4aa98baac7fc3" dependencies = [ "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -4533,7 +4536,7 @@ dependencies = [ "rayon", "rayon-cond", "regex", - "regex-syntax 0.8.4", + "regex-syntax 0.8.5", "serde", "serde_json", "spm_precompiled", @@ -4566,7 +4569,7 @@ dependencies = [ "rayon", "rayon-cond", "regex", - "regex-syntax 0.8.4", + "regex-syntax 0.8.5", "serde", "serde_json", "spm_precompiled", @@ -4612,7 +4615,7 @@ checksum = "693d596312e88961bc67d7f1f97af8a70227d9f90c31bba5806eec004978d752" dependencies = [ "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -4771,7 +4774,7 @@ dependencies = [ "proc-macro2", "prost-build", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -4858,7 +4861,7 @@ checksum = "34704c8d6ebcbc939824180af020566b01a7c01f80641264eba0999f6c2b6be7" dependencies = [ "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -5151,7 +5154,7 @@ dependencies = [ "proc-macro2", "quote", "regex", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -5160,7 +5163,7 @@ version = "6.0.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "0b39868d43c011961e04b41623e050aedf2cc93652562ff7935ce0f819aaf2da" dependencies = [ - "axum 0.7.6", + "axum 0.7.7", "mime_guess", "regex", "rust-embed", @@ -5189,7 +5192,7 @@ checksum = "ee1cd046f83ea2c4e920d6ee9f7c3537ef928d75dce5d84a87c2c5d6b3999a3a" dependencies = [ "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] @@ -5290,7 +5293,7 @@ dependencies = [ "once_cell", "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", "wasm-bindgen-shared", ] @@ -5324,7 +5327,7 @@ checksum = "afc340c74d9005395cf9dd098506f7f44e38f2b4a21c6aaacf9a105ea5e1e836" dependencies = [ "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", "wasm-bindgen-backend", "wasm-bindgen-shared", ] @@ -5668,9 +5671,9 @@ checksum = "589f6da84c646204747d1270a2a5661ea66ed1cced2631d546fdfb155959f9ec" [[package]] name = "winnow" -version = "0.6.19" +version = "0.6.20" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "c52ac009d615e79296318c1bcce2d422aaca15ad08515e344feeda07df67a587" +checksum = "36c1fec1a2bb5866f07c25f68c26e565c4c200aebb96d7e55710c19d3e8ac49b" dependencies = [ "memchr", ] @@ -5703,7 +5706,7 @@ checksum = "fa4f8080344d4671fb4e831a13ad1e68092748387dfc4f55e356242fae12ce3e" dependencies = [ "proc-macro2", "quote", - "syn 2.0.77", + "syn 2.0.79", ] [[package]] diff --git a/clients/python/text_generation/types.py b/clients/python/text_generation/types.py index f7f823fc..1085075e 100644 --- a/clients/python/text_generation/types.py +++ b/clients/python/text_generation/types.py @@ -28,11 +28,17 @@ class ToolCall(BaseModel): function: dict +class Chunk(BaseModel): + type: str + text: Optional[str] = None + image_url: Any = None + + class Message(BaseModel): # Role of the message sender role: str # Content of the message - content: Optional[str] = None + content: Optional[Union[str, List[Chunk]]] = None # Optional name of the message sender name: Optional[str] = None # Tool calls associated with the chat completion diff --git a/docs/source/supported_models.md b/docs/source/supported_models.md index 3fa78ee9..be280a2b 100644 --- a/docs/source/supported_models.md +++ b/docs/source/supported_models.md @@ -35,6 +35,7 @@ Text Generation Inference enables serving optimized models on specific hardware - [Gpt Neox](https://huggingface.co/EleutherAI/gpt-neox-20b) - [Gptj](https://huggingface.co/EleutherAI/gpt-j-6b) - [Idefics](https://huggingface.co/HuggingFaceM4/idefics-9b) (Multimodal) +- [Mllama](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) (Multimodal) If the above list lacks the model you would like to serve, depending on the model's pipeline type, you can try to initialize and serve the model anyways to see how well it performs, but performance isn't guaranteed for non-optimized models: diff --git a/flake.lock b/flake.lock index e6361fda..30b11d5b 100644 --- a/flake.lock +++ b/flake.lock @@ -497,11 +497,11 @@ "systems": "systems_7" }, "locked": { - "lastModified": 1710146030, - "narHash": "sha256-SZ5L6eA7HJ/nmkzGG7/ISclqe6oZdOZTNoesiInkXPQ=", + "lastModified": 1726560853, + "narHash": "sha256-X6rJYSESBVr3hBoH0WbKE5KvhPU5bloyZ2L4K60/fPQ=", "owner": "numtide", "repo": "flake-utils", - "rev": "b1d9ab70662946ef0850d488da1c9019f3a9752a", + "rev": "c1dfcf08411b08f6b8615f7d8971a2bfa81d5e8a", "type": "github" }, "original": { @@ -718,11 +718,11 @@ }, "nixpkgs_6": { "locked": { - "lastModified": 1724915739, - "narHash": "sha256-7PgRge4mn5akFvhPwefuaLQGbF5BnmxlwZJEf7CgbrE=", + "lastModified": 1727675176, + "narHash": "sha256-xIjBFMYldWvj+g8ahxMPofsj+OqxvKJN6YylNHQ7gn4=", "owner": "nixos", "repo": "nixpkgs", - "rev": "85be051bb60943d3328d91aaf2598798f87e19af", + "rev": "a6d0207fea9212d28cd3d487efe6bc699663b93a", "type": "github" }, "original": { @@ -853,11 +853,11 @@ ] }, "locked": { - "lastModified": 1726626348, - "narHash": "sha256-sYV7e1B1yLcxo8/h+/hTwzZYmaju2oObNiy5iRI0C30=", + "lastModified": 1727836133, + "narHash": "sha256-JE0zciM5IGWvK8J/pE2VldNBf7oyMH5WrU8tZArefbg=", "owner": "oxalica", "repo": "rust-overlay", - "rev": "6fd52ad8bd88f39efb2c999cc971921c2fb9f3a2", + "rev": "02321540b0c8000b36889b1b974d1fec585b25a4", "type": "github" }, "original": { @@ -978,17 +978,16 @@ "nixpkgs": "nixpkgs_6" }, "locked": { - "lastModified": 1727710820, - "narHash": "sha256-BuSafCxoFQhkp7lnvNtpquxSK43rIbnouL2HypIUC+o=", - "owner": "danieldk", - "repo": "tgi-nix", - "rev": "4f4dc4b85dd856fd7904e8e3e486a2ff153584a2", + "lastModified": 1727859277, + "narHash": "sha256-AsrPuQqhg8x5RRR3aX0vvDDRQb+HREq2wGxXOpZnWus=", + "owner": "huggingface", + "repo": "text-generation-inference-nix", + "rev": "14196ab62f31d005f46207f7a251f82a81d0a09f", "type": "github" }, "original": { - "owner": "danieldk", - "ref": "moe-kernels-0.5.0", - "repo": "tgi-nix", + "owner": "huggingface", + "repo": "text-generation-inference-nix", "type": "github" } } diff --git a/flake.nix b/flake.nix index b18a5765..22fa8cfc 100644 --- a/flake.nix +++ b/flake.nix @@ -5,7 +5,7 @@ inputs.nixpkgs.follows = "tgi-nix/nixpkgs"; }; nix-filter.url = "github:numtide/nix-filter"; - tgi-nix.url = "github:danieldk/tgi-nix/moe-kernels-0.5.0"; + tgi-nix.url = "github:huggingface/text-generation-inference-nix"; nixpkgs.follows = "tgi-nix/nixpkgs"; flake-utils.url = "github:numtide/flake-utils"; rust-overlay = { diff --git a/integration-tests/models/__snapshots__/test_mllama/test_mllama_load.json b/integration-tests/models/__snapshots__/test_mllama/test_mllama_load.json new file mode 100644 index 00000000..95ba7a78 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_mllama/test_mllama_load.json @@ -0,0 +1,106 @@ +[ + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "In a bustling city, a chicken named Cluck", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1727773835, + "id": "", + "model": "meta-llama/Llama-3.2-11B-Vision-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.3.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 50, + "total_tokens": 60 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "In a world where even chickens could dream big,", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1727773835, + "id": "", + "model": "meta-llama/Llama-3.2-11B-Vision-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.3.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 50, + "total_tokens": 60 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "In a world where even chickens could dream big,", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1727773835, + "id": "", + "model": "meta-llama/Llama-3.2-11B-Vision-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.3.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 50, + "total_tokens": 60 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "In a world where even chickens could dream big,", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1727773835, + "id": "", + "model": "meta-llama/Llama-3.2-11B-Vision-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.3.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 50, + "total_tokens": 60 + } + } +] diff --git a/integration-tests/models/__snapshots__/test_mllama/test_mllama_simpl.json b/integration-tests/models/__snapshots__/test_mllama/test_mllama_simpl.json new file mode 100644 index 00000000..1d4dd6d7 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_mllama/test_mllama_simpl.json @@ -0,0 +1,26 @@ +{ + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "In a bustling city, a chicken named Cluck", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1727556016, + "id": "", + "model": "meta-llama/Llama-3.2-11B-Vision-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.3.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 50, + "total_tokens": 60 + } +} diff --git a/integration-tests/models/test_mllama.py b/integration-tests/models/test_mllama.py new file mode 100644 index 00000000..1b4264aa --- /dev/null +++ b/integration-tests/models/test_mllama.py @@ -0,0 +1,105 @@ +import pytest +import base64 +import asyncio + + +@pytest.fixture(scope="module") +def mllama_handle(launcher): + with launcher("meta-llama/Llama-3.2-11B-Vision-Instruct", num_shard=2) as handle: + yield handle + + +@pytest.fixture(scope="module") +async def mllama(mllama_handle): + await mllama_handle.health(300) + return mllama_handle.client + + +# TODO fix the server parsser to count inline image tokens correctly +def get_chicken(): + with open("integration-tests/images/chicken_on_money.png", "rb") as image_file: + encoded_string = base64.b64encode(image_file.read()) + return f"data:image/png;base64,{encoded_string.decode('utf-8')}" + + +def get_cow_beach(): + with open("integration-tests/images/cow_beach.png", "rb") as image_file: + encoded_string = base64.b64encode(image_file.read()) + return f"data:image/png;base64,{encoded_string.decode('utf-8')}" + + +@pytest.mark.asyncio +async def test_mllama_simpl(mllama, response_snapshot): + # chicken = get_chicken() + response = await mllama.chat( + max_tokens=10, + temperature=0.0, + messages=[ + { + "role": "user", + "content": [ + { + "type": "text", + "text": "Can you tell me a very short story based on the image?", + }, + { + "type": "image_url", + "image_url": { + "url": "https://raw.githubusercontent.com/huggingface/text-generation-inference/main/integration-tests/images/chicken_on_money.png" + }, + }, + ], + }, + ], + ) + + assert response.usage == { + "completion_tokens": 10, + "prompt_tokens": 50, + "total_tokens": 60, + } + assert ( + response.choices[0].message.content + == "In a bustling city, a chicken named Cluck" + ) + assert response == response_snapshot + + +@pytest.mark.release +@pytest.mark.asyncio +async def test_mllama_load(mllama, generate_load, response_snapshot): + futures = [ + mllama.chat( + max_tokens=10, + temperature=0.0, + messages=[ + { + "role": "user", + "content": [ + { + "type": "text", + "text": "Can you tell me a very short story based on the image?", + }, + { + "type": "image_url", + "image_url": { + "url": "https://raw.githubusercontent.com/huggingface/text-generation-inference/main/integration-tests/images/chicken_on_money.png" + }, + }, + ], + }, + ], + ) + for i in range(4) + ] + responses = await asyncio.gather(*futures) + + generated_texts = [response.choices[0].message.content for response in responses] + + assert generated_texts[0] == "In a bustling city, a chicken named Cluck" + assert len(generated_texts) == 4 + assert generated_texts, all( + [text == generated_texts[0] for text in generated_texts] + ) + + assert responses == response_snapshot diff --git a/router/src/config.rs b/router/src/config.rs index 9b770d06..1a20c40b 100644 --- a/router/src/config.rs +++ b/router/src/config.rs @@ -146,6 +146,7 @@ pub enum Config { ClipVisionModel(ClipVisionModel), Mistral, Idefics, + Mllama, Idefics2(Idefics2), Ssm, GptBigcode, diff --git a/router/src/infer/chat_template.rs b/router/src/infer/chat_template.rs index a736fc12..1071d0ba 100644 --- a/router/src/infer/chat_template.rs +++ b/router/src/infer/chat_template.rs @@ -29,7 +29,7 @@ impl ChatTemplate { env.set_unknown_method_callback(pycompat::unknown_method_callback); let template_str = template.into_boxed_str(); env.add_function("raise_exception", raise_exception); - tracing::debug!("Loading template: {:#?}", template_str); + tracing::debug!("Loading template: {}", template_str); // leaking env and template_str as read-only, static resources for performance. let template = Box::leak(env) diff --git a/router/src/validation.rs b/router/src/validation.rs index 92491d88..85b4220b 100644 --- a/router/src/validation.rs +++ b/router/src/validation.rs @@ -567,6 +567,7 @@ fn image_tokens( use HubPreprocessorConfig::*; match config { Idefics => "".to_string(), + Mllama => "<|image|>".to_string(), Idefics2(config) => { const FAKE: &str = ""; const IMAGE: &str = ""; @@ -618,7 +619,7 @@ fn prepare_input( use Config::*; static RE: Lazy = Lazy::new(|| Regex::new(r"!\[\]\([^\)]*\)").unwrap()); let (tokenizer_query, input_chunks) = match config { - Some(config @ (Idefics | Idefics2(_) | Paligemma(_) | LlavaNext(_))) => { + Some(config @ (Idefics | Mllama | Idefics2(_) | Paligemma(_) | LlavaNext(_))) => { let mut input_chunks = Vec::new(); let mut tokenizer_query = String::with_capacity(inputs.len()); let mut start = 0; diff --git a/server/poetry.lock b/server/poetry.lock index e1b0b3d5..64e45765 100644 --- a/server/poetry.lock +++ b/server/poetry.lock @@ -30,101 +30,128 @@ test-prod = ["parameterized", "pytest (>=7.2.0,<=8.0.0)", "pytest-subtests", "py test-trackers = ["comet-ml", "dvclive", "tensorboard", "wandb"] testing = ["bitsandbytes", "datasets", "deepspeed", "evaluate", "parameterized", "pytest (>=7.2.0,<=8.0.0)", "pytest-subtests", "pytest-xdist", "scikit-learn", "scipy", "timm", "torchpippy (>=0.2.0)", "tqdm", "transformers"] +[[package]] +name = "aiohappyeyeballs" +version = "2.4.0" +description = "Happy Eyeballs for asyncio" +optional = true +python-versions = ">=3.8" +files = [ + {file = "aiohappyeyeballs-2.4.0-py3-none-any.whl", hash = "sha256:7ce92076e249169a13c2f49320d1967425eaf1f407522d707d59cac7628d62bd"}, + {file = "aiohappyeyeballs-2.4.0.tar.gz", hash = "sha256:55a1714f084e63d49639800f95716da97a1f173d46a16dfcfda0016abb93b6b2"}, +] + [[package]] name = "aiohttp" -version = "3.9.5" +version = "3.10.6" description = "Async http client/server framework (asyncio)" optional = true python-versions = ">=3.8" files = [ - {file = "aiohttp-3.9.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:fcde4c397f673fdec23e6b05ebf8d4751314fa7c24f93334bf1f1364c1c69ac7"}, - {file = "aiohttp-3.9.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5d6b3f1fabe465e819aed2c421a6743d8debbde79b6a8600739300630a01bf2c"}, - {file = "aiohttp-3.9.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ae79c1bc12c34082d92bf9422764f799aee4746fd7a392db46b7fd357d4a17a"}, - {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d3ebb9e1316ec74277d19c5f482f98cc65a73ccd5430540d6d11682cd857430"}, - {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:84dabd95154f43a2ea80deffec9cb44d2e301e38a0c9d331cc4aa0166fe28ae3"}, - {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c8a02fbeca6f63cb1f0475c799679057fc9268b77075ab7cf3f1c600e81dd46b"}, - {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c26959ca7b75ff768e2776d8055bf9582a6267e24556bb7f7bd29e677932be72"}, - {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:714d4e5231fed4ba2762ed489b4aec07b2b9953cf4ee31e9871caac895a839c0"}, - {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7a6a8354f1b62e15d48e04350f13e726fa08b62c3d7b8401c0a1314f02e3558"}, - {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:c413016880e03e69d166efb5a1a95d40f83d5a3a648d16486592c49ffb76d0db"}, - {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:ff84aeb864e0fac81f676be9f4685f0527b660f1efdc40dcede3c251ef1e867f"}, - {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:ad7f2919d7dac062f24d6f5fe95d401597fbb015a25771f85e692d043c9d7832"}, - {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:702e2c7c187c1a498a4e2b03155d52658fdd6fda882d3d7fbb891a5cf108bb10"}, - {file = "aiohttp-3.9.5-cp310-cp310-win32.whl", hash = "sha256:67c3119f5ddc7261d47163ed86d760ddf0e625cd6246b4ed852e82159617b5fb"}, - {file = "aiohttp-3.9.5-cp310-cp310-win_amd64.whl", hash = "sha256:471f0ef53ccedec9995287f02caf0c068732f026455f07db3f01a46e49d76bbb"}, - {file = "aiohttp-3.9.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e0ae53e33ee7476dd3d1132f932eeb39bf6125083820049d06edcdca4381f342"}, - {file = "aiohttp-3.9.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c088c4d70d21f8ca5c0b8b5403fe84a7bc8e024161febdd4ef04575ef35d474d"}, - {file = "aiohttp-3.9.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:639d0042b7670222f33b0028de6b4e2fad6451462ce7df2af8aee37dcac55424"}, - {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f26383adb94da5e7fb388d441bf09c61e5e35f455a3217bfd790c6b6bc64b2ee"}, - {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:66331d00fb28dc90aa606d9a54304af76b335ae204d1836f65797d6fe27f1ca2"}, - {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4ff550491f5492ab5ed3533e76b8567f4b37bd2995e780a1f46bca2024223233"}, - {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f22eb3a6c1080d862befa0a89c380b4dafce29dc6cd56083f630073d102eb595"}, - {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a81b1143d42b66ffc40a441379387076243ef7b51019204fd3ec36b9f69e77d6"}, - {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f64fd07515dad67f24b6ea4a66ae2876c01031de91c93075b8093f07c0a2d93d"}, - {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:93e22add827447d2e26d67c9ac0161756007f152fdc5210277d00a85f6c92323"}, - {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:55b39c8684a46e56ef8c8d24faf02de4a2b2ac60d26cee93bc595651ff545de9"}, - {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4715a9b778f4293b9f8ae7a0a7cef9829f02ff8d6277a39d7f40565c737d3771"}, - {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:afc52b8d969eff14e069a710057d15ab9ac17cd4b6753042c407dcea0e40bf75"}, - {file = "aiohttp-3.9.5-cp311-cp311-win32.whl", hash = "sha256:b3df71da99c98534be076196791adca8819761f0bf6e08e07fd7da25127150d6"}, - {file = "aiohttp-3.9.5-cp311-cp311-win_amd64.whl", hash = "sha256:88e311d98cc0bf45b62fc46c66753a83445f5ab20038bcc1b8a1cc05666f428a"}, - {file = "aiohttp-3.9.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:c7a4b7a6cf5b6eb11e109a9755fd4fda7d57395f8c575e166d363b9fc3ec4678"}, - {file = "aiohttp-3.9.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:0a158704edf0abcac8ac371fbb54044f3270bdbc93e254a82b6c82be1ef08f3c"}, - {file = "aiohttp-3.9.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d153f652a687a8e95ad367a86a61e8d53d528b0530ef382ec5aaf533140ed00f"}, - {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82a6a97d9771cb48ae16979c3a3a9a18b600a8505b1115cfe354dfb2054468b4"}, - {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:60cdbd56f4cad9f69c35eaac0fbbdf1f77b0ff9456cebd4902f3dd1cf096464c"}, - {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8676e8fd73141ded15ea586de0b7cda1542960a7b9ad89b2b06428e97125d4fa"}, - {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da00da442a0e31f1c69d26d224e1efd3a1ca5bcbf210978a2ca7426dfcae9f58"}, - {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18f634d540dd099c262e9f887c8bbacc959847cfe5da7a0e2e1cf3f14dbf2daf"}, - {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:320e8618eda64e19d11bdb3bd04ccc0a816c17eaecb7e4945d01deee2a22f95f"}, - {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:2faa61a904b83142747fc6a6d7ad8fccff898c849123030f8e75d5d967fd4a81"}, - {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:8c64a6dc3fe5db7b1b4d2b5cb84c4f677768bdc340611eca673afb7cf416ef5a"}, - {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:393c7aba2b55559ef7ab791c94b44f7482a07bf7640d17b341b79081f5e5cd1a"}, - {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:c671dc117c2c21a1ca10c116cfcd6e3e44da7fcde37bf83b2be485ab377b25da"}, - {file = "aiohttp-3.9.5-cp312-cp312-win32.whl", hash = "sha256:5a7ee16aab26e76add4afc45e8f8206c95d1d75540f1039b84a03c3b3800dd59"}, - {file = "aiohttp-3.9.5-cp312-cp312-win_amd64.whl", hash = "sha256:5ca51eadbd67045396bc92a4345d1790b7301c14d1848feaac1d6a6c9289e888"}, - {file = "aiohttp-3.9.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:694d828b5c41255e54bc2dddb51a9f5150b4eefa9886e38b52605a05d96566e8"}, - {file = "aiohttp-3.9.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0605cc2c0088fcaae79f01c913a38611ad09ba68ff482402d3410bf59039bfb8"}, - {file = "aiohttp-3.9.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4558e5012ee03d2638c681e156461d37b7a113fe13970d438d95d10173d25f78"}, - {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9dbc053ac75ccc63dc3a3cc547b98c7258ec35a215a92bd9f983e0aac95d3d5b"}, - {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4109adee842b90671f1b689901b948f347325045c15f46b39797ae1bf17019de"}, - {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6ea1a5b409a85477fd8e5ee6ad8f0e40bf2844c270955e09360418cfd09abac"}, - {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3c2890ca8c59ee683fd09adf32321a40fe1cf164e3387799efb2acebf090c11"}, - {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3916c8692dbd9d55c523374a3b8213e628424d19116ac4308e434dbf6d95bbdd"}, - {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8d1964eb7617907c792ca00b341b5ec3e01ae8c280825deadbbd678447b127e1"}, - {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d5ab8e1f6bee051a4bf6195e38a5c13e5e161cb7bad83d8854524798bd9fcd6e"}, - {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:52c27110f3862a1afbcb2af4281fc9fdc40327fa286c4625dfee247c3ba90156"}, - {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:7f64cbd44443e80094309875d4f9c71d0401e966d191c3d469cde4642bc2e031"}, - {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8b4f72fbb66279624bfe83fd5eb6aea0022dad8eec62b71e7bf63ee1caadeafe"}, - {file = "aiohttp-3.9.5-cp38-cp38-win32.whl", hash = "sha256:6380c039ec52866c06d69b5c7aad5478b24ed11696f0e72f6b807cfb261453da"}, - {file = "aiohttp-3.9.5-cp38-cp38-win_amd64.whl", hash = "sha256:da22dab31d7180f8c3ac7c7635f3bcd53808f374f6aa333fe0b0b9e14b01f91a"}, - {file = "aiohttp-3.9.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:1732102949ff6087589408d76cd6dea656b93c896b011ecafff418c9661dc4ed"}, - {file = "aiohttp-3.9.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c6021d296318cb6f9414b48e6a439a7f5d1f665464da507e8ff640848ee2a58a"}, - {file = "aiohttp-3.9.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:239f975589a944eeb1bad26b8b140a59a3a320067fb3cd10b75c3092405a1372"}, - {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3b7b30258348082826d274504fbc7c849959f1989d86c29bc355107accec6cfb"}, - {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cd2adf5c87ff6d8b277814a28a535b59e20bfea40a101db6b3bdca7e9926bc24"}, - {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e9a3d838441bebcf5cf442700e3963f58b5c33f015341f9ea86dcd7d503c07e2"}, - {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e3a1ae66e3d0c17cf65c08968a5ee3180c5a95920ec2731f53343fac9bad106"}, - {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9c69e77370cce2d6df5d12b4e12bdcca60c47ba13d1cbbc8645dd005a20b738b"}, - {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0cbf56238f4bbf49dab8c2dc2e6b1b68502b1e88d335bea59b3f5b9f4c001475"}, - {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:d1469f228cd9ffddd396d9948b8c9cd8022b6d1bf1e40c6f25b0fb90b4f893ed"}, - {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:45731330e754f5811c314901cebdf19dd776a44b31927fa4b4dbecab9e457b0c"}, - {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:3fcb4046d2904378e3aeea1df51f697b0467f2aac55d232c87ba162709478c46"}, - {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8cf142aa6c1a751fcb364158fd710b8a9be874b81889c2bd13aa8893197455e2"}, - {file = "aiohttp-3.9.5-cp39-cp39-win32.whl", hash = "sha256:7b179eea70833c8dee51ec42f3b4097bd6370892fa93f510f76762105568cf09"}, - {file = "aiohttp-3.9.5-cp39-cp39-win_amd64.whl", hash = "sha256:38d80498e2e169bc61418ff36170e0aad0cd268da8b38a17c4cf29d254a8b3f1"}, - {file = "aiohttp-3.9.5.tar.gz", hash = "sha256:edea7d15772ceeb29db4aff55e482d4bcfb6ae160ce144f2682de02f6d693551"}, + {file = "aiohttp-3.10.6-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:682836fc672972cc3101cc9e30d49c5f7e8f1d010478d46119fe725a4545acfd"}, + {file = "aiohttp-3.10.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:289fa8a20018d0d5aa9e4b35d899bd51bcb80f0d5f365d9a23e30dac3b79159b"}, + {file = "aiohttp-3.10.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8617c96a20dd57e7e9d398ff9d04f3d11c4d28b1767273a5b1a018ada5a654d3"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bdbeff1b062751c2a2a55b171f7050fb7073633c699299d042e962aacdbe1a07"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ea35d849cdd4a9268f910bff4497baebbc1aa3f2f625fd8ccd9ac99c860c621"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:473961b3252f3b949bb84873d6e268fb6d8aa0ccc6eb7404fa58c76a326bb8e1"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d2665c5df629eb2f981dab244c01bfa6cdc185f4ffa026639286c4d56fafb54"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:25d92f794f1332f656e3765841fc2b7ad5c26c3f3d01e8949eeb3495691cf9f4"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:9bd6b2033993d5ae80883bb29b83fb2b432270bbe067c2f53cc73bb57c46065f"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:d7f408c43f5e75ea1edc152fb375e8f46ef916f545fb66d4aebcbcfad05e2796"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:cf8b8560aa965f87bf9c13bf9fed7025993a155ca0ce8422da74bf46d18c2f5f"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:14477c4e52e2f17437b99893fd220ffe7d7ee41df5ebf931a92b8ca82e6fd094"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:fb138fbf9f53928e779650f5ed26d0ea1ed8b2cab67f0ea5d63afa09fdc07593"}, + {file = "aiohttp-3.10.6-cp310-cp310-win32.whl", hash = "sha256:9843d683b8756971797be171ead21511d2215a2d6e3c899c6e3107fbbe826791"}, + {file = "aiohttp-3.10.6-cp310-cp310-win_amd64.whl", hash = "sha256:f8b8e49fe02f744d38352daca1dbef462c3874900bd8166516f6ea8e82b5aacf"}, + {file = "aiohttp-3.10.6-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f52e54fd776ad0da1006708762213b079b154644db54bcfc62f06eaa5b896402"}, + {file = "aiohttp-3.10.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:995ab1a238fd0d19dc65f2d222e5eb064e409665c6426a3e51d5101c1979ee84"}, + {file = "aiohttp-3.10.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0749c4d5a08a802dd66ecdf59b2df4d76b900004017468a7bb736c3b5a3dd902"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e05b39158f2af0e2438cc2075cfc271f4ace0c3cc4a81ec95b27a0432e161951"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a9f196c970db2dcde4f24317e06615363349dc357cf4d7a3b0716c20ac6d7bcd"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:47647c8af04a70e07a2462931b0eba63146a13affa697afb4ecbab9d03a480ce"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:669c0efe7e99f6d94d63274c06344bd0e9c8daf184ce5602a29bc39e00a18720"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c9721cdd83a994225352ca84cd537760d41a9da3c0eacb3ff534747ab8fba6d0"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0b82c8ebed66ce182893e7c0b6b60ba2ace45b1df104feb52380edae266a4850"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:b169f8e755e541b72e714b89a831b315bbe70db44e33fead28516c9e13d5f931"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:0be3115753baf8b4153e64f9aa7bf6c0c64af57979aa900c31f496301b374570"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:e1f80cd17d81a404b6e70ef22bfe1870bafc511728397634ad5f5efc8698df56"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:6419728b08fb6380c66a470d2319cafcec554c81780e2114b7e150329b9a9a7f"}, + {file = "aiohttp-3.10.6-cp311-cp311-win32.whl", hash = "sha256:bd294dcdc1afdc510bb51d35444003f14e327572877d016d576ac3b9a5888a27"}, + {file = "aiohttp-3.10.6-cp311-cp311-win_amd64.whl", hash = "sha256:bf861da9a43d282d6dd9dcd64c23a0fccf2c5aa5cd7c32024513c8c79fb69de3"}, + {file = "aiohttp-3.10.6-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:2708baccdc62f4b1251e59c2aac725936a900081f079b88843dabcab0feeeb27"}, + {file = "aiohttp-3.10.6-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:7475da7a5e2ccf1a1c86c8fee241e277f4874c96564d06f726d8df8e77683ef7"}, + {file = "aiohttp-3.10.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:02108326574ff60267b7b35b17ac5c0bbd0008ccb942ce4c48b657bb90f0b8aa"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:029a019627b37fa9eac5c75cc54a6bb722c4ebbf5a54d8c8c0fb4dd8facf2702"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a637d387db6fdad95e293fab5433b775fd104ae6348d2388beaaa60d08b38c4"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dc1a16f3fc1944c61290d33c88dc3f09ba62d159b284c38c5331868425aca426"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:81b292f37969f9cc54f4643f0be7dacabf3612b3b4a65413661cf6c350226787"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0754690a3a26e819173a34093798c155bafb21c3c640bff13be1afa1e9d421f9"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:164ecd32e65467d86843dbb121a6666c3deb23b460e3f8aefdcaacae79eb718a"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:438c5863feb761f7ca3270d48c292c334814459f61cc12bab5ba5b702d7c9e56"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:ba18573bb1de1063d222f41de64a0d3741223982dcea863b3f74646faf618ec7"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:c82a94ddec996413a905f622f3da02c4359952aab8d817c01cf9915419525e95"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:92351aa5363fc3c1f872ca763f86730ced32b01607f0c9662b1fa711087968d0"}, + {file = "aiohttp-3.10.6-cp312-cp312-win32.whl", hash = "sha256:3e15e33bfc73fa97c228f72e05e8795e163a693fd5323549f49367c76a6e5883"}, + {file = "aiohttp-3.10.6-cp312-cp312-win_amd64.whl", hash = "sha256:fe517113fe4d35d9072b826c3e147d63c5f808ca8167d450b4f96c520c8a1d8d"}, + {file = "aiohttp-3.10.6-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:482f74057ea13d387a7549d7a7ecb60e45146d15f3e58a2d93a0ad2d5a8457cd"}, + {file = "aiohttp-3.10.6-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:03fa40d1450ee5196e843315ddf74a51afc7e83d489dbfc380eecefea74158b1"}, + {file = "aiohttp-3.10.6-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1e52e59ed5f4cc3a3acfe2a610f8891f216f486de54d95d6600a2c9ba1581f4d"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b3935a22c9e41a8000d90588bed96cf395ef572dbb409be44c6219c61d900d"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4bef1480ee50f75abcfcb4b11c12de1005968ca9d0172aec4a5057ba9f2b644f"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:671745ea7db19693ce867359d503772177f0b20fa8f6ee1e74e00449f4c4151d"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b50b367308ca8c12e0b50cba5773bc9abe64c428d3fd2bbf5cd25aab37c77bf"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6a504d7cdb431a777d05a124fd0b21efb94498efa743103ea01b1e3136d2e4fb"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:66bc81361131763660b969132a22edce2c4d184978ba39614e8f8f95db5c95f8"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:27cf19a38506e2e9f12fc17e55f118f04897b0a78537055d93a9de4bf3022e3d"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:3468b39f977a11271517c6925b226720e148311039a380cc9117b1e2258a721f"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:9d26da22a793dfd424be1050712a70c0afd96345245c29aced1e35dbace03413"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:844d48ff9173d0b941abed8b2ea6a412f82b56d9ab1edb918c74000c15839362"}, + {file = "aiohttp-3.10.6-cp313-cp313-win32.whl", hash = "sha256:2dd56e3c43660ed3bea67fd4c5025f1ac1f9ecf6f0b991a6e5efe2e678c490c5"}, + {file = "aiohttp-3.10.6-cp313-cp313-win_amd64.whl", hash = "sha256:c91781d969fbced1993537f45efe1213bd6fccb4b37bfae2a026e20d6fbed206"}, + {file = "aiohttp-3.10.6-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:4407a80bca3e694f2d2a523058e20e1f9f98a416619e04f6dc09dc910352ac8b"}, + {file = "aiohttp-3.10.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1cb045ec5961f51af3e2c08cd6fe523f07cc6e345033adee711c49b7b91bb954"}, + {file = "aiohttp-3.10.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4fabdcdc781a36b8fd7b2ca9dea8172f29a99e11d00ca0f83ffeb50958da84a1"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79a9f42efcc2681790595ab3d03c0e52d01edc23a0973ea09f0dc8d295e12b8e"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cca776a440795db437d82c07455761c85bbcf3956221c3c23b8c93176c278ce7"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5582de171f0898139cf51dd9fcdc79b848e28d9abd68e837f0803fc9f30807b1"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:370e2d47575c53c817ee42a18acc34aad8da4dbdaac0a6c836d58878955f1477"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:444d1704e2af6b30766debed9be8a795958029e552fe77551355badb1944012c"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:40271a2a375812967401c9ca8077de9368e09a43a964f4dce0ff603301ec9358"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f3af26f86863fad12e25395805bb0babbd49d512806af91ec9708a272b696248"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:4752df44df48fd42b80f51d6a97553b482cda1274d9dc5df214a3a1aa5d8f018"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:2cd5290ab66cfca2f90045db2cc6434c1f4f9fbf97c9f1c316e785033782e7d2"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:3427031064b0d5c95647e6369c4aa3c556402f324a3e18107cb09517abe5f962"}, + {file = "aiohttp-3.10.6-cp38-cp38-win32.whl", hash = "sha256:614fc21e86adc28e4165a6391f851a6da6e9cbd7bb232d0df7718b453a89ee98"}, + {file = "aiohttp-3.10.6-cp38-cp38-win_amd64.whl", hash = "sha256:58c5d7318a136a3874c78717dd6de57519bc64f6363c5827c2b1cb775bea71dd"}, + {file = "aiohttp-3.10.6-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5db26bbca8e7968c4c977a0c640e0b9ce7224e1f4dcafa57870dc6ee28e27de6"}, + {file = "aiohttp-3.10.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3fb4216e3ec0dbc01db5ba802f02ed78ad8f07121be54eb9e918448cc3f61b7c"}, + {file = "aiohttp-3.10.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a976ef488f26e224079deb3d424f29144c6d5ba4ded313198169a8af8f47fb82"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a86610174de8a85a920e956e2d4f9945e7da89f29a00e95ac62a4a414c4ef4e"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:217791c6a399cc4f2e6577bb44344cba1f5714a2aebf6a0bea04cfa956658284"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ba3662d41abe2eab0eeec7ee56f33ef4e0b34858f38abf24377687f9e1fb00a5"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4dfa5ad4bce9ca30a76117fbaa1c1decf41ebb6c18a4e098df44298941566f9"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e0009258e97502936d3bd5bf2ced15769629097d0abb81e6495fba1047824fe0"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0a75d5c9fb4f06c41d029ae70ad943c3a844c40c0a769d12be4b99b04f473d3d"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:8198b7c002aae2b40b2d16bfe724b9a90bcbc9b78b2566fc96131ef4e382574d"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:4611db8c907f90fe86be112efdc2398cd7b4c8eeded5a4f0314b70fdea8feab0"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:ff99ae06eef85c7a565854826114ced72765832ee16c7e3e766c5e4c5b98d20e"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7641920bdcc7cd2d3ddfb8bb9133a6c9536b09dbd49490b79e125180b2d25b93"}, + {file = "aiohttp-3.10.6-cp39-cp39-win32.whl", hash = "sha256:e2e7d5591ea868d5ec82b90bbeb366a198715672841d46281b623e23079593db"}, + {file = "aiohttp-3.10.6-cp39-cp39-win_amd64.whl", hash = "sha256:b504c08c45623bf5c7ca41be380156d925f00199b3970efd758aef4a77645feb"}, + {file = "aiohttp-3.10.6.tar.gz", hash = "sha256:d2578ef941be0c2ba58f6f421a703527d08427237ed45ecb091fed6f83305336"}, ] [package.dependencies] +aiohappyeyeballs = ">=2.3.0" aiosignal = ">=1.1.2" async-timeout = {version = ">=4.0,<5.0", markers = "python_version < \"3.11\""} attrs = ">=17.3.0" frozenlist = ">=1.1.1" multidict = ">=4.5,<7.0" -yarl = ">=1.0,<2.0" +yarl = ">=1.12.0,<2.0" [package.extras] -speedups = ["Brotli", "aiodns", "brotlicffi"] +speedups = ["Brotli", "aiodns (>=3.2.0)", "brotlicffi"] [[package]] name = "aiosignal" @@ -164,32 +191,32 @@ files = [ [[package]] name = "attrs" -version = "23.2.0" +version = "24.2.0" description = "Classes Without Boilerplate" optional = true python-versions = ">=3.7" files = [ - {file = "attrs-23.2.0-py3-none-any.whl", hash = "sha256:99b87a485a5820b23b879f04c2305b44b951b502fd64be915879d77a7e8fc6f1"}, - {file = "attrs-23.2.0.tar.gz", hash = "sha256:935dc3b529c262f6cf76e50877d35a4bd3c1de194fd41f47a2b7ae8f19971f30"}, + {file = "attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2"}, + {file = "attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346"}, ] [package.extras] -cov = ["attrs[tests]", "coverage[toml] (>=5.3)"] -dev = ["attrs[tests]", "pre-commit"] -docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier", "zope-interface"] -tests = ["attrs[tests-no-zope]", "zope-interface"] -tests-mypy = ["mypy (>=1.6)", "pytest-mypy-plugins"] -tests-no-zope = ["attrs[tests-mypy]", "cloudpickle", "hypothesis", "pympler", "pytest (>=4.3.0)", "pytest-xdist[psutil]"] +benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] [[package]] name = "bitsandbytes" -version = "0.43.1" +version = "0.43.3" description = "k-bit optimizers and matrix multiplication routines." optional = true python-versions = "*" files = [ - {file = "bitsandbytes-0.43.1-py3-none-manylinux_2_24_x86_64.whl", hash = "sha256:a81c826d576d6d691c7b4a7491c8fdc0f37f769795d6ca2e54afa605d2c260a3"}, - {file = "bitsandbytes-0.43.1-py3-none-win_amd64.whl", hash = "sha256:52c1c7189a6ca006555a9663e544e75f40520a97a26e075411f9f9aca0771fcd"}, + {file = "bitsandbytes-0.43.3-py3-none-manylinux_2_24_x86_64.whl", hash = "sha256:cc99507c352be0715098b2c7577b690dd158972dc4ea10c7495bac104c7c79f0"}, + {file = "bitsandbytes-0.43.3-py3-none-win_amd64.whl", hash = "sha256:257f6552f2144748a84e6c44e1f7a98f3da888f675ed74e18fd7f7eb13c6cafa"}, ] [package.dependencies] @@ -202,13 +229,13 @@ test = ["scipy"] [[package]] name = "certifi" -version = "2024.7.4" +version = "2024.8.30" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, - {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, ] [[package]] @@ -348,27 +375,26 @@ files = [ [[package]] name = "datasets" -version = "2.20.0" +version = "2.21.0" description = "HuggingFace community-driven open-source library of datasets" optional = true python-versions = ">=3.8.0" files = [ - {file = "datasets-2.20.0-py3-none-any.whl", hash = "sha256:76ac02e3bdfff824492e20678f0b6b1b6d080515957fe834b00c2ba8d6b18e5e"}, - {file = "datasets-2.20.0.tar.gz", hash = "sha256:3c4dbcd27e0f642b9d41d20ff2efa721a5e04b32b2ca4009e0fc9139e324553f"}, + {file = "datasets-2.21.0-py3-none-any.whl", hash = "sha256:25e4e097110ce28824b746a107727ada94024cba11db8bc588d468414692b65a"}, + {file = "datasets-2.21.0.tar.gz", hash = "sha256:998f85a8460f1bd982e5bd058f8a0808eef424249e3df1e8cdd594ccd0dc8ba2"}, ] [package.dependencies] aiohttp = "*" dill = ">=0.3.0,<0.3.9" filelock = "*" -fsspec = {version = ">=2023.1.0,<=2024.5.0", extras = ["http"]} +fsspec = {version = ">=2023.1.0,<=2024.6.1", extras = ["http"]} huggingface-hub = ">=0.21.2" multiprocess = "*" numpy = ">=1.17" packaging = "*" pandas = "*" pyarrow = ">=15.0.0" -pyarrow-hotfix = "*" pyyaml = ">=5.1" requests = ">=2.32.2" tqdm = ">=4.66.3" @@ -376,17 +402,18 @@ xxhash = "*" [package.extras] apache-beam = ["apache-beam (>=2.26.0)"] -audio = ["librosa", "soundfile (>=0.12.1)"] +audio = ["librosa", "soundfile (>=0.12.1)", "soxr (>=0.4.0)"] benchmarks = ["tensorflow (==2.12.0)", "torch (==2.0.1)", "transformers (==4.30.1)"] -dev = ["Pillow (>=9.4.0)", "absl-py", "elasticsearch (<8.0.0)", "faiss-cpu (>=1.6.4)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "polars[timezone] (>=0.20.0)", "protobuf (<4.0.0)", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "ruff (>=0.3.0)", "s3fs", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "sqlalchemy", "tensorflow (>=2.6.0)", "tiktoken", "torch", "torch (>=2.0.0)", "transformers", "typing-extensions (>=4.6.1)", "zstandard"] +dev = ["Pillow (>=9.4.0)", "absl-py", "decorator", "elasticsearch (<8.0.0)", "faiss-cpu (>=1.8.0.post1)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "moto[server]", "polars[timezone] (>=0.20.0)", "protobuf (<4.0.0)", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "ruff (>=0.3.0)", "s3fs", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "soxr (>=0.4.0)", "sqlalchemy", "tensorflow (>=2.16.0)", "tensorflow (>=2.6.0)", "tensorflow (>=2.6.0)", "tiktoken", "torch", "torch (>=2.0.0)", "transformers", "transformers (>=4.42.0)", "typing-extensions (>=4.6.1)", "zstandard"] docs = ["s3fs", "tensorflow (>=2.6.0)", "torch", "transformers"] jax = ["jax (>=0.3.14)", "jaxlib (>=0.3.14)"] -metrics-tests = ["Werkzeug (>=1.0.1)", "accelerate", "bert-score (>=0.3.6)", "jiwer", "langdetect", "mauve-text", "nltk", "requests-file (>=1.5.1)", "rouge-score", "sacrebleu", "sacremoses", "scikit-learn", "scipy", "sentencepiece", "seqeval", "six (>=1.15.0,<1.16.0)", "spacy (>=3.0.0)", "texttable (>=1.6.3)", "tldextract", "tldextract (>=3.1.0)", "toml (>=0.10.1)", "typer (<0.5.0)"] +metrics-tests = ["Werkzeug (>=1.0.1)", "accelerate", "bert-score (>=0.3.6)", "jiwer", "langdetect", "mauve-text", "nltk (<3.8.2)", "requests-file (>=1.5.1)", "rouge-score", "sacrebleu", "sacremoses", "scikit-learn", "scipy", "sentencepiece", "seqeval", "six (>=1.15.0,<1.16.0)", "spacy (>=3.0.0)", "texttable (>=1.6.3)", "tldextract", "tldextract (>=3.1.0)", "toml (>=0.10.1)", "typer (<0.5.0)"] quality = ["ruff (>=0.3.0)"] s3 = ["s3fs"] tensorflow = ["tensorflow (>=2.6.0)"] tensorflow-gpu = ["tensorflow (>=2.6.0)"] -tests = ["Pillow (>=9.4.0)", "absl-py", "elasticsearch (<8.0.0)", "faiss-cpu (>=1.6.4)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "polars[timezone] (>=0.20.0)", "protobuf (<4.0.0)", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "sqlalchemy", "tensorflow (>=2.6.0)", "tiktoken", "torch (>=2.0.0)", "transformers", "typing-extensions (>=4.6.1)", "zstandard"] +tests = ["Pillow (>=9.4.0)", "absl-py", "decorator", "elasticsearch (<8.0.0)", "faiss-cpu (>=1.8.0.post1)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "moto[server]", "polars[timezone] (>=0.20.0)", "protobuf (<4.0.0)", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "soxr (>=0.4.0)", "sqlalchemy", "tensorflow (>=2.16.0)", "tensorflow (>=2.6.0)", "tiktoken", "torch (>=2.0.0)", "transformers (>=4.42.0)", "typing-extensions (>=4.6.1)", "zstandard"] +tests-numpy2 = ["Pillow (>=9.4.0)", "absl-py", "decorator", "elasticsearch (<8.0.0)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "moto[server]", "polars[timezone] (>=0.20.0)", "protobuf (<4.0.0)", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "soxr (>=0.4.0)", "sqlalchemy", "tiktoken", "torch (>=2.0.0)", "typing-extensions (>=4.6.1)", "zstandard"] torch = ["torch"] vision = ["Pillow (>=9.4.0)"] @@ -460,19 +487,19 @@ test = ["pytest (>=6)"] [[package]] name = "filelock" -version = "3.15.4" +version = "3.16.1" description = "A platform independent file lock." optional = false python-versions = ">=3.8" files = [ - {file = "filelock-3.15.4-py3-none-any.whl", hash = "sha256:6ca1fffae96225dab4c6eaf1c4f4f28cd2568d3ec2a44e15a08520504de468e7"}, - {file = "filelock-3.15.4.tar.gz", hash = "sha256:2207938cbc1844345cb01a5a95524dae30f0ce089eba5b00378295a17e3e90cb"}, + {file = "filelock-3.16.1-py3-none-any.whl", hash = "sha256:2082e5703d51fbf98ea75855d9d5527e33d8ff23099bec374a134febee6946b0"}, + {file = "filelock-3.16.1.tar.gz", hash = "sha256:c249fbfcd5db47e5e2d6d62198e565475ee65e4831e2561c8e313fa7eb961435"}, ] [package.extras] -docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8.0.1)", "pytest (>=7.4.3)", "pytest-asyncio (>=0.21)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)", "virtualenv (>=20.26.2)"] -typing = ["typing-extensions (>=4.8)"] +docs = ["furo (>=2024.8.6)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4.1)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.6.1)", "diff-cover (>=9.2)", "pytest (>=8.3.3)", "pytest-asyncio (>=0.24)", "pytest-cov (>=5)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.26.4)"] +typing = ["typing-extensions (>=4.12.2)"] [[package]] name = "frozenlist" @@ -562,13 +589,13 @@ files = [ [[package]] name = "fsspec" -version = "2024.5.0" +version = "2024.6.1" description = "File-system specification" optional = false python-versions = ">=3.8" files = [ - {file = "fsspec-2024.5.0-py3-none-any.whl", hash = "sha256:e0fdbc446d67e182f49a70b82cf7889028a63588fde6b222521f10937b2b670c"}, - {file = "fsspec-2024.5.0.tar.gz", hash = "sha256:1d021b0b0f933e3b3029ed808eb400c08ba101ca2de4b3483fbc9ca23fcee94a"}, + {file = "fsspec-2024.6.1-py3-none-any.whl", hash = "sha256:3cb443f8bcd2efb31295a5b9fdb02aee81d8452c80d28f97a6d0959e6cee101e"}, + {file = "fsspec-2024.6.1.tar.gz", hash = "sha256:fad7d7e209dd4c1208e3bbfda706620e0da5142bebbd9c384afb95b07e798e49"}, ] [package.dependencies] @@ -580,6 +607,7 @@ adl = ["adlfs"] arrow = ["pyarrow (>=1)"] dask = ["dask", "distributed"] dev = ["pre-commit", "ruff"] +doc = ["numpydoc", "sphinx", "sphinx-design", "sphinx-rtd-theme", "yarl"] dropbox = ["dropbox", "dropboxdrivefs", "requests"] full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] fuse = ["fusepy"] @@ -603,13 +631,13 @@ tqdm = ["tqdm"] [[package]] name = "googleapis-common-protos" -version = "1.63.2" +version = "1.65.0" description = "Common protobufs used in Google APIs" optional = false python-versions = ">=3.7" files = [ - {file = "googleapis-common-protos-1.63.2.tar.gz", hash = "sha256:27c5abdffc4911f28101e635de1533fb4cfd2c37fbaa9174587c799fac90aa87"}, - {file = "googleapis_common_protos-1.63.2-py2.py3-none-any.whl", hash = "sha256:27a2499c7e8aff199665b22741997e485eccc8645aa9176c7c988e6fae507945"}, + {file = "googleapis_common_protos-1.65.0-py2.py3-none-any.whl", hash = "sha256:2972e6c496f435b92590fd54045060867f3fe9be2c82ab148fc8885035479a63"}, + {file = "googleapis_common_protos-1.65.0.tar.gz", hash = "sha256:334a29d07cddc3aa01dee4988f9afd9b2916ee2ff49d6b757155dc0d197852c0"}, ] [package.dependencies] @@ -637,158 +665,152 @@ testing = ["protobuf (>=4.21.9)"] [[package]] name = "grpcio" -version = "1.65.1" +version = "1.66.1" description = "HTTP/2-based RPC framework" optional = false python-versions = ">=3.8" files = [ - {file = "grpcio-1.65.1-cp310-cp310-linux_armv7l.whl", hash = "sha256:3dc5f928815b8972fb83b78d8db5039559f39e004ec93ebac316403fe031a062"}, - {file = "grpcio-1.65.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:8333ca46053c35484c9f2f7e8d8ec98c1383a8675a449163cea31a2076d93de8"}, - {file = "grpcio-1.65.1-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:7af64838b6e615fff0ec711960ed9b6ee83086edfa8c32670eafb736f169d719"}, - {file = "grpcio-1.65.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbb64b4166362d9326f7efbf75b1c72106c1aa87f13a8c8b56a1224fac152f5c"}, - {file = "grpcio-1.65.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8422dc13ad93ec8caa2612b5032a2b9cd6421c13ed87f54db4a3a2c93afaf77"}, - {file = "grpcio-1.65.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:4effc0562b6c65d4add6a873ca132e46ba5e5a46f07c93502c37a9ae7f043857"}, - {file = "grpcio-1.65.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a6c71575a2fedf259724981fd73a18906513d2f306169c46262a5bae956e6364"}, - {file = "grpcio-1.65.1-cp310-cp310-win32.whl", hash = "sha256:34966cf526ef0ea616e008d40d989463e3db157abb213b2f20c6ce0ae7928875"}, - {file = "grpcio-1.65.1-cp310-cp310-win_amd64.whl", hash = "sha256:ca931de5dd6d9eb94ff19a2c9434b23923bce6f767179fef04dfa991f282eaad"}, - {file = "grpcio-1.65.1-cp311-cp311-linux_armv7l.whl", hash = "sha256:bbb46330cc643ecf10bd9bd4ca8e7419a14b6b9dedd05f671c90fb2c813c6037"}, - {file = "grpcio-1.65.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d827a6fb9215b961eb73459ad7977edb9e748b23e3407d21c845d1d8ef6597e5"}, - {file = "grpcio-1.65.1-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:6e71aed8835f8d9fbcb84babc93a9da95955d1685021cceb7089f4f1e717d719"}, - {file = "grpcio-1.65.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9a1c84560b3b2d34695c9ba53ab0264e2802721c530678a8f0a227951f453462"}, - {file = "grpcio-1.65.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:27adee2338d697e71143ed147fe286c05810965d5d30ec14dd09c22479bfe48a"}, - {file = "grpcio-1.65.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:f62652ddcadc75d0e7aa629e96bb61658f85a993e748333715b4ab667192e4e8"}, - {file = "grpcio-1.65.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:71a05fd814700dd9cb7d9a507f2f6a1ef85866733ccaf557eedacec32d65e4c2"}, - {file = "grpcio-1.65.1-cp311-cp311-win32.whl", hash = "sha256:b590f1ad056294dfaeac0b7e1b71d3d5ace638d8dd1f1147ce4bd13458783ba8"}, - {file = "grpcio-1.65.1-cp311-cp311-win_amd64.whl", hash = "sha256:12e9bdf3b5fd48e5fbe5b3da382ad8f97c08b47969f3cca81dd9b36b86ed39e2"}, - {file = "grpcio-1.65.1-cp312-cp312-linux_armv7l.whl", hash = "sha256:54cb822e177374b318b233e54b6856c692c24cdbd5a3ba5335f18a47396bac8f"}, - {file = "grpcio-1.65.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:aaf3c54419a28d45bd1681372029f40e5bfb58e5265e3882eaf21e4a5f81a119"}, - {file = "grpcio-1.65.1-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:557de35bdfbe8bafea0a003dbd0f4da6d89223ac6c4c7549d78e20f92ead95d9"}, - {file = "grpcio-1.65.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8bfd95ef3b097f0cc86ade54eafefa1c8ed623aa01a26fbbdcd1a3650494dd11"}, - {file = "grpcio-1.65.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e6a8f3d6c41e6b642870afe6cafbaf7b61c57317f9ec66d0efdaf19db992b90"}, - {file = "grpcio-1.65.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:1faaf7355ceed07ceaef0b9dcefa4c98daf1dd8840ed75c2de128c3f4a4d859d"}, - {file = "grpcio-1.65.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:60f1f38eed830488ad2a1b11579ef0f345ff16fffdad1d24d9fbc97ba31804ff"}, - {file = "grpcio-1.65.1-cp312-cp312-win32.whl", hash = "sha256:e75acfa52daf5ea0712e8aa82f0003bba964de7ae22c26d208cbd7bc08500177"}, - {file = "grpcio-1.65.1-cp312-cp312-win_amd64.whl", hash = "sha256:ff5a84907e51924973aa05ed8759210d8cdae7ffcf9e44fd17646cf4a902df59"}, - {file = "grpcio-1.65.1-cp38-cp38-linux_armv7l.whl", hash = "sha256:1fbd6331f18c3acd7e09d17fd840c096f56eaf0ef830fbd50af45ae9dc8dfd83"}, - {file = "grpcio-1.65.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:de5b6be29116e094c5ef9d9e4252e7eb143e3d5f6bd6d50a78075553ab4930b0"}, - {file = "grpcio-1.65.1-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:e4a3cdba62b2d6aeae6027ae65f350de6dc082b72e6215eccf82628e79efe9ba"}, - {file = "grpcio-1.65.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:941c4869aa229d88706b78187d60d66aca77fe5c32518b79e3c3e03fc26109a2"}, - {file = "grpcio-1.65.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f40cebe5edb518d78b8131e87cb83b3ee688984de38a232024b9b44e74ee53d3"}, - {file = "grpcio-1.65.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:2ca684ba331fb249d8a1ce88db5394e70dbcd96e58d8c4b7e0d7b141a453dce9"}, - {file = "grpcio-1.65.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8558f0083ddaf5de64a59c790bffd7568e353914c0c551eae2955f54ee4b857f"}, - {file = "grpcio-1.65.1-cp38-cp38-win32.whl", hash = "sha256:8d8143a3e3966f85dce6c5cc45387ec36552174ba5712c5dc6fcc0898fb324c0"}, - {file = "grpcio-1.65.1-cp38-cp38-win_amd64.whl", hash = "sha256:76e81a86424d6ca1ce7c16b15bdd6a964a42b40544bf796a48da241fdaf61153"}, - {file = "grpcio-1.65.1-cp39-cp39-linux_armv7l.whl", hash = "sha256:cb5175f45c980ff418998723ea1b3869cce3766d2ab4e4916fbd3cedbc9d0ed3"}, - {file = "grpcio-1.65.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b12c1aa7b95abe73b3e04e052c8b362655b41c7798da69f1eaf8d186c7d204df"}, - {file = "grpcio-1.65.1-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:3019fb50128b21a5e018d89569ffaaaa361680e1346c2f261bb84a91082eb3d3"}, - {file = "grpcio-1.65.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7ae15275ed98ea267f64ee9ddedf8ecd5306a5b5bb87972a48bfe24af24153e8"}, - {file = "grpcio-1.65.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f096ffb881f37e8d4f958b63c74bfc400c7cebd7a944b027357cd2fb8d91a57"}, - {file = "grpcio-1.65.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:2f56b5a68fdcf17a0a1d524bf177218c3c69b3947cb239ea222c6f1867c3ab68"}, - {file = "grpcio-1.65.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:941596d419b9736ab548aa0feb5bbba922f98872668847bf0720b42d1d227b9e"}, - {file = "grpcio-1.65.1-cp39-cp39-win32.whl", hash = "sha256:5fd7337a823b890215f07d429f4f193d24b80d62a5485cf88ee06648591a0c57"}, - {file = "grpcio-1.65.1-cp39-cp39-win_amd64.whl", hash = "sha256:1bceeec568372cbebf554eae1b436b06c2ff24cfaf04afade729fb9035408c6c"}, - {file = "grpcio-1.65.1.tar.gz", hash = "sha256:3c492301988cd720cd145d84e17318d45af342e29ef93141228f9cd73222368b"}, + {file = "grpcio-1.66.1-cp310-cp310-linux_armv7l.whl", hash = "sha256:4877ba180591acdf127afe21ec1c7ff8a5ecf0fe2600f0d3c50e8c4a1cbc6492"}, + {file = "grpcio-1.66.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:3750c5a00bd644c75f4507f77a804d0189d97a107eb1481945a0cf3af3e7a5ac"}, + {file = "grpcio-1.66.1-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:a013c5fbb12bfb5f927444b477a26f1080755a931d5d362e6a9a720ca7dbae60"}, + {file = "grpcio-1.66.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b1b24c23d51a1e8790b25514157d43f0a4dce1ac12b3f0b8e9f66a5e2c4c132f"}, + {file = "grpcio-1.66.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7ffb8ea674d68de4cac6f57d2498fef477cef582f1fa849e9f844863af50083"}, + {file = "grpcio-1.66.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:307b1d538140f19ccbd3aed7a93d8f71103c5d525f3c96f8616111614b14bf2a"}, + {file = "grpcio-1.66.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:1c17ebcec157cfb8dd445890a03e20caf6209a5bd4ac5b040ae9dbc59eef091d"}, + {file = "grpcio-1.66.1-cp310-cp310-win32.whl", hash = "sha256:ef82d361ed5849d34cf09105d00b94b6728d289d6b9235513cb2fcc79f7c432c"}, + {file = "grpcio-1.66.1-cp310-cp310-win_amd64.whl", hash = "sha256:292a846b92cdcd40ecca46e694997dd6b9be6c4c01a94a0dfb3fcb75d20da858"}, + {file = "grpcio-1.66.1-cp311-cp311-linux_armv7l.whl", hash = "sha256:c30aeceeaff11cd5ddbc348f37c58bcb96da8d5aa93fed78ab329de5f37a0d7a"}, + {file = "grpcio-1.66.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8a1e224ce6f740dbb6b24c58f885422deebd7eb724aff0671a847f8951857c26"}, + {file = "grpcio-1.66.1-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:a66fe4dc35d2330c185cfbb42959f57ad36f257e0cc4557d11d9f0a3f14311df"}, + {file = "grpcio-1.66.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e3ba04659e4fce609de2658fe4dbf7d6ed21987a94460f5f92df7579fd5d0e22"}, + {file = "grpcio-1.66.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4573608e23f7e091acfbe3e84ac2045680b69751d8d67685ffa193a4429fedb1"}, + {file = "grpcio-1.66.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7e06aa1f764ec8265b19d8f00140b8c4b6ca179a6dc67aa9413867c47e1fb04e"}, + {file = "grpcio-1.66.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3885f037eb11f1cacc41f207b705f38a44b69478086f40608959bf5ad85826dd"}, + {file = "grpcio-1.66.1-cp311-cp311-win32.whl", hash = "sha256:97ae7edd3f3f91480e48ede5d3e7d431ad6005bfdbd65c1b56913799ec79e791"}, + {file = "grpcio-1.66.1-cp311-cp311-win_amd64.whl", hash = "sha256:cfd349de4158d797db2bd82d2020554a121674e98fbe6b15328456b3bf2495bb"}, + {file = "grpcio-1.66.1-cp312-cp312-linux_armv7l.whl", hash = "sha256:a92c4f58c01c77205df6ff999faa008540475c39b835277fb8883b11cada127a"}, + {file = "grpcio-1.66.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:fdb14bad0835914f325349ed34a51940bc2ad965142eb3090081593c6e347be9"}, + {file = "grpcio-1.66.1-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:f03a5884c56256e08fd9e262e11b5cfacf1af96e2ce78dc095d2c41ccae2c80d"}, + {file = "grpcio-1.66.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2ca2559692d8e7e245d456877a85ee41525f3ed425aa97eb7a70fc9a79df91a0"}, + {file = "grpcio-1.66.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84ca1be089fb4446490dd1135828bd42a7c7f8421e74fa581611f7afdf7ab761"}, + {file = "grpcio-1.66.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:d639c939ad7c440c7b2819a28d559179a4508783f7e5b991166f8d7a34b52815"}, + {file = "grpcio-1.66.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b9feb4e5ec8dc2d15709f4d5fc367794d69277f5d680baf1910fc9915c633524"}, + {file = "grpcio-1.66.1-cp312-cp312-win32.whl", hash = "sha256:7101db1bd4cd9b880294dec41a93fcdce465bdbb602cd8dc5bd2d6362b618759"}, + {file = "grpcio-1.66.1-cp312-cp312-win_amd64.whl", hash = "sha256:b0aa03d240b5539648d996cc60438f128c7f46050989e35b25f5c18286c86734"}, + {file = "grpcio-1.66.1-cp38-cp38-linux_armv7l.whl", hash = "sha256:ecfe735e7a59e5a98208447293ff8580e9db1e890e232b8b292dc8bd15afc0d2"}, + {file = "grpcio-1.66.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:4825a3aa5648010842e1c9d35a082187746aa0cdbf1b7a2a930595a94fb10fce"}, + {file = "grpcio-1.66.1-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:f517fd7259fe823ef3bd21e508b653d5492e706e9f0ef82c16ce3347a8a5620c"}, + {file = "grpcio-1.66.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f1fe60d0772831d96d263b53d83fb9a3d050a94b0e94b6d004a5ad111faa5b5b"}, + {file = "grpcio-1.66.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31a049daa428f928f21090403e5d18ea02670e3d5d172581670be006100db9ef"}, + {file = "grpcio-1.66.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:6f914386e52cbdeb5d2a7ce3bf1fdfacbe9d818dd81b6099a05b741aaf3848bb"}, + {file = "grpcio-1.66.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:bff2096bdba686019fb32d2dde45b95981f0d1490e054400f70fc9a8af34b49d"}, + {file = "grpcio-1.66.1-cp38-cp38-win32.whl", hash = "sha256:aa8ba945c96e73de29d25331b26f3e416e0c0f621e984a3ebdb2d0d0b596a3b3"}, + {file = "grpcio-1.66.1-cp38-cp38-win_amd64.whl", hash = "sha256:161d5c535c2bdf61b95080e7f0f017a1dfcb812bf54093e71e5562b16225b4ce"}, + {file = "grpcio-1.66.1-cp39-cp39-linux_armv7l.whl", hash = "sha256:d0cd7050397b3609ea51727b1811e663ffda8bda39c6a5bb69525ef12414b503"}, + {file = "grpcio-1.66.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0e6c9b42ded5d02b6b1fea3a25f036a2236eeb75d0579bfd43c0018c88bf0a3e"}, + {file = "grpcio-1.66.1-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:c9f80f9fad93a8cf71c7f161778ba47fd730d13a343a46258065c4deb4b550c0"}, + {file = "grpcio-1.66.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5dd67ed9da78e5121efc5c510f0122a972216808d6de70953a740560c572eb44"}, + {file = "grpcio-1.66.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:48b0d92d45ce3be2084b92fb5bae2f64c208fea8ceed7fccf6a7b524d3c4942e"}, + {file = "grpcio-1.66.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:4d813316d1a752be6f5c4360c49f55b06d4fe212d7df03253dfdae90c8a402bb"}, + {file = "grpcio-1.66.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9c9bebc6627873ec27a70fc800f6083a13c70b23a5564788754b9ee52c5aef6c"}, + {file = "grpcio-1.66.1-cp39-cp39-win32.whl", hash = "sha256:30a1c2cf9390c894c90bbc70147f2372130ad189cffef161f0432d0157973f45"}, + {file = "grpcio-1.66.1-cp39-cp39-win_amd64.whl", hash = "sha256:17663598aadbedc3cacd7bbde432f541c8e07d2496564e22b214b22c7523dac8"}, + {file = "grpcio-1.66.1.tar.gz", hash = "sha256:35334f9c9745add3e357e3372756fd32d925bd52c41da97f4dfdafbde0bf0ee2"}, ] [package.extras] -protobuf = ["grpcio-tools (>=1.65.1)"] +protobuf = ["grpcio-tools (>=1.66.1)"] [[package]] name = "grpcio-reflection" -version = "1.62.2" +version = "1.62.3" description = "Standard Protobuf Reflection Service for gRPC" optional = false python-versions = ">=3.6" files = [ - {file = "grpcio-reflection-1.62.2.tar.gz", hash = "sha256:2dd44806d68d0006636529bda573012b19a42281478c2d051cdaaebb91e2516c"}, - {file = "grpcio_reflection-1.62.2-py3-none-any.whl", hash = "sha256:68e8dff3617a9afaf7c462c688f7ca62b55323f497c662abf9965f2953508885"}, + {file = "grpcio-reflection-1.62.3.tar.gz", hash = "sha256:cb84682933c400bddf94dd94f928d1c6570f500b6dd255973d4bfb495b82585f"}, + {file = "grpcio_reflection-1.62.3-py3-none-any.whl", hash = "sha256:a48ef37df81a3bada78261fc92ef382f061112f989d1312398b945cc69838b9c"}, ] [package.dependencies] -grpcio = ">=1.62.2" +grpcio = ">=1.62.3" protobuf = ">=4.21.6" [[package]] name = "grpcio-status" -version = "1.62.2" +version = "1.62.3" description = "Status proto mapping for gRPC" optional = false python-versions = ">=3.6" files = [ - {file = "grpcio-status-1.62.2.tar.gz", hash = "sha256:62e1bfcb02025a1cd73732a2d33672d3e9d0df4d21c12c51e0bbcaf09bab742a"}, - {file = "grpcio_status-1.62.2-py3-none-any.whl", hash = "sha256:206ddf0eb36bc99b033f03b2c8e95d319f0044defae9b41ae21408e7e0cda48f"}, + {file = "grpcio-status-1.62.3.tar.gz", hash = "sha256:289bdd7b2459794a12cf95dc0cb727bd4a1742c37bd823f760236c937e53a485"}, + {file = "grpcio_status-1.62.3-py3-none-any.whl", hash = "sha256:f9049b762ba8de6b1086789d8315846e094edac2c50beaf462338b301a8fd4b8"}, ] [package.dependencies] googleapis-common-protos = ">=1.5.5" -grpcio = ">=1.62.2" +grpcio = ">=1.62.3" protobuf = ">=4.21.6" [[package]] name = "grpcio-tools" -version = "1.62.2" +version = "1.62.3" description = "Protobuf code generator for gRPC" optional = false python-versions = ">=3.7" files = [ - {file = "grpcio-tools-1.62.2.tar.gz", hash = "sha256:5fd5e1582b678e6b941ee5f5809340be5e0724691df5299aae8226640f94e18f"}, - {file = "grpcio_tools-1.62.2-cp310-cp310-linux_armv7l.whl", hash = "sha256:1679b4903aed2dc5bd8cb22a452225b05dc8470a076f14fd703581efc0740cdb"}, - {file = "grpcio_tools-1.62.2-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:9d41e0e47dd075c075bb8f103422968a65dd0d8dc8613288f573ae91eb1053ba"}, - {file = "grpcio_tools-1.62.2-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:987e774f74296842bbffd55ea8826370f70c499e5b5f71a8cf3103838b6ee9c3"}, - {file = "grpcio_tools-1.62.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40cd4eeea4b25bcb6903b82930d579027d034ba944393c4751cdefd9c49e6989"}, - {file = "grpcio_tools-1.62.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b6746bc823958499a3cf8963cc1de00072962fb5e629f26d658882d3f4c35095"}, - {file = "grpcio_tools-1.62.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:2ed775e844566ce9ce089be9a81a8b928623b8ee5820f5e4d58c1a9d33dfc5ae"}, - {file = "grpcio_tools-1.62.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bdc5dd3f57b5368d5d661d5d3703bcaa38bceca59d25955dff66244dbc987271"}, - {file = "grpcio_tools-1.62.2-cp310-cp310-win32.whl", hash = "sha256:3a8d6f07e64c0c7756f4e0c4781d9d5a2b9cc9cbd28f7032a6fb8d4f847d0445"}, - {file = "grpcio_tools-1.62.2-cp310-cp310-win_amd64.whl", hash = "sha256:e33b59fb3efdddeb97ded988a871710033e8638534c826567738d3edce528752"}, - {file = "grpcio_tools-1.62.2-cp311-cp311-linux_armv7l.whl", hash = "sha256:472505d030135d73afe4143b0873efe0dcb385bd6d847553b4f3afe07679af00"}, - {file = "grpcio_tools-1.62.2-cp311-cp311-macosx_10_10_universal2.whl", hash = "sha256:ec674b4440ef4311ac1245a709e87b36aca493ddc6850eebe0b278d1f2b6e7d1"}, - {file = "grpcio_tools-1.62.2-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:184b4174d4bd82089d706e8223e46c42390a6ebac191073b9772abc77308f9fa"}, - {file = "grpcio_tools-1.62.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c195d74fe98541178ece7a50dad2197d43991e0f77372b9a88da438be2486f12"}, - {file = "grpcio_tools-1.62.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a34d97c62e61bfe9e6cff0410fe144ac8cca2fc979ad0be46b7edf026339d161"}, - {file = "grpcio_tools-1.62.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:cbb8453ae83a1db2452b7fe0f4b78e4a8dd32be0f2b2b73591ae620d4d784d3d"}, - {file = "grpcio_tools-1.62.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:4f989e5cebead3ae92c6abf6bf7b19949e1563a776aea896ac5933f143f0c45d"}, - {file = "grpcio_tools-1.62.2-cp311-cp311-win32.whl", hash = "sha256:c48fabe40b9170f4e3d7dd2c252e4f1ff395dc24e49ac15fc724b1b6f11724da"}, - {file = "grpcio_tools-1.62.2-cp311-cp311-win_amd64.whl", hash = "sha256:8c616d0ad872e3780693fce6a3ac8ef00fc0963e6d7815ce9dcfae68ba0fc287"}, - {file = "grpcio_tools-1.62.2-cp312-cp312-linux_armv7l.whl", hash = "sha256:10cc3321704ecd17c93cf68c99c35467a8a97ffaaed53207e9b2da6ae0308ee1"}, - {file = "grpcio_tools-1.62.2-cp312-cp312-macosx_10_10_universal2.whl", hash = "sha256:9be84ff6d47fd61462be7523b49d7ba01adf67ce4e1447eae37721ab32464dd8"}, - {file = "grpcio_tools-1.62.2-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:d82f681c9a9d933a9d8068e8e382977768e7779ddb8870fa0cf918d8250d1532"}, - {file = "grpcio_tools-1.62.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:04c607029ae3660fb1624ed273811ffe09d57d84287d37e63b5b802a35897329"}, - {file = "grpcio_tools-1.62.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72b61332f1b439c14cbd3815174a8f1d35067a02047c32decd406b3a09bb9890"}, - {file = "grpcio_tools-1.62.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8214820990d01b52845f9fbcb92d2b7384a0c321b303e3ac614c219dc7d1d3af"}, - {file = "grpcio_tools-1.62.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:462e0ab8dd7c7b70bfd6e3195eebc177549ede5cf3189814850c76f9a340d7ce"}, - {file = "grpcio_tools-1.62.2-cp312-cp312-win32.whl", hash = "sha256:fa107460c842e4c1a6266150881694fefd4f33baa544ea9489601810c2210ef8"}, - {file = "grpcio_tools-1.62.2-cp312-cp312-win_amd64.whl", hash = "sha256:759c60f24c33a181bbbc1232a6752f9b49fbb1583312a4917e2b389fea0fb0f2"}, - {file = "grpcio_tools-1.62.2-cp37-cp37m-linux_armv7l.whl", hash = "sha256:45db5da2bcfa88f2b86b57ef35daaae85c60bd6754a051d35d9449c959925b57"}, - {file = "grpcio_tools-1.62.2-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:ab84bae88597133f6ea7a2bdc57b2fda98a266fe8d8d4763652cbefd20e73ad7"}, - {file = "grpcio_tools-1.62.2-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:7a49bccae1c7d154b78e991885c3111c9ad8c8fa98e91233de425718f47c6139"}, - {file = "grpcio_tools-1.62.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a7e439476b29d6dac363b321781a113794397afceeb97dad85349db5f1cb5e9a"}, - {file = "grpcio_tools-1.62.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ea369c4d1567d1acdf69c8ea74144f4ccad9e545df7f9a4fc64c94fa7684ba3"}, - {file = "grpcio_tools-1.62.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:4f955702dc4b530696375251319d05223b729ed24e8673c2129f7a75d2caefbb"}, - {file = "grpcio_tools-1.62.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:3708a747aa4b6b505727282ca887041174e146ae030ebcadaf4c1d346858df62"}, - {file = "grpcio_tools-1.62.2-cp37-cp37m-win_amd64.whl", hash = "sha256:2ce149ea55eadb486a7fb75a20f63ef3ac065ee6a0240ed25f3549ce7954c653"}, - {file = "grpcio_tools-1.62.2-cp38-cp38-linux_armv7l.whl", hash = "sha256:58cbb24b3fa6ae35aa9c210fcea3a51aa5fef0cd25618eb4fd94f746d5a9b703"}, - {file = "grpcio_tools-1.62.2-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:6413581e14a80e0b4532577766cf0586de4dd33766a31b3eb5374a746771c07d"}, - {file = "grpcio_tools-1.62.2-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:47117c8a7e861382470d0e22d336e5a91fdc5f851d1db44fa784b9acea190d87"}, - {file = "grpcio_tools-1.62.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9f1ba79a253df9e553d20319c615fa2b429684580fa042dba618d7f6649ac7e4"}, - {file = "grpcio_tools-1.62.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:04a394cf5e51ba9be412eb9f6c482b6270bd81016e033e8eb7d21b8cc28fe8b5"}, - {file = "grpcio_tools-1.62.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3c53b221378b035ae2f1881cbc3aca42a6075a8e90e1a342c2f205eb1d1aa6a1"}, - {file = "grpcio_tools-1.62.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c384c838b34d1b67068e51b5bbe49caa6aa3633acd158f1ab16b5da8d226bc53"}, - {file = "grpcio_tools-1.62.2-cp38-cp38-win32.whl", hash = "sha256:19ea69e41c3565932aa28a202d1875ec56786aea46a2eab54a3b28e8a27f9517"}, - {file = "grpcio_tools-1.62.2-cp38-cp38-win_amd64.whl", hash = "sha256:1d768a5c07279a4c461ebf52d0cec1c6ca85c6291c71ec2703fe3c3e7e28e8c4"}, - {file = "grpcio_tools-1.62.2-cp39-cp39-linux_armv7l.whl", hash = "sha256:5b07b5874187e170edfbd7aa2ca3a54ebf3b2952487653e8c0b0d83601c33035"}, - {file = "grpcio_tools-1.62.2-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:d58389fe8be206ddfb4fa703db1e24c956856fcb9a81da62b13577b3a8f7fda7"}, - {file = "grpcio_tools-1.62.2-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:7d8b4e00c3d7237b92260fc18a561cd81f1da82e8be100db1b7d816250defc66"}, - {file = "grpcio_tools-1.62.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1fe08d2038f2b7c53259b5c49e0ad08c8e0ce2b548d8185993e7ef67e8592cca"}, - {file = "grpcio_tools-1.62.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:19216e1fb26dbe23d12a810517e1b3fbb8d4f98b1a3fbebeec9d93a79f092de4"}, - {file = "grpcio_tools-1.62.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:b8574469ecc4ff41d6bb95f44e0297cdb0d95bade388552a9a444db9cd7485cd"}, - {file = "grpcio_tools-1.62.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4f6f32d39283ea834a493fccf0ebe9cfddee7577bdcc27736ad4be1732a36399"}, - {file = "grpcio_tools-1.62.2-cp39-cp39-win32.whl", hash = "sha256:76eb459bdf3fb666e01883270beee18f3f11ed44488486b61cd210b4e0e17cc1"}, - {file = "grpcio_tools-1.62.2-cp39-cp39-win_amd64.whl", hash = "sha256:217c2ee6a7ce519a55958b8622e21804f6fdb774db08c322f4c9536c35fdce7c"}, + {file = "grpcio-tools-1.62.3.tar.gz", hash = "sha256:7c7136015c3d62c3eef493efabaf9e3380e3e66d24ee8e94c01cb71377f57833"}, + {file = "grpcio_tools-1.62.3-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:2f968b049c2849540751ec2100ab05e8086c24bead769ca734fdab58698408c1"}, + {file = "grpcio_tools-1.62.3-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:0a8c0c4724ae9c2181b7dbc9b186df46e4f62cb18dc184e46d06c0ebeccf569e"}, + {file = "grpcio_tools-1.62.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5782883a27d3fae8c425b29a9d3dcf5f47d992848a1b76970da3b5a28d424b26"}, + {file = "grpcio_tools-1.62.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3d812daffd0c2d2794756bd45a353f89e55dc8f91eb2fc840c51b9f6be62667"}, + {file = "grpcio_tools-1.62.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:b47d0dda1bdb0a0ba7a9a6de88e5a1ed61f07fad613964879954961e36d49193"}, + {file = "grpcio_tools-1.62.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ca246dffeca0498be9b4e1ee169b62e64694b0f92e6d0be2573e65522f39eea9"}, + {file = "grpcio_tools-1.62.3-cp310-cp310-win32.whl", hash = "sha256:6a56d344b0bab30bf342a67e33d386b0b3c4e65868ffe93c341c51e1a8853ca5"}, + {file = "grpcio_tools-1.62.3-cp310-cp310-win_amd64.whl", hash = "sha256:710fecf6a171dcbfa263a0a3e7070e0df65ba73158d4c539cec50978f11dad5d"}, + {file = "grpcio_tools-1.62.3-cp311-cp311-macosx_10_10_universal2.whl", hash = "sha256:703f46e0012af83a36082b5f30341113474ed0d91e36640da713355cd0ea5d23"}, + {file = "grpcio_tools-1.62.3-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:7cc83023acd8bc72cf74c2edbe85b52098501d5b74d8377bfa06f3e929803492"}, + {file = "grpcio_tools-1.62.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7ff7d58a45b75df67d25f8f144936a3e44aabd91afec833ee06826bd02b7fbe7"}, + {file = "grpcio_tools-1.62.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f2483ea232bd72d98a6dc6d7aefd97e5bc80b15cd909b9e356d6f3e326b6e43"}, + {file = "grpcio_tools-1.62.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:962c84b4da0f3b14b3cdb10bc3837ebc5f136b67d919aea8d7bb3fd3df39528a"}, + {file = "grpcio_tools-1.62.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8ad0473af5544f89fc5a1ece8676dd03bdf160fb3230f967e05d0f4bf89620e3"}, + {file = "grpcio_tools-1.62.3-cp311-cp311-win32.whl", hash = "sha256:db3bc9fa39afc5e4e2767da4459df82b095ef0cab2f257707be06c44a1c2c3e5"}, + {file = "grpcio_tools-1.62.3-cp311-cp311-win_amd64.whl", hash = "sha256:e0898d412a434e768a0c7e365acabe13ff1558b767e400936e26b5b6ed1ee51f"}, + {file = "grpcio_tools-1.62.3-cp312-cp312-macosx_10_10_universal2.whl", hash = "sha256:d102b9b21c4e1e40af9a2ab3c6d41afba6bd29c0aa50ca013bf85c99cdc44ac5"}, + {file = "grpcio_tools-1.62.3-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:0a52cc9444df978438b8d2332c0ca99000521895229934a59f94f37ed896b133"}, + {file = "grpcio_tools-1.62.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:141d028bf5762d4a97f981c501da873589df3f7e02f4c1260e1921e565b376fa"}, + {file = "grpcio_tools-1.62.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47a5c093ab256dec5714a7a345f8cc89315cb57c298b276fa244f37a0ba507f0"}, + {file = "grpcio_tools-1.62.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:f6831fdec2b853c9daa3358535c55eed3694325889aa714070528cf8f92d7d6d"}, + {file = "grpcio_tools-1.62.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:e02d7c1a02e3814c94ba0cfe43d93e872c758bd8fd5c2797f894d0c49b4a1dfc"}, + {file = "grpcio_tools-1.62.3-cp312-cp312-win32.whl", hash = "sha256:b881fd9505a84457e9f7e99362eeedd86497b659030cf57c6f0070df6d9c2b9b"}, + {file = "grpcio_tools-1.62.3-cp312-cp312-win_amd64.whl", hash = "sha256:11c625eebefd1fd40a228fc8bae385e448c7e32a6ae134e43cf13bbc23f902b7"}, + {file = "grpcio_tools-1.62.3-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:ec6fbded0c61afe6f84e3c2a43e6d656791d95747d6d28b73eff1af64108c434"}, + {file = "grpcio_tools-1.62.3-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:bfda6ee8990997a9df95c5606f3096dae65f09af7ca03a1e9ca28f088caca5cf"}, + {file = "grpcio_tools-1.62.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b77f9f9cee87cd798f0fe26b7024344d1b03a7cd2d2cba7035f8433b13986325"}, + {file = "grpcio_tools-1.62.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e02d3b96f2d0e4bab9ceaa30f37d4f75571e40c6272e95364bff3125a64d184"}, + {file = "grpcio_tools-1.62.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:1da38070738da53556a4b35ab67c1b9884a5dd48fa2f243db35dc14079ea3d0c"}, + {file = "grpcio_tools-1.62.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ace43b26d88a58dcff16c20d23ff72b04d0a415f64d2820f4ff06b1166f50557"}, + {file = "grpcio_tools-1.62.3-cp37-cp37m-win_amd64.whl", hash = "sha256:350a80485e302daaa95d335a931f97b693e170e02d43767ab06552c708808950"}, + {file = "grpcio_tools-1.62.3-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:c3a1ac9d394f8e229eb28eec2e04b9a6f5433fa19c9d32f1cb6066e3c5114a1d"}, + {file = "grpcio_tools-1.62.3-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:11f363570dea661dde99e04a51bd108a5807b5df32a6f8bdf4860e34e94a4dbf"}, + {file = "grpcio_tools-1.62.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc9ad9950119d8ae27634e68b7663cc8d340ae535a0f80d85a55e56a6973ab1f"}, + {file = "grpcio_tools-1.62.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c5d22b252dcef11dd1e0fbbe5bbfb9b4ae048e8880d33338215e8ccbdb03edc"}, + {file = "grpcio_tools-1.62.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:27cd9ef5c5d68d5ed104b6dcb96fe9c66b82050e546c9e255716903c3d8f0373"}, + {file = "grpcio_tools-1.62.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:f4b1615adf67bd8bb71f3464146a6f9949972d06d21a4f5e87e73f6464d97f57"}, + {file = "grpcio_tools-1.62.3-cp38-cp38-win32.whl", hash = "sha256:e18e15287c31baf574fcdf8251fb7f997d64e96c6ecf467906e576da0a079af6"}, + {file = "grpcio_tools-1.62.3-cp38-cp38-win_amd64.whl", hash = "sha256:6c3064610826f50bd69410c63101954676edc703e03f9e8f978a135f1aaf97c1"}, + {file = "grpcio_tools-1.62.3-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:8e62cc7164b0b7c5128e637e394eb2ef3db0e61fc798e80c301de3b2379203ed"}, + {file = "grpcio_tools-1.62.3-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:c8ad5cce554e2fcaf8842dee5d9462583b601a3a78f8b76a153c38c963f58c10"}, + {file = "grpcio_tools-1.62.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ec279dcf3518201fc592c65002754f58a6b542798cd7f3ecd4af086422f33f29"}, + {file = "grpcio_tools-1.62.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c989246c2aebc13253f08be32538a4039a64e12d9c18f6d662d7aee641dc8b5"}, + {file = "grpcio_tools-1.62.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:ca4f5eeadbb57cf03317d6a2857823239a63a59cc935f5bd6cf6e8b7af7a7ecc"}, + {file = "grpcio_tools-1.62.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0cb3a3436ac119cbd37a7d3331d9bdf85dad21a6ac233a3411dff716dcbf401e"}, + {file = "grpcio_tools-1.62.3-cp39-cp39-win32.whl", hash = "sha256:3eae6ea76d62fcac091e1f15c2dcedf1dc3f114f8df1a972a8a0745e89f4cf61"}, + {file = "grpcio_tools-1.62.3-cp39-cp39-win_amd64.whl", hash = "sha256:eec73a005443061f4759b71a056f745e3b000dc0dc125c9f20560232dfbcbd14"}, ] [package.dependencies] -grpcio = ">=1.62.2" +grpcio = ">=1.62.3" protobuf = ">=4.21.6,<5.0dev" setuptools = "*" @@ -892,15 +914,18 @@ typing = ["types-PyYAML", "types-requests", "types-simplejson", "types-toml", "t [[package]] name = "idna" -version = "3.7" +version = "3.10" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.5" +python-versions = ">=3.6" files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, ] +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + [[package]] name = "importlib-metadata" version = "7.1.0" @@ -1007,13 +1032,13 @@ referencing = ">=0.31.0" [[package]] name = "lark" -version = "1.1.9" +version = "1.2.2" description = "a modern parsing library" optional = true -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "lark-1.1.9-py3-none-any.whl", hash = "sha256:a0dd3a87289f8ccbb325901e4222e723e7d745dbfc1803eaf5f3d2ace19cf2db"}, - {file = "lark-1.1.9.tar.gz", hash = "sha256:15fa5236490824c2c4aba0e22d2d6d823575dcaf4cdd1848e34b6ad836240fba"}, + {file = "lark-1.2.2-py3-none-any.whl", hash = "sha256:c2276486b02f0f1b90be155f2c8ba4a8e194d42775786db622faccd652d8e80c"}, + {file = "lark-1.2.2.tar.gz", hash = "sha256:ca807d0162cd16cef15a8feecb862d7319e7a09bdb13aef927968e45040fed80"}, ] [package.extras] @@ -1337,103 +1362,108 @@ tests = ["pytest (>=4.6)"] [[package]] name = "multidict" -version = "6.0.5" +version = "6.1.0" description = "multidict implementation" optional = true -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b644ae063c10e7f324ab1ab6b548bdf6f8b47f3ec234fef1093bc2735e5f9"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:896ebdcf62683551312c30e20614305f53125750803b614e9e6ce74a96232604"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:411bf8515f3be9813d06004cac41ccf7d1cd46dfe233705933dd163b60e37600"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d147090048129ce3c453f0292e7697d333db95e52616b3793922945804a433c"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:215ed703caf15f578dca76ee6f6b21b7603791ae090fbf1ef9d865571039ade5"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c6390cf87ff6234643428991b7359b5f59cc15155695deb4eda5c777d2b880f"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fd81c4ebdb4f214161be351eb5bcf385426bf023041da2fd9e60681f3cebae"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3cc2ad10255f903656017363cd59436f2111443a76f996584d1077e43ee51182"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6939c95381e003f54cd4c5516740faba40cf5ad3eeff460c3ad1d3e0ea2549bf"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:220dd781e3f7af2c2c1053da9fa96d9cf3072ca58f057f4c5adaaa1cab8fc442"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:766c8f7511df26d9f11cd3a8be623e59cca73d44643abab3f8c8c07620524e4a"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:fe5d7785250541f7f5019ab9cba2c71169dc7d74d0f45253f8313f436458a4ef"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c1c1496e73051918fcd4f58ff2e0f2f3066d1c76a0c6aeffd9b45d53243702cc"}, - {file = "multidict-6.0.5-cp310-cp310-win32.whl", hash = "sha256:7afcdd1fc07befad18ec4523a782cde4e93e0a2bf71239894b8d61ee578c1319"}, - {file = "multidict-6.0.5-cp310-cp310-win_amd64.whl", hash = "sha256:99f60d34c048c5c2fabc766108c103612344c46e35d4ed9ae0673d33c8fb26e8"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f285e862d2f153a70586579c15c44656f888806ed0e5b56b64489afe4a2dbfba"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:53689bb4e102200a4fafa9de9c7c3c212ab40a7ab2c8e474491914d2305f187e"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:612d1156111ae11d14afaf3a0669ebf6c170dbb735e510a7438ffe2369a847fd"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7be7047bd08accdb7487737631d25735c9a04327911de89ff1b26b81745bd4e3"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de170c7b4fe6859beb8926e84f7d7d6c693dfe8e27372ce3b76f01c46e489fcf"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:04bde7a7b3de05732a4eb39c94574db1ec99abb56162d6c520ad26f83267de29"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85f67aed7bb647f93e7520633d8f51d3cbc6ab96957c71272b286b2f30dc70ed"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425bf820055005bfc8aa9a0b99ccb52cc2f4070153e34b701acc98d201693733"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d3eb1ceec286eba8220c26f3b0096cf189aea7057b6e7b7a2e60ed36b373b77f"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7901c05ead4b3fb75113fb1dd33eb1253c6d3ee37ce93305acd9d38e0b5f21a4"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:e0e79d91e71b9867c73323a3444724d496c037e578a0e1755ae159ba14f4f3d1"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:29bfeb0dff5cb5fdab2023a7a9947b3b4af63e9c47cae2a10ad58394b517fddc"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e030047e85cbcedbfc073f71836d62dd5dadfbe7531cae27789ff66bc551bd5e"}, - {file = "multidict-6.0.5-cp311-cp311-win32.whl", hash = "sha256:2f4848aa3baa109e6ab81fe2006c77ed4d3cd1e0ac2c1fbddb7b1277c168788c"}, - {file = "multidict-6.0.5-cp311-cp311-win_amd64.whl", hash = "sha256:2faa5ae9376faba05f630d7e5e6be05be22913782b927b19d12b8145968a85ea"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:51d035609b86722963404f711db441cf7134f1889107fb171a970c9701f92e1e"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cbebcd5bcaf1eaf302617c114aa67569dd3f090dd0ce8ba9e35e9985b41ac35b"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2ffc42c922dbfddb4a4c3b438eb056828719f07608af27d163191cb3e3aa6cc5"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ceb3b7e6a0135e092de86110c5a74e46bda4bd4fbfeeb3a3bcec79c0f861e450"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:79660376075cfd4b2c80f295528aa6beb2058fd289f4c9252f986751a4cd0496"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4428b29611e989719874670fd152b6625500ad6c686d464e99f5aaeeaca175a"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d84a5c3a5f7ce6db1f999fb9438f686bc2e09d38143f2d93d8406ed2dd6b9226"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:76c0de87358b192de7ea9649beb392f107dcad9ad27276324c24c91774ca5271"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:79a6d2ba910adb2cbafc95dad936f8b9386e77c84c35bc0add315b856d7c3abb"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:92d16a3e275e38293623ebf639c471d3e03bb20b8ebb845237e0d3664914caef"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:fb616be3538599e797a2017cccca78e354c767165e8858ab5116813146041a24"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:14c2976aa9038c2629efa2c148022ed5eb4cb939e15ec7aace7ca932f48f9ba6"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:435a0984199d81ca178b9ae2c26ec3d49692d20ee29bc4c11a2a8d4514c67eda"}, - {file = "multidict-6.0.5-cp312-cp312-win32.whl", hash = "sha256:9fe7b0653ba3d9d65cbe7698cca585bf0f8c83dbbcc710db9c90f478e175f2d5"}, - {file = "multidict-6.0.5-cp312-cp312-win_amd64.whl", hash = "sha256:01265f5e40f5a17f8241d52656ed27192be03bfa8764d88e8220141d1e4b3556"}, - {file = "multidict-6.0.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:19fe01cea168585ba0f678cad6f58133db2aa14eccaf22f88e4a6dccadfad8b3"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6bf7a982604375a8d49b6cc1b781c1747f243d91b81035a9b43a2126c04766f5"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:107c0cdefe028703fb5dafe640a409cb146d44a6ae201e55b35a4af8e95457dd"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:403c0911cd5d5791605808b942c88a8155c2592e05332d2bf78f18697a5fa15e"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aeaf541ddbad8311a87dd695ed9642401131ea39ad7bc8cf3ef3967fd093b626"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e4972624066095e52b569e02b5ca97dbd7a7ddd4294bf4e7247d52635630dd83"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d946b0a9eb8aaa590df1fe082cee553ceab173e6cb5b03239716338629c50c7a"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b55358304d7a73d7bdf5de62494aaf70bd33015831ffd98bc498b433dfe5b10c"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:a3145cb08d8625b2d3fee1b2d596a8766352979c9bffe5d7833e0503d0f0b5e5"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:d65f25da8e248202bd47445cec78e0025c0fe7582b23ec69c3b27a640dd7a8e3"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c9bf56195c6bbd293340ea82eafd0071cb3d450c703d2c93afb89f93b8386ccc"}, - {file = "multidict-6.0.5-cp37-cp37m-win32.whl", hash = "sha256:69db76c09796b313331bb7048229e3bee7928eb62bab5e071e9f7fcc4879caee"}, - {file = "multidict-6.0.5-cp37-cp37m-win_amd64.whl", hash = "sha256:fce28b3c8a81b6b36dfac9feb1de115bab619b3c13905b419ec71d03a3fc1423"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:76f067f5121dcecf0d63a67f29080b26c43c71a98b10c701b0677e4a065fbd54"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b82cc8ace10ab5bd93235dfaab2021c70637005e1ac787031f4d1da63d493c1d"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5cb241881eefd96b46f89b1a056187ea8e9ba14ab88ba632e68d7a2ecb7aadf7"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8e94e6912639a02ce173341ff62cc1201232ab86b8a8fcc05572741a5dc7d93"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09a892e4a9fb47331da06948690ae38eaa2426de97b4ccbfafbdcbe5c8f37ff8"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55205d03e8a598cfc688c71ca8ea5f66447164efff8869517f175ea632c7cb7b"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37b15024f864916b4951adb95d3a80c9431299080341ab9544ed148091b53f50"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2a1dee728b52b33eebff5072817176c172050d44d67befd681609b4746e1c2e"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:edd08e6f2f1a390bf137080507e44ccc086353c8e98c657e666c017718561b89"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:60d698e8179a42ec85172d12f50b1668254628425a6bd611aba022257cac1386"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:3d25f19500588cbc47dc19081d78131c32637c25804df8414463ec908631e453"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4cc0ef8b962ac7a5e62b9e826bd0cd5040e7d401bc45a6835910ed699037a461"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:eca2e9d0cc5a889850e9bbd68e98314ada174ff6ccd1129500103df7a94a7a44"}, - {file = "multidict-6.0.5-cp38-cp38-win32.whl", hash = "sha256:4a6a4f196f08c58c59e0b8ef8ec441d12aee4125a7d4f4fef000ccb22f8d7241"}, - {file = "multidict-6.0.5-cp38-cp38-win_amd64.whl", hash = "sha256:0275e35209c27a3f7951e1ce7aaf93ce0d163b28948444bec61dd7badc6d3f8c"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e7be68734bd8c9a513f2b0cfd508802d6609da068f40dc57d4e3494cefc92929"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1d9ea7a7e779d7a3561aade7d596649fbecfa5c08a7674b11b423783217933f9"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ea1456df2a27c73ce51120fa2f519f1bea2f4a03a917f4a43c8707cf4cbbae1a"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf590b134eb70629e350691ecca88eac3e3b8b3c86992042fb82e3cb1830d5e1"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5c0631926c4f58e9a5ccce555ad7747d9a9f8b10619621f22f9635f069f6233e"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dce1c6912ab9ff5f179eaf6efe7365c1f425ed690b03341911bf4939ef2f3046"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0868d64af83169e4d4152ec612637a543f7a336e4a307b119e98042e852ad9c"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:141b43360bfd3bdd75f15ed811850763555a251e38b2405967f8e25fb43f7d40"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7df704ca8cf4a073334e0427ae2345323613e4df18cc224f647f251e5e75a527"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6214c5a5571802c33f80e6c84713b2c79e024995b9c5897f794b43e714daeec9"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:cd6c8fca38178e12c00418de737aef1261576bd1b6e8c6134d3e729a4e858b38"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:e02021f87a5b6932fa6ce916ca004c4d441509d33bbdbeca70d05dff5e9d2479"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ebd8d160f91a764652d3e51ce0d2956b38efe37c9231cd82cfc0bed2e40b581c"}, - {file = "multidict-6.0.5-cp39-cp39-win32.whl", hash = "sha256:04da1bb8c8dbadf2a18a452639771951c662c5ad03aefe4884775454be322c9b"}, - {file = "multidict-6.0.5-cp39-cp39-win_amd64.whl", hash = "sha256:d6f6d4f185481c9669b9447bf9d9cf3b95a0e9df9d169bbc17e363b7d5487755"}, - {file = "multidict-6.0.5-py3-none-any.whl", hash = "sha256:0d63c74e3d7ab26de115c49bffc92cc77ed23395303d496eae515d4204a625e7"}, - {file = "multidict-6.0.5.tar.gz", hash = "sha256:f7e301075edaf50500f0b341543c41194d8df3ae5caf4702f2095f3ca73dd8da"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, + {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, + {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, + {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, + {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, + {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, + {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, ] +[package.dependencies] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} + [[package]] name = "multiprocess" version = "0.70.16" @@ -1700,14 +1730,14 @@ files = [ [[package]] name = "nvidia-nvjitlink-cu12" -version = "12.5.82" +version = "12.6.68" description = "Nvidia JIT LTO Library" optional = true python-versions = ">=3" files = [ - {file = "nvidia_nvjitlink_cu12-12.5.82-py3-none-manylinux2014_aarch64.whl", hash = "sha256:98103729cc5226e13ca319a10bbf9433bbbd44ef64fe72f45f067cacc14b8d27"}, - {file = "nvidia_nvjitlink_cu12-12.5.82-py3-none-manylinux2014_x86_64.whl", hash = "sha256:f9b37bc5c8cf7509665cb6ada5aaa0ce65618f2332b7d3e78e9790511f111212"}, - {file = "nvidia_nvjitlink_cu12-12.5.82-py3-none-win_amd64.whl", hash = "sha256:e782564d705ff0bf61ac3e1bf730166da66dd2fe9012f111ede5fc49b64ae697"}, + {file = "nvidia_nvjitlink_cu12-12.6.68-py3-none-manylinux2014_aarch64.whl", hash = "sha256:b3fd0779845f68b92063ab1393abab1ed0a23412fc520df79a8190d098b5cd6b"}, + {file = "nvidia_nvjitlink_cu12-12.6.68-py3-none-manylinux2014_x86_64.whl", hash = "sha256:125a6c2a44e96386dda634e13d944e60b07a0402d391a070e8fb4104b34ea1ab"}, + {file = "nvidia_nvjitlink_cu12-12.6.68-py3-none-win_amd64.whl", hash = "sha256:a55744c98d70317c5e23db14866a8cc2b733f7324509e941fc96276f9f37801d"}, ] [[package]] @@ -1931,40 +1961,53 @@ files = [ [[package]] name = "pandas" -version = "2.2.2" +version = "2.2.3" description = "Powerful data structures for data analysis, time series, and statistics" optional = true python-versions = ">=3.9" files = [ - {file = "pandas-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:90c6fca2acf139569e74e8781709dccb6fe25940488755716d1d354d6bc58bce"}, - {file = "pandas-2.2.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c7adfc142dac335d8c1e0dcbd37eb8617eac386596eb9e1a1b77791cf2498238"}, - {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4abfe0be0d7221be4f12552995e58723c7422c80a659da13ca382697de830c08"}, - {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8635c16bf3d99040fdf3ca3db669a7250ddf49c55dc4aa8fe0ae0fa8d6dcc1f0"}, - {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:40ae1dffb3967a52203105a077415a86044a2bea011b5f321c6aa64b379a3f51"}, - {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8e5a0b00e1e56a842f922e7fae8ae4077aee4af0acb5ae3622bd4b4c30aedf99"}, - {file = "pandas-2.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:ddf818e4e6c7c6f4f7c8a12709696d193976b591cc7dc50588d3d1a6b5dc8772"}, - {file = "pandas-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:696039430f7a562b74fa45f540aca068ea85fa34c244d0deee539cb6d70aa288"}, - {file = "pandas-2.2.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8e90497254aacacbc4ea6ae5e7a8cd75629d6ad2b30025a4a8b09aa4faf55151"}, - {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58b84b91b0b9f4bafac2a0ac55002280c094dfc6402402332c0913a59654ab2b"}, - {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d2123dc9ad6a814bcdea0f099885276b31b24f7edf40f6cdbc0912672e22eee"}, - {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:2925720037f06e89af896c70bca73459d7e6a4be96f9de79e2d440bd499fe0db"}, - {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0cace394b6ea70c01ca1595f839cf193df35d1575986e484ad35c4aeae7266c1"}, - {file = "pandas-2.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:873d13d177501a28b2756375d59816c365e42ed8417b41665f346289adc68d24"}, - {file = "pandas-2.2.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9dfde2a0ddef507a631dc9dc4af6a9489d5e2e740e226ad426a05cabfbd7c8ef"}, - {file = "pandas-2.2.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e9b79011ff7a0f4b1d6da6a61aa1aa604fb312d6647de5bad20013682d1429ce"}, - {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1cb51fe389360f3b5a4d57dbd2848a5f033350336ca3b340d1c53a1fad33bcad"}, - {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eee3a87076c0756de40b05c5e9a6069c035ba43e8dd71c379e68cab2c20f16ad"}, - {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3e374f59e440d4ab45ca2fffde54b81ac3834cf5ae2cdfa69c90bc03bde04d76"}, - {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:43498c0bdb43d55cb162cdc8c06fac328ccb5d2eabe3cadeb3529ae6f0517c32"}, - {file = "pandas-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:d187d355ecec3629624fccb01d104da7d7f391db0311145817525281e2804d23"}, - {file = "pandas-2.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0ca6377b8fca51815f382bd0b697a0814c8bda55115678cbc94c30aacbb6eff2"}, - {file = "pandas-2.2.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9057e6aa78a584bc93a13f0a9bf7e753a5e9770a30b4d758b8d5f2a62a9433cd"}, - {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:001910ad31abc7bf06f49dcc903755d2f7f3a9186c0c040b827e522e9cef0863"}, - {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66b479b0bd07204e37583c191535505410daa8df638fd8e75ae1b383851fe921"}, - {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a77e9d1c386196879aa5eb712e77461aaee433e54c68cf253053a73b7e49c33a"}, - {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:92fd6b027924a7e178ac202cfbe25e53368db90d56872d20ffae94b96c7acc57"}, - {file = "pandas-2.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:640cef9aa381b60e296db324337a554aeeb883ead99dc8f6c18e81a93942f5f4"}, - {file = "pandas-2.2.2.tar.gz", hash = "sha256:9e79019aba43cb4fda9e4d983f8e88ca0373adbb697ae9c6c43093218de28b54"}, + {file = "pandas-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1948ddde24197a0f7add2bdc4ca83bf2b1ef84a1bc8ccffd95eda17fd836ecb5"}, + {file = "pandas-2.2.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:381175499d3802cde0eabbaf6324cce0c4f5d52ca6f8c377c29ad442f50f6348"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d9c45366def9a3dd85a6454c0e7908f2b3b8e9c138f5dc38fed7ce720d8453ed"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86976a1c5b25ae3f8ccae3a5306e443569ee3c3faf444dfd0f41cda24667ad57"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b8661b0238a69d7aafe156b7fa86c44b881387509653fdf857bebc5e4008ad42"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:37e0aced3e8f539eccf2e099f65cdb9c8aa85109b0be6e93e2baff94264bdc6f"}, + {file = "pandas-2.2.3-cp310-cp310-win_amd64.whl", hash = "sha256:56534ce0746a58afaf7942ba4863e0ef81c9c50d3f0ae93e9497d6a41a057645"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:66108071e1b935240e74525006034333f98bcdb87ea116de573a6a0dccb6c039"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7c2875855b0ff77b2a64a0365e24455d9990730d6431b9e0ee18ad8acee13dbd"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd8d0c3be0515c12fed0bdbae072551c8b54b7192c7b1fda0ba56059a0179698"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c124333816c3a9b03fbeef3a9f230ba9a737e9e5bb4060aa2107a86cc0a497fc"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:63cc132e40a2e084cf01adf0775b15ac515ba905d7dcca47e9a251819c575ef3"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:29401dbfa9ad77319367d36940cd8a0b3a11aba16063e39632d98b0e931ddf32"}, + {file = "pandas-2.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:3fc6873a41186404dad67245896a6e440baacc92f5b716ccd1bc9ed2995ab2c5"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b1d432e8d08679a40e2a6d8b2f9770a5c21793a6f9f47fdd52c5ce1948a5a8a9"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a5a1595fe639f5988ba6a8e5bc9649af3baf26df3998a0abe56c02609392e0a4"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5de54125a92bb4d1c051c0659e6fcb75256bf799a732a87184e5ea503965bce3"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fffb8ae78d8af97f849404f21411c95062db1496aeb3e56f146f0355c9989319"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6dfcb5ee8d4d50c06a51c2fffa6cff6272098ad6540aed1a76d15fb9318194d8"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:062309c1b9ea12a50e8ce661145c6aab431b1e99530d3cd60640e255778bd43a"}, + {file = "pandas-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:59ef3764d0fe818125a5097d2ae867ca3fa64df032331b7e0917cf5d7bf66b13"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f00d1345d84d8c86a63e476bb4955e46458b304b9575dcf71102b5c705320015"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3508d914817e153ad359d7e069d752cdd736a247c322d932eb89e6bc84217f28"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:22a9d949bfc9a502d320aa04e5d02feab689d61da4e7764b62c30b991c42c5f0"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3a255b2c19987fbbe62a9dfd6cff7ff2aa9ccab3fc75218fd4b7530f01efa24"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:800250ecdadb6d9c78eae4990da62743b857b470883fa27f652db8bdde7f6659"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6374c452ff3ec675a8f46fd9ab25c4ad0ba590b71cf0656f8b6daa5202bca3fb"}, + {file = "pandas-2.2.3-cp313-cp313-win_amd64.whl", hash = "sha256:61c5ad4043f791b61dd4752191d9f07f0ae412515d59ba8f005832a532f8736d"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3b71f27954685ee685317063bf13c7709a7ba74fc996b84fc6821c59b0f06468"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:38cf8125c40dae9d5acc10fa66af8ea6fdf760b2714ee482ca691fc66e6fcb18"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ba96630bc17c875161df3818780af30e43be9b166ce51c9a18c1feae342906c2"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1db71525a1538b30142094edb9adc10be3f3e176748cd7acc2240c2f2e5aa3a4"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:15c0e1e02e93116177d29ff83e8b1619c93ddc9c49083f237d4312337a61165d"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ad5b65698ab28ed8d7f18790a0dc58005c7629f227be9ecc1072aa74c0c1d43a"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bc6b93f9b966093cb0fd62ff1a7e4c09e6d546ad7c1de191767baffc57628f39"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5dbca4c1acd72e8eeef4753eeca07de9b1db4f398669d5994086f788a5d7cc30"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8cd6d7cc958a3910f934ea8dbdf17b2364827bb4dafc38ce6eef6bb3d65ff09c"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99df71520d25fade9db7c1076ac94eb994f4d2673ef2aa2e86ee039b6746d20c"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:31d0ced62d4ea3e231a9f228366919a5ea0b07440d9d4dac345376fd8e1477ea"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7eee9e7cea6adf3e3d24e304ac6b8300646e2a5d1cd3a3c2abed9101b0846761"}, + {file = "pandas-2.2.3-cp39-cp39-win_amd64.whl", hash = "sha256:4850ba03528b6dd51d6c5d273c46f183f39a9baf3f0143e566b89450965b105e"}, + {file = "pandas-2.2.3.tar.gz", hash = "sha256:4f18ba62b61d7e192368b84517265a99b4d7ee8912f8708660fb4a366cc82667"}, ] [package.dependencies] @@ -2159,22 +2202,22 @@ twisted = ["twisted"] [[package]] name = "protobuf" -version = "4.25.3" +version = "4.25.5" description = "" optional = false python-versions = ">=3.8" files = [ - {file = "protobuf-4.25.3-cp310-abi3-win32.whl", hash = "sha256:d4198877797a83cbfe9bffa3803602bbe1625dc30d8a097365dbc762e5790faa"}, - {file = "protobuf-4.25.3-cp310-abi3-win_amd64.whl", hash = "sha256:209ba4cc916bab46f64e56b85b090607a676f66b473e6b762e6f1d9d591eb2e8"}, - {file = "protobuf-4.25.3-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:f1279ab38ecbfae7e456a108c5c0681e4956d5b1090027c1de0f934dfdb4b35c"}, - {file = "protobuf-4.25.3-cp37-abi3-manylinux2014_aarch64.whl", hash = "sha256:e7cb0ae90dd83727f0c0718634ed56837bfeeee29a5f82a7514c03ee1364c019"}, - {file = "protobuf-4.25.3-cp37-abi3-manylinux2014_x86_64.whl", hash = "sha256:7c8daa26095f82482307bc717364e7c13f4f1c99659be82890dcfc215194554d"}, - {file = "protobuf-4.25.3-cp38-cp38-win32.whl", hash = "sha256:f4f118245c4a087776e0a8408be33cf09f6c547442c00395fbfb116fac2f8ac2"}, - {file = "protobuf-4.25.3-cp38-cp38-win_amd64.whl", hash = "sha256:c053062984e61144385022e53678fbded7aea14ebb3e0305ae3592fb219ccfa4"}, - {file = "protobuf-4.25.3-cp39-cp39-win32.whl", hash = "sha256:19b270aeaa0099f16d3ca02628546b8baefe2955bbe23224aaf856134eccf1e4"}, - {file = "protobuf-4.25.3-cp39-cp39-win_amd64.whl", hash = "sha256:e3c97a1555fd6388f857770ff8b9703083de6bf1f9274a002a332d65fbb56c8c"}, - {file = "protobuf-4.25.3-py3-none-any.whl", hash = "sha256:f0700d54bcf45424477e46a9f0944155b46fb0639d69728739c0e47bab83f2b9"}, - {file = "protobuf-4.25.3.tar.gz", hash = "sha256:25b5d0b42fd000320bd7830b349e3b696435f3b329810427a6bcce6a5492cc5c"}, + {file = "protobuf-4.25.5-cp310-abi3-win32.whl", hash = "sha256:5e61fd921603f58d2f5acb2806a929b4675f8874ff5f330b7d6f7e2e784bbcd8"}, + {file = "protobuf-4.25.5-cp310-abi3-win_amd64.whl", hash = "sha256:4be0571adcbe712b282a330c6e89eae24281344429ae95c6d85e79e84780f5ea"}, + {file = "protobuf-4.25.5-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:b2fde3d805354df675ea4c7c6338c1aecd254dfc9925e88c6d31a2bcb97eb173"}, + {file = "protobuf-4.25.5-cp37-abi3-manylinux2014_aarch64.whl", hash = "sha256:919ad92d9b0310070f8356c24b855c98df2b8bd207ebc1c0c6fcc9ab1e007f3d"}, + {file = "protobuf-4.25.5-cp37-abi3-manylinux2014_x86_64.whl", hash = "sha256:fe14e16c22be926d3abfcb500e60cab068baf10b542b8c858fa27e098123e331"}, + {file = "protobuf-4.25.5-cp38-cp38-win32.whl", hash = "sha256:98d8d8aa50de6a2747efd9cceba361c9034050ecce3e09136f90de37ddba66e1"}, + {file = "protobuf-4.25.5-cp38-cp38-win_amd64.whl", hash = "sha256:b0234dd5a03049e4ddd94b93400b67803c823cfc405689688f59b34e0742381a"}, + {file = "protobuf-4.25.5-cp39-cp39-win32.whl", hash = "sha256:abe32aad8561aa7cc94fc7ba4fdef646e576983edb94a73381b03c53728a626f"}, + {file = "protobuf-4.25.5-cp39-cp39-win_amd64.whl", hash = "sha256:7a183f592dc80aa7c8da7ad9e55091c4ffc9497b3054452d629bb85fa27c2a45"}, + {file = "protobuf-4.25.5-py3-none-any.whl", hash = "sha256:0aebecb809cae990f8129ada5ca273d9d670b76d9bfc9b1809f0a9c02b7dbf41"}, + {file = "protobuf-4.25.5.tar.gz", hash = "sha256:7f8249476b4a9473645db7f8ab42b02fe1488cbe5fb72fddd445e0665afd8584"}, ] [[package]] @@ -2268,132 +2311,122 @@ numpy = ">=1.16.6" [package.extras] test = ["cffi", "hypothesis", "pandas", "pytest", "pytz"] -[[package]] -name = "pyarrow-hotfix" -version = "0.6" -description = "" -optional = true -python-versions = ">=3.5" -files = [ - {file = "pyarrow_hotfix-0.6-py3-none-any.whl", hash = "sha256:dcc9ae2d220dff0083be6a9aa8e0cdee5182ad358d4931fce825c545e5c89178"}, - {file = "pyarrow_hotfix-0.6.tar.gz", hash = "sha256:79d3e030f7ff890d408a100ac16d6f00b14d44a502d7897cd9fc3e3a534e9945"}, -] - [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.2" description = "Data validation using Python type hints" optional = true python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12"}, + {file = "pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.4" typing-extensions = {version = ">=4.6.1", markers = "python_version < \"3.13\""} [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.4" description = "Core functionality for Pydantic validation and serialization" optional = true python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071"}, + {file = "pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119"}, + {file = "pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64"}, + {file = "pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f"}, + {file = "pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24"}, + {file = "pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84"}, + {file = "pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7530e201d10d7d14abce4fb54cfe5b94a0aefc87da539d0346a484ead376c3cc"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:df933278128ea1cd77772673c73954e53a1c95a4fdf41eef97c2b779271bd0bd"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb3da3fd1b6a5d0279a01877713dbda118a2a4fc6f0d821a57da2e464793f05"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42c6dcb030aefb668a2b7009c85b27f90e51e6a3b4d5c9bc4c57631292015b0d"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:696dd8d674d6ce621ab9d45b205df149399e4bb9aa34102c970b721554828510"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2971bb5ffe72cc0f555c13e19b23c85b654dd2a8f7ab493c262071377bfce9f6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8394d940e5d400d04cad4f75c0598665cbb81aecefaca82ca85bd28264af7f9b"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dff76e0602ca7d4cdaacc1ac4c005e0ce0dcfe095d5b5259163a80d3a10d327"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7d32706badfe136888bdea71c0def994644e09fff0bfe47441deaed8e96fdbc6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ed541d70698978a20eb63d8c5d72f2cc6d7079d9d90f6b50bad07826f1320f5f"}, + {file = "pydantic_core-2.23.4-cp313-none-win32.whl", hash = "sha256:3d5639516376dce1940ea36edf408c554475369f5da2abd45d44621cb616f769"}, + {file = "pydantic_core-2.23.4-cp313-none-win_amd64.whl", hash = "sha256:5a1504ad17ba4210df3a045132a7baeeba5a200e930f57512ee02909fc5c4cb5"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d4488a93b071c04dc20f5cecc3631fc78b9789dd72483ba15d423b5b3689b555"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:81965a16b675b35e1d09dd14df53f190f9129c0202356ed44ab2728b1c905658"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ffa2ebd4c8530079140dd2d7f794a9d9a73cbb8e9d59ffe24c63436efa8f271"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61817945f2fe7d166e75fbfb28004034b48e44878177fc54d81688e7b85a3665"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29d2c342c4bc01b88402d60189f3df065fb0dda3654744d5a165a5288a657368"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e11661ce0fd30a6790e8bcdf263b9ec5988e95e63cf901972107efc49218b13"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d18368b137c6295db49ce7218b1a9ba15c5bc254c96d7c9f9e924a9bc7825ad"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec4e55f79b1c4ffb2eecd8a0cfba9955a2588497d96851f4c8f99aa4a1d39b12"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:374a5e5049eda9e0a44c696c7ade3ff355f06b1fe0bb945ea3cac2bc336478a2"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5c364564d17da23db1106787675fc7af45f2f7b58b4173bfdd105564e132e6fb"}, + {file = "pydantic_core-2.23.4-cp38-none-win32.whl", hash = "sha256:d7a80d21d613eec45e3d41eb22f8f94ddc758a6c4720842dc74c0581f54993d6"}, + {file = "pydantic_core-2.23.4-cp38-none-win_amd64.whl", hash = "sha256:5f5ff8d839f4566a474a969508fe1c5e59c31c80d9e140566f9a37bba7b8d556"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a4fa4fc04dff799089689f4fd502ce7d59de529fc2f40a2c8836886c03e0175a"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7df63886be5e270da67e0966cf4afbae86069501d35c8c1b3b6c168f42cb36"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcedcd19a557e182628afa1d553c3895a9f825b936415d0dbd3cd0bbcfd29b4b"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f54b118ce5de9ac21c363d9b3caa6c800341e8c47a508787e5868c6b79c9323"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86d2f57d3e1379a9525c5ab067b27dbb8a0642fb5d454e17a9ac434f9ce523e3"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de6d1d1b9e5101508cb37ab0d972357cac5235f5c6533d1071964c47139257df"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1278e0d324f6908e872730c9102b0112477a7f7cf88b308e4fc36ce1bdb6d58c"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a6b5099eeec78827553827f4c6b8615978bb4b6a88e5d9b93eddf8bb6790f55"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e55541f756f9b3ee346b840103f32779c695a19826a4c442b7954550a0972040"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c7ba8ffb6d6f8f2ab08743be203654bb1aaa8c9dcb09f82ddd34eadb695605"}, + {file = "pydantic_core-2.23.4-cp39-none-win32.whl", hash = "sha256:37b0fe330e4a58d3c58b24d91d1eb102aeec675a3db4c292ec3928ecd892a9a6"}, + {file = "pydantic_core-2.23.4-cp39-none-win_amd64.whl", hash = "sha256:1498bec4c05c9c787bde9125cfdcc63a41004ff167f495063191b863399b1a29"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:78ddaaa81421a29574a682b3179d4cf9e6d405a09b99d93ddcf7e5239c742e21"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:883a91b5dd7d26492ff2f04f40fbb652de40fcc0afe07e8129e8ae779c2110eb"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88ad334a15b32a791ea935af224b9de1bf99bcd62fabf745d5f3442199d86d59"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:233710f069d251feb12a56da21e14cca67994eab08362207785cf8c598e74577"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19442362866a753485ba5e4be408964644dd6a09123d9416c54cd49171f50744"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:624e278a7d29b6445e4e813af92af37820fafb6dcc55c012c834f9e26f9aaaef"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5ef8f42bec47f21d07668a043f077d507e5bf4e668d5c6dfe6aaba89de1a5b8"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:aea443fffa9fbe3af1a9ba721a87f926fe548d32cab71d188a6ede77d0ff244e"}, + {file = "pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863"}, ] [package.dependencies] @@ -2451,73 +2484,75 @@ six = ">=1.5" [[package]] name = "pytz" -version = "2024.1" +version = "2024.2" description = "World timezone definitions, modern and historical" optional = true python-versions = "*" files = [ - {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, - {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, + {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, + {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, ] [[package]] name = "pyyaml" -version = "6.0.1" +version = "6.0.2" description = "YAML parser and emitter for Python" optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"}, - {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, - {file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"}, - {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, - {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, - {file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"}, - {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, - {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, - {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, - {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, - {file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"}, - {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"}, - {file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"}, - {file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, - {file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"}, - {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, - {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, - {file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"}, - {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, - {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, - {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, + {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, + {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, + {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, + {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, + {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, + {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, + {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, + {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, + {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, + {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, + {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, + {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, + {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, + {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, + {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, ] [[package]] @@ -2537,90 +2572,105 @@ rpds-py = ">=0.7.0" [[package]] name = "regex" -version = "2024.5.15" +version = "2024.9.11" description = "Alternative regular expression module, to replace re." optional = false python-versions = ">=3.8" files = [ - {file = "regex-2024.5.15-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a81e3cfbae20378d75185171587cbf756015ccb14840702944f014e0d93ea09f"}, - {file = "regex-2024.5.15-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7b59138b219ffa8979013be7bc85bb60c6f7b7575df3d56dc1e403a438c7a3f6"}, - {file = "regex-2024.5.15-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0bd000c6e266927cb7a1bc39d55be95c4b4f65c5be53e659537537e019232b1"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5eaa7ddaf517aa095fa8da0b5015c44d03da83f5bd49c87961e3c997daed0de7"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba68168daedb2c0bab7fd7e00ced5ba90aebf91024dea3c88ad5063c2a562cca"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6e8d717bca3a6e2064fc3a08df5cbe366369f4b052dcd21b7416e6d71620dca1"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1337b7dbef9b2f71121cdbf1e97e40de33ff114801263b275aafd75303bd62b5"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9ebd0a36102fcad2f03696e8af4ae682793a5d30b46c647eaf280d6cfb32796"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9efa1a32ad3a3ea112224897cdaeb6aa00381627f567179c0314f7b65d354c62"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:1595f2d10dff3d805e054ebdc41c124753631b6a471b976963c7b28543cf13b0"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:b802512f3e1f480f41ab5f2cfc0e2f761f08a1f41092d6718868082fc0d27143"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:a0981022dccabca811e8171f913de05720590c915b033b7e601f35ce4ea7019f"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:19068a6a79cf99a19ccefa44610491e9ca02c2be3305c7760d3831d38a467a6f"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:1b5269484f6126eee5e687785e83c6b60aad7663dafe842b34691157e5083e53"}, - {file = "regex-2024.5.15-cp310-cp310-win32.whl", hash = "sha256:ada150c5adfa8fbcbf321c30c751dc67d2f12f15bd183ffe4ec7cde351d945b3"}, - {file = "regex-2024.5.15-cp310-cp310-win_amd64.whl", hash = "sha256:ac394ff680fc46b97487941f5e6ae49a9f30ea41c6c6804832063f14b2a5a145"}, - {file = "regex-2024.5.15-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f5b1dff3ad008dccf18e652283f5e5339d70bf8ba7c98bf848ac33db10f7bc7a"}, - {file = "regex-2024.5.15-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c6a2b494a76983df8e3d3feea9b9ffdd558b247e60b92f877f93a1ff43d26656"}, - {file = "regex-2024.5.15-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a32b96f15c8ab2e7d27655969a23895eb799de3665fa94349f3b2fbfd547236f"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10002e86e6068d9e1c91eae8295ef690f02f913c57db120b58fdd35a6bb1af35"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ec54d5afa89c19c6dd8541a133be51ee1017a38b412b1321ccb8d6ddbeb4cf7d"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:10e4ce0dca9ae7a66e6089bb29355d4432caed736acae36fef0fdd7879f0b0cb"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3e507ff1e74373c4d3038195fdd2af30d297b4f0950eeda6f515ae3d84a1770f"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d1f059a4d795e646e1c37665b9d06062c62d0e8cc3c511fe01315973a6542e40"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0721931ad5fe0dda45d07f9820b90b2148ccdd8e45bb9e9b42a146cb4f695649"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:833616ddc75ad595dee848ad984d067f2f31be645d603e4d158bba656bbf516c"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:287eb7f54fc81546346207c533ad3c2c51a8d61075127d7f6d79aaf96cdee890"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:19dfb1c504781a136a80ecd1fff9f16dddf5bb43cec6871778c8a907a085bb3d"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:119af6e56dce35e8dfb5222573b50c89e5508d94d55713c75126b753f834de68"}, - {file = "regex-2024.5.15-cp311-cp311-win32.whl", hash = "sha256:1c1c174d6ec38d6c8a7504087358ce9213d4332f6293a94fbf5249992ba54efa"}, - {file = "regex-2024.5.15-cp311-cp311-win_amd64.whl", hash = "sha256:9e717956dcfd656f5055cc70996ee2cc82ac5149517fc8e1b60261b907740201"}, - {file = "regex-2024.5.15-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:632b01153e5248c134007209b5c6348a544ce96c46005d8456de1d552455b014"}, - {file = "regex-2024.5.15-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e64198f6b856d48192bf921421fdd8ad8eb35e179086e99e99f711957ffedd6e"}, - {file = "regex-2024.5.15-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68811ab14087b2f6e0fc0c2bae9ad689ea3584cad6917fc57be6a48bbd012c49"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8ec0c2fea1e886a19c3bee0cd19d862b3aa75dcdfb42ebe8ed30708df64687a"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d0c0c0003c10f54a591d220997dd27d953cd9ccc1a7294b40a4be5312be8797b"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2431b9e263af1953c55abbd3e2efca67ca80a3de8a0437cb58e2421f8184717a"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a605586358893b483976cffc1723fb0f83e526e8f14c6e6614e75919d9862cf"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:391d7f7f1e409d192dba8bcd42d3e4cf9e598f3979cdaed6ab11288da88cb9f2"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:9ff11639a8d98969c863d4617595eb5425fd12f7c5ef6621a4b74b71ed8726d5"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:4eee78a04e6c67e8391edd4dad3279828dd66ac4b79570ec998e2155d2e59fd5"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:8fe45aa3f4aa57faabbc9cb46a93363edd6197cbc43523daea044e9ff2fea83e"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:d0a3d8d6acf0c78a1fff0e210d224b821081330b8524e3e2bc5a68ef6ab5803d"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c486b4106066d502495b3025a0a7251bf37ea9540433940a23419461ab9f2a80"}, - {file = "regex-2024.5.15-cp312-cp312-win32.whl", hash = "sha256:c49e15eac7c149f3670b3e27f1f28a2c1ddeccd3a2812cba953e01be2ab9b5fe"}, - {file = "regex-2024.5.15-cp312-cp312-win_amd64.whl", hash = "sha256:673b5a6da4557b975c6c90198588181029c60793835ce02f497ea817ff647cb2"}, - {file = "regex-2024.5.15-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:87e2a9c29e672fc65523fb47a90d429b70ef72b901b4e4b1bd42387caf0d6835"}, - {file = "regex-2024.5.15-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c3bea0ba8b73b71b37ac833a7f3fd53825924165da6a924aec78c13032f20850"}, - {file = "regex-2024.5.15-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bfc4f82cabe54f1e7f206fd3d30fda143f84a63fe7d64a81558d6e5f2e5aaba9"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5bb9425fe881d578aeca0b2b4b3d314ec88738706f66f219c194d67179337cb"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:64c65783e96e563103d641760664125e91bd85d8e49566ee560ded4da0d3e704"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cf2430df4148b08fb4324b848672514b1385ae3807651f3567871f130a728cc3"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5397de3219a8b08ae9540c48f602996aa6b0b65d5a61683e233af8605c42b0f2"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:455705d34b4154a80ead722f4f185b04c4237e8e8e33f265cd0798d0e44825fa"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b2b6f1b3bb6f640c1a92be3bbfbcb18657b125b99ecf141fb3310b5282c7d4ed"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:3ad070b823ca5890cab606c940522d05d3d22395d432f4aaaf9d5b1653e47ced"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:5b5467acbfc153847d5adb21e21e29847bcb5870e65c94c9206d20eb4e99a384"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e6662686aeb633ad65be2a42b4cb00178b3fbf7b91878f9446075c404ada552f"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:2b4c884767504c0e2401babe8b5b7aea9148680d2e157fa28f01529d1f7fcf67"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:3cd7874d57f13bf70078f1ff02b8b0aa48d5b9ed25fc48547516c6aba36f5741"}, - {file = "regex-2024.5.15-cp38-cp38-win32.whl", hash = "sha256:e4682f5ba31f475d58884045c1a97a860a007d44938c4c0895f41d64481edbc9"}, - {file = "regex-2024.5.15-cp38-cp38-win_amd64.whl", hash = "sha256:d99ceffa25ac45d150e30bd9ed14ec6039f2aad0ffa6bb87a5936f5782fc1569"}, - {file = "regex-2024.5.15-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:13cdaf31bed30a1e1c2453ef6015aa0983e1366fad2667657dbcac7b02f67133"}, - {file = "regex-2024.5.15-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cac27dcaa821ca271855a32188aa61d12decb6fe45ffe3e722401fe61e323cd1"}, - {file = "regex-2024.5.15-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:7dbe2467273b875ea2de38ded4eba86cbcbc9a1a6d0aa11dcf7bd2e67859c435"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64f18a9a3513a99c4bef0e3efd4c4a5b11228b48aa80743be822b71e132ae4f5"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d347a741ea871c2e278fde6c48f85136c96b8659b632fb57a7d1ce1872547600"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1878b8301ed011704aea4c806a3cadbd76f84dece1ec09cc9e4dc934cfa5d4da"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4babf07ad476aaf7830d77000874d7611704a7fcf68c9c2ad151f5d94ae4bfc4"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:35cb514e137cb3488bce23352af3e12fb0dbedd1ee6e60da053c69fb1b29cc6c"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:cdd09d47c0b2efee9378679f8510ee6955d329424c659ab3c5e3a6edea696294"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:72d7a99cd6b8f958e85fc6ca5b37c4303294954eac1376535b03c2a43eb72629"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:a094801d379ab20c2135529948cb84d417a2169b9bdceda2a36f5f10977ebc16"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:c0c18345010870e58238790a6779a1219b4d97bd2e77e1140e8ee5d14df071aa"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:16093f563098448ff6b1fa68170e4acbef94e6b6a4e25e10eae8598bb1694b5d"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e38a7d4e8f633a33b4c7350fbd8bad3b70bf81439ac67ac38916c4a86b465456"}, - {file = "regex-2024.5.15-cp39-cp39-win32.whl", hash = "sha256:71a455a3c584a88f654b64feccc1e25876066c4f5ef26cd6dd711308aa538694"}, - {file = "regex-2024.5.15-cp39-cp39-win_amd64.whl", hash = "sha256:cab12877a9bdafde5500206d1020a584355a97884dfd388af3699e9137bf7388"}, - {file = "regex-2024.5.15.tar.gz", hash = "sha256:d3ee02d9e5f482cc8309134a91eeaacbdd2261ba111b0fef3748eeb4913e6a2c"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1494fa8725c285a81d01dc8c06b55287a1ee5e0e382d8413adc0a9197aac6408"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0e12c481ad92d129c78f13a2a3662317e46ee7ef96c94fd332e1c29131875b7d"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:16e13a7929791ac1216afde26f712802e3df7bf0360b32e4914dca3ab8baeea5"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:46989629904bad940bbec2106528140a218b4a36bb3042d8406980be1941429c"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a906ed5e47a0ce5f04b2c981af1c9acf9e8696066900bf03b9d7879a6f679fc8"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e9a091b0550b3b0207784a7d6d0f1a00d1d1c8a11699c1a4d93db3fbefc3ad35"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ddcd9a179c0a6fa8add279a4444015acddcd7f232a49071ae57fa6e278f1f71"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b41e1adc61fa347662b09398e31ad446afadff932a24807d3ceb955ed865cc8"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ced479f601cd2f8ca1fd7b23925a7e0ad512a56d6e9476f79b8f381d9d37090a"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:635a1d96665f84b292e401c3d62775851aedc31d4f8784117b3c68c4fcd4118d"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:c0256beda696edcf7d97ef16b2a33a8e5a875affd6fa6567b54f7c577b30a137"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:3ce4f1185db3fbde8ed8aa223fc9620f276c58de8b0d4f8cc86fd1360829edb6"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:09d77559e80dcc9d24570da3745ab859a9cf91953062e4ab126ba9d5993688ca"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7a22ccefd4db3f12b526eccb129390942fe874a3a9fdbdd24cf55773a1faab1a"}, + {file = "regex-2024.9.11-cp310-cp310-win32.whl", hash = "sha256:f745ec09bc1b0bd15cfc73df6fa4f726dcc26bb16c23a03f9e3367d357eeedd0"}, + {file = "regex-2024.9.11-cp310-cp310-win_amd64.whl", hash = "sha256:01c2acb51f8a7d6494c8c5eafe3d8e06d76563d8a8a4643b37e9b2dd8a2ff623"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2cce2449e5927a0bf084d346da6cd5eb016b2beca10d0013ab50e3c226ffc0df"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3b37fa423beefa44919e009745ccbf353d8c981516e807995b2bd11c2c77d268"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:64ce2799bd75039b480cc0360907c4fb2f50022f030bf9e7a8705b636e408fad"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4cc92bb6db56ab0c1cbd17294e14f5e9224f0cc6521167ef388332604e92679"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d05ac6fa06959c4172eccd99a222e1fbf17b5670c4d596cb1e5cde99600674c4"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:040562757795eeea356394a7fb13076ad4f99d3c62ab0f8bdfb21f99a1f85664"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6113c008a7780792efc80f9dfe10ba0cd043cbf8dc9a76ef757850f51b4edc50"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e5fb5f77c8745a60105403a774fe2c1759b71d3e7b4ca237a5e67ad066c7199"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:54d9ff35d4515debf14bc27f1e3b38bfc453eff3220f5bce159642fa762fe5d4"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:df5cbb1fbc74a8305b6065d4ade43b993be03dbe0f8b30032cced0d7740994bd"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:7fb89ee5d106e4a7a51bce305ac4efb981536301895f7bdcf93ec92ae0d91c7f"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:a738b937d512b30bf75995c0159c0ddf9eec0775c9d72ac0202076c72f24aa96"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e28f9faeb14b6f23ac55bfbbfd3643f5c7c18ede093977f1df249f73fd22c7b1"}, + {file = "regex-2024.9.11-cp311-cp311-win32.whl", hash = "sha256:18e707ce6c92d7282dfce370cd205098384b8ee21544e7cb29b8aab955b66fa9"}, + {file = "regex-2024.9.11-cp311-cp311-win_amd64.whl", hash = "sha256:313ea15e5ff2a8cbbad96ccef6be638393041b0a7863183c2d31e0c6116688cf"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b0d0a6c64fcc4ef9c69bd5b3b3626cc3776520a1637d8abaa62b9edc147a58f7"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:49b0e06786ea663f933f3710a51e9385ce0cba0ea56b67107fd841a55d56a231"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5b513b6997a0b2f10e4fd3a1313568e373926e8c252bd76c960f96fd039cd28d"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee439691d8c23e76f9802c42a95cfeebf9d47cf4ffd06f18489122dbb0a7ad64"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a8f877c89719d759e52783f7fe6e1c67121076b87b40542966c02de5503ace42"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23b30c62d0f16827f2ae9f2bb87619bc4fba2044911e2e6c2eb1af0161cdb766"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85ab7824093d8f10d44330fe1e6493f756f252d145323dd17ab6b48733ff6c0a"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8dee5b4810a89447151999428fe096977346cf2f29f4d5e29609d2e19e0199c9"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:98eeee2f2e63edae2181c886d7911ce502e1292794f4c5ee71e60e23e8d26b5d"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:57fdd2e0b2694ce6fc2e5ccf189789c3e2962916fb38779d3e3521ff8fe7a822"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:d552c78411f60b1fdaafd117a1fca2f02e562e309223b9d44b7de8be451ec5e0"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a0b2b80321c2ed3fcf0385ec9e51a12253c50f146fddb2abbb10f033fe3d049a"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:18406efb2f5a0e57e3a5881cd9354c1512d3bb4f5c45d96d110a66114d84d23a"}, + {file = "regex-2024.9.11-cp312-cp312-win32.whl", hash = "sha256:e464b467f1588e2c42d26814231edecbcfe77f5ac414d92cbf4e7b55b2c2a776"}, + {file = "regex-2024.9.11-cp312-cp312-win_amd64.whl", hash = "sha256:9e8719792ca63c6b8340380352c24dcb8cd7ec49dae36e963742a275dfae6009"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:c157bb447303070f256e084668b702073db99bbb61d44f85d811025fcf38f784"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:4db21ece84dfeefc5d8a3863f101995de646c6cb0536952c321a2650aa202c36"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:220e92a30b426daf23bb67a7962900ed4613589bab80382be09b48896d211e92"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb1ae19e64c14c7ec1995f40bd932448713d3c73509e82d8cd7744dc00e29e86"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f47cd43a5bfa48f86925fe26fbdd0a488ff15b62468abb5d2a1e092a4fb10e85"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9d4a76b96f398697fe01117093613166e6aa8195d63f1b4ec3f21ab637632963"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ea51dcc0835eea2ea31d66456210a4e01a076d820e9039b04ae8d17ac11dee6"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b7aaa315101c6567a9a45d2839322c51c8d6e81f67683d529512f5bcfb99c802"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c57d08ad67aba97af57a7263c2d9006d5c404d721c5f7542f077f109ec2a4a29"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:f8404bf61298bb6f8224bb9176c1424548ee1181130818fcd2cbffddc768bed8"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:dd4490a33eb909ef5078ab20f5f000087afa2a4daa27b4c072ccb3cb3050ad84"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:eee9130eaad130649fd73e5cd92f60e55708952260ede70da64de420cdcad554"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6a2644a93da36c784e546de579ec1806bfd2763ef47babc1b03d765fe560c9f8"}, + {file = "regex-2024.9.11-cp313-cp313-win32.whl", hash = "sha256:e997fd30430c57138adc06bba4c7c2968fb13d101e57dd5bb9355bf8ce3fa7e8"}, + {file = "regex-2024.9.11-cp313-cp313-win_amd64.whl", hash = "sha256:042c55879cfeb21a8adacc84ea347721d3d83a159da6acdf1116859e2427c43f"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:35f4a6f96aa6cb3f2f7247027b07b15a374f0d5b912c0001418d1d55024d5cb4"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:55b96e7ce3a69a8449a66984c268062fbaa0d8ae437b285428e12797baefce7e"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cb130fccd1a37ed894824b8c046321540263013da72745d755f2d35114b81a60"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:323c1f04be6b2968944d730e5c2091c8c89767903ecaa135203eec4565ed2b2b"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be1c8ed48c4c4065ecb19d882a0ce1afe0745dfad8ce48c49586b90a55f02366"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b5b029322e6e7b94fff16cd120ab35a253236a5f99a79fb04fda7ae71ca20ae8"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6fff13ef6b5f29221d6904aa816c34701462956aa72a77f1f151a8ec4f56aeb"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:587d4af3979376652010e400accc30404e6c16b7df574048ab1f581af82065e4"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:079400a8269544b955ffa9e31f186f01d96829110a3bf79dc338e9910f794fca"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:f9268774428ec173654985ce55fc6caf4c6d11ade0f6f914d48ef4719eb05ebb"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:23f9985c8784e544d53fc2930fc1ac1a7319f5d5332d228437acc9f418f2f168"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:ae2941333154baff9838e88aa71c1d84f4438189ecc6021a12c7573728b5838e"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:e93f1c331ca8e86fe877a48ad64e77882c0c4da0097f2212873a69bbfea95d0c"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:846bc79ee753acf93aef4184c040d709940c9d001029ceb7b7a52747b80ed2dd"}, + {file = "regex-2024.9.11-cp38-cp38-win32.whl", hash = "sha256:c94bb0a9f1db10a1d16c00880bdebd5f9faf267273b8f5bd1878126e0fbde771"}, + {file = "regex-2024.9.11-cp38-cp38-win_amd64.whl", hash = "sha256:2b08fce89fbd45664d3df6ad93e554b6c16933ffa9d55cb7e01182baaf971508"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:07f45f287469039ffc2c53caf6803cd506eb5f5f637f1d4acb37a738f71dd066"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4838e24ee015101d9f901988001038f7f0d90dc0c3b115541a1365fb439add62"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6edd623bae6a737f10ce853ea076f56f507fd7726bee96a41ee3d68d347e4d16"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c69ada171c2d0e97a4b5aa78fbb835e0ffbb6b13fc5da968c09811346564f0d3"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:02087ea0a03b4af1ed6ebab2c54d7118127fee8d71b26398e8e4b05b78963199"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:69dee6a020693d12a3cf892aba4808fe168d2a4cef368eb9bf74f5398bfd4ee8"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:297f54910247508e6e5cae669f2bc308985c60540a4edd1c77203ef19bfa63ca"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ecea58b43a67b1b79805f1a0255730edaf5191ecef84dbc4cc85eb30bc8b63b9"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:eab4bb380f15e189d1313195b062a6aa908f5bd687a0ceccd47c8211e9cf0d4a"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0cbff728659ce4bbf4c30b2a1be040faafaa9eca6ecde40aaff86f7889f4ab39"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:54c4a097b8bc5bb0dfc83ae498061d53ad7b5762e00f4adaa23bee22b012e6ba"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:73d6d2f64f4d894c96626a75578b0bf7d9e56dcda8c3d037a2118fdfe9b1c664"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:e53b5fbab5d675aec9f0c501274c467c0f9a5d23696cfc94247e1fb56501ed89"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0ffbcf9221e04502fc35e54d1ce9567541979c3fdfb93d2c554f0ca583a19b35"}, + {file = "regex-2024.9.11-cp39-cp39-win32.whl", hash = "sha256:e4c22e1ac1f1ec1e09f72e6c44d8f2244173db7eb9629cc3a346a8d7ccc31142"}, + {file = "regex-2024.9.11-cp39-cp39-win_amd64.whl", hash = "sha256:faa3c142464efec496967359ca99696c896c591c56c53506bac1ad465f66e919"}, + {file = "regex-2024.9.11.tar.gz", hash = "sha256:6c188c307e8433bcb63dc1915022deb553b4203a70722fc542c363bf120a01fd"}, ] [[package]] @@ -2646,13 +2696,13 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "rich" -version = "13.7.1" +version = "13.8.1" description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal" optional = false python-versions = ">=3.7.0" files = [ - {file = "rich-13.7.1-py3-none-any.whl", hash = "sha256:4edbae314f59eb482f54e9e30bf00d33350aaa94f4bfcd4e9e3110e64d0d7222"}, - {file = "rich-13.7.1.tar.gz", hash = "sha256:9be308cb1fe2f1f57d67ce99e95af38a1e2bc71ad9813b0e247cf7ffbcc3a432"}, + {file = "rich-13.8.1-py3-none-any.whl", hash = "sha256:1760a3c0848469b97b558fc61c85233e3dafb69c7a071b4d60c38099d3cd4c06"}, + {file = "rich-13.8.1.tar.gz", hash = "sha256:8260cda28e3db6bf04d2d1ef4dbc03ba80a824c88b0e7668a0f23126a424844a"}, ] [package.dependencies] @@ -2664,219 +2714,233 @@ jupyter = ["ipywidgets (>=7.5.1,<9)"] [[package]] name = "rpds-py" -version = "0.19.0" +version = "0.20.0" description = "Python bindings to Rust's persistent data structures (rpds)" optional = true python-versions = ">=3.8" files = [ - {file = "rpds_py-0.19.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:fb37bd599f031f1a6fb9e58ec62864ccf3ad549cf14bac527dbfa97123edcca4"}, - {file = "rpds_py-0.19.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3384d278df99ec2c6acf701d067147320b864ef6727405d6470838476e44d9e8"}, - {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e54548e0be3ac117595408fd4ca0ac9278fde89829b0b518be92863b17ff67a2"}, - {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8eb488ef928cdbc05a27245e52de73c0d7c72a34240ef4d9893fdf65a8c1a955"}, - {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a5da93debdfe27b2bfc69eefb592e1831d957b9535e0943a0ee8b97996de21b5"}, - {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:79e205c70afddd41f6ee79a8656aec738492a550247a7af697d5bd1aee14f766"}, - {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:959179efb3e4a27610e8d54d667c02a9feaa86bbabaf63efa7faa4dfa780d4f1"}, - {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a6e605bb9edcf010f54f8b6a590dd23a4b40a8cb141255eec2a03db249bc915b"}, - {file = "rpds_py-0.19.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:9133d75dc119a61d1a0ded38fb9ba40a00ef41697cc07adb6ae098c875195a3f"}, - {file = "rpds_py-0.19.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:dd36b712d35e757e28bf2f40a71e8f8a2d43c8b026d881aa0c617b450d6865c9"}, - {file = "rpds_py-0.19.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:354f3a91718489912f2e0fc331c24eaaf6a4565c080e00fbedb6015857c00582"}, - {file = "rpds_py-0.19.0-cp310-none-win32.whl", hash = "sha256:ebcbf356bf5c51afc3290e491d3722b26aaf5b6af3c1c7f6a1b757828a46e336"}, - {file = "rpds_py-0.19.0-cp310-none-win_amd64.whl", hash = "sha256:75a6076289b2df6c8ecb9d13ff79ae0cad1d5fb40af377a5021016d58cd691ec"}, - {file = "rpds_py-0.19.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:6d45080095e585f8c5097897313def60caa2046da202cdb17a01f147fb263b81"}, - {file = "rpds_py-0.19.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c5c9581019c96f865483d031691a5ff1cc455feb4d84fc6920a5ffc48a794d8a"}, - {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1540d807364c84516417115c38f0119dfec5ea5c0dd9a25332dea60b1d26fc4d"}, - {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9e65489222b410f79711dc3d2d5003d2757e30874096b2008d50329ea4d0f88c"}, - {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9da6f400eeb8c36f72ef6646ea530d6d175a4f77ff2ed8dfd6352842274c1d8b"}, - {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:37f46bb11858717e0efa7893c0f7055c43b44c103e40e69442db5061cb26ed34"}, - {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:071d4adc734de562bd11d43bd134330fb6249769b2f66b9310dab7460f4bf714"}, - {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9625367c8955e4319049113ea4f8fee0c6c1145192d57946c6ffcd8fe8bf48dd"}, - {file = "rpds_py-0.19.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e19509145275d46bc4d1e16af0b57a12d227c8253655a46bbd5ec317e941279d"}, - {file = "rpds_py-0.19.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4d438e4c020d8c39961deaf58f6913b1bf8832d9b6f62ec35bd93e97807e9cbc"}, - {file = "rpds_py-0.19.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:90bf55d9d139e5d127193170f38c584ed3c79e16638890d2e36f23aa1630b952"}, - {file = "rpds_py-0.19.0-cp311-none-win32.whl", hash = "sha256:8d6ad132b1bc13d05ffe5b85e7a01a3998bf3a6302ba594b28d61b8c2cf13aaf"}, - {file = "rpds_py-0.19.0-cp311-none-win_amd64.whl", hash = "sha256:7ec72df7354e6b7f6eb2a17fa6901350018c3a9ad78e48d7b2b54d0412539a67"}, - {file = "rpds_py-0.19.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:5095a7c838a8647c32aa37c3a460d2c48debff7fc26e1136aee60100a8cd8f68"}, - {file = "rpds_py-0.19.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6f2f78ef14077e08856e788fa482107aa602636c16c25bdf59c22ea525a785e9"}, - {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7cc6cb44f8636fbf4a934ca72f3e786ba3c9f9ba4f4d74611e7da80684e48d2"}, - {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cf902878b4af334a09de7a45badbff0389e7cf8dc2e4dcf5f07125d0b7c2656d"}, - {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:688aa6b8aa724db1596514751ffb767766e02e5c4a87486ab36b8e1ebc1aedac"}, - {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:57dbc9167d48e355e2569346b5aa4077f29bf86389c924df25c0a8b9124461fb"}, - {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b4cf5a9497874822341c2ebe0d5850fed392034caadc0bad134ab6822c0925b"}, - {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8a790d235b9d39c70a466200d506bb33a98e2ee374a9b4eec7a8ac64c2c261fa"}, - {file = "rpds_py-0.19.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1d16089dfa58719c98a1c06f2daceba6d8e3fb9b5d7931af4a990a3c486241cb"}, - {file = "rpds_py-0.19.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:bc9128e74fe94650367fe23f37074f121b9f796cabbd2f928f13e9661837296d"}, - {file = "rpds_py-0.19.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c8f77e661ffd96ff104bebf7d0f3255b02aa5d5b28326f5408d6284c4a8b3248"}, - {file = "rpds_py-0.19.0-cp312-none-win32.whl", hash = "sha256:5f83689a38e76969327e9b682be5521d87a0c9e5a2e187d2bc6be4765f0d4600"}, - {file = "rpds_py-0.19.0-cp312-none-win_amd64.whl", hash = "sha256:06925c50f86da0596b9c3c64c3837b2481337b83ef3519e5db2701df695453a4"}, - {file = "rpds_py-0.19.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:52e466bea6f8f3a44b1234570244b1cff45150f59a4acae3fcc5fd700c2993ca"}, - {file = "rpds_py-0.19.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e21cc693045fda7f745c790cb687958161ce172ffe3c5719ca1764e752237d16"}, - {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b31f059878eb1f5da8b2fd82480cc18bed8dcd7fb8fe68370e2e6285fa86da6"}, - {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1dd46f309e953927dd018567d6a9e2fb84783963650171f6c5fe7e5c41fd5666"}, - {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:34a01a4490e170376cd79258b7f755fa13b1a6c3667e872c8e35051ae857a92b"}, - {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bcf426a8c38eb57f7bf28932e68425ba86def6e756a5b8cb4731d8e62e4e0223"}, - {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f68eea5df6347d3f1378ce992d86b2af16ad7ff4dcb4a19ccdc23dea901b87fb"}, - {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dab8d921b55a28287733263c0e4c7db11b3ee22aee158a4de09f13c93283c62d"}, - {file = "rpds_py-0.19.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:6fe87efd7f47266dfc42fe76dae89060038f1d9cb911f89ae7e5084148d1cc08"}, - {file = "rpds_py-0.19.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:535d4b52524a961d220875688159277f0e9eeeda0ac45e766092bfb54437543f"}, - {file = "rpds_py-0.19.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:8b1a94b8afc154fbe36978a511a1f155f9bd97664e4f1f7a374d72e180ceb0ae"}, - {file = "rpds_py-0.19.0-cp38-none-win32.whl", hash = "sha256:7c98298a15d6b90c8f6e3caa6457f4f022423caa5fa1a1ca7a5e9e512bdb77a4"}, - {file = "rpds_py-0.19.0-cp38-none-win_amd64.whl", hash = "sha256:b0da31853ab6e58a11db3205729133ce0df26e6804e93079dee095be3d681dc1"}, - {file = "rpds_py-0.19.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:5039e3cef7b3e7a060de468a4a60a60a1f31786da94c6cb054e7a3c75906111c"}, - {file = "rpds_py-0.19.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab1932ca6cb8c7499a4d87cb21ccc0d3326f172cfb6a64021a889b591bb3045c"}, - {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f2afd2164a1e85226fcb6a1da77a5c8896c18bfe08e82e8ceced5181c42d2179"}, - {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b1c30841f5040de47a0046c243fc1b44ddc87d1b12435a43b8edff7e7cb1e0d0"}, - {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f757f359f30ec7dcebca662a6bd46d1098f8b9fb1fcd661a9e13f2e8ce343ba1"}, - {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:15e65395a59d2e0e96caf8ee5389ffb4604e980479c32742936ddd7ade914b22"}, - {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb0f6eb3a320f24b94d177e62f4074ff438f2ad9d27e75a46221904ef21a7b05"}, - {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b228e693a2559888790936e20f5f88b6e9f8162c681830eda303bad7517b4d5a"}, - {file = "rpds_py-0.19.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2575efaa5d949c9f4e2cdbe7d805d02122c16065bfb8d95c129372d65a291a0b"}, - {file = "rpds_py-0.19.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:5c872814b77a4e84afa293a1bee08c14daed1068b2bb1cc312edbf020bbbca2b"}, - {file = "rpds_py-0.19.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:850720e1b383df199b8433a20e02b25b72f0fded28bc03c5bd79e2ce7ef050be"}, - {file = "rpds_py-0.19.0-cp39-none-win32.whl", hash = "sha256:ce84a7efa5af9f54c0aa7692c45861c1667080814286cacb9958c07fc50294fb"}, - {file = "rpds_py-0.19.0-cp39-none-win_amd64.whl", hash = "sha256:1c26da90b8d06227d7769f34915913911222d24ce08c0ab2d60b354e2d9c7aff"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:75969cf900d7be665ccb1622a9aba225cf386bbc9c3bcfeeab9f62b5048f4a07"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8445f23f13339da640d1be8e44e5baf4af97e396882ebbf1692aecd67f67c479"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5a7c1062ef8aea3eda149f08120f10795835fc1c8bc6ad948fb9652a113ca55"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:462b0c18fbb48fdbf980914a02ee38c423a25fcc4cf40f66bacc95a2d2d73bc8"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3208f9aea18991ac7f2b39721e947bbd752a1abbe79ad90d9b6a84a74d44409b"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c3444fe52b82f122d8a99bf66777aed6b858d392b12f4c317da19f8234db4533"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88cb4bac7185a9f0168d38c01d7a00addece9822a52870eee26b8d5b61409213"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6b130bd4163c93798a6b9bb96be64a7c43e1cec81126ffa7ffaa106e1fc5cef5"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:a707b158b4410aefb6b054715545bbb21aaa5d5d0080217290131c49c2124a6e"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:dc9ac4659456bde7c567107556ab065801622396b435a3ff213daef27b495388"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:81ea573aa46d3b6b3d890cd3c0ad82105985e6058a4baed03cf92518081eec8c"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3f148c3f47f7f29a79c38cc5d020edcb5ca780020fab94dbc21f9af95c463581"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:b0906357f90784a66e89ae3eadc2654f36c580a7d65cf63e6a616e4aec3a81be"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f629ecc2db6a4736b5ba95a8347b0089240d69ad14ac364f557d52ad68cf94b0"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c6feacd1d178c30e5bc37184526e56740342fd2aa6371a28367bad7908d454fc"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae8b6068ee374fdfab63689be0963333aa83b0815ead5d8648389a8ded593378"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:78d57546bad81e0da13263e4c9ce30e96dcbe720dbff5ada08d2600a3502e526"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b6683a37338818646af718c9ca2a07f89787551057fae57c4ec0446dc6224b"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e8481b946792415adc07410420d6fc65a352b45d347b78fec45d8f8f0d7496f0"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:bec35eb20792ea64c3c57891bc3ca0bedb2884fbac2c8249d9b731447ecde4fa"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:aa5476c3e3a402c37779e95f7b4048db2cb5b0ed0b9d006983965e93f40fe05a"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:19d02c45f2507b489fd4df7b827940f1420480b3e2e471e952af4d44a1ea8e34"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a3e2fd14c5d49ee1da322672375963f19f32b3d5953f0615b175ff7b9d38daed"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:93a91c2640645303e874eada51f4f33351b84b351a689d470f8108d0e0694210"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5b9fc03bf76a94065299d4a2ecd8dfbae4ae8e2e8098bbfa6ab6413ca267709"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5a4b07cdf3f84310c08c1de2c12ddadbb7a77568bcb16e95489f9c81074322ed"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba0ed0dc6763d8bd6e5de5cf0d746d28e706a10b615ea382ac0ab17bb7388633"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:474bc83233abdcf2124ed3f66230a1c8435896046caa4b0b5ab6013c640803cc"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:329c719d31362355a96b435f4653e3b4b061fcc9eba9f91dd40804ca637d914e"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ef9101f3f7b59043a34f1dccbb385ca760467590951952d6701df0da9893ca0c"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:0121803b0f424ee2109d6e1f27db45b166ebaa4b32ff47d6aa225642636cd834"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:8344127403dea42f5970adccf6c5957a71a47f522171fafaf4c6ddb41b61703a"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:443cec402ddd650bb2b885113e1dcedb22b1175c6be223b14246a714b61cd521"}, - {file = "rpds_py-0.19.0.tar.gz", hash = "sha256:4fdc9afadbeb393b4bbbad75481e0ea78e4469f2e1d713a90811700830b553a9"}, + {file = "rpds_py-0.20.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3ad0fda1635f8439cde85c700f964b23ed5fc2d28016b32b9ee5fe30da5c84e2"}, + {file = "rpds_py-0.20.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9bb4a0d90fdb03437c109a17eade42dfbf6190408f29b2744114d11586611d6f"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6377e647bbfd0a0b159fe557f2c6c602c159fc752fa316572f012fc0bf67150"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eb851b7df9dda52dc1415ebee12362047ce771fc36914586b2e9fcbd7d293b3e"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e0f80b739e5a8f54837be5d5c924483996b603d5502bfff79bf33da06164ee2"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a8c94dad2e45324fc74dce25e1645d4d14df9a4e54a30fa0ae8bad9a63928e3"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8e604fe73ba048c06085beaf51147eaec7df856824bfe7b98657cf436623daf"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:df3de6b7726b52966edf29663e57306b23ef775faf0ac01a3e9f4012a24a4140"}, + {file = "rpds_py-0.20.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:cf258ede5bc22a45c8e726b29835b9303c285ab46fc7c3a4cc770736b5304c9f"}, + {file = "rpds_py-0.20.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:55fea87029cded5df854ca7e192ec7bdb7ecd1d9a3f63d5c4eb09148acf4a7ce"}, + {file = "rpds_py-0.20.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ae94bd0b2f02c28e199e9bc51485d0c5601f58780636185660f86bf80c89af94"}, + {file = "rpds_py-0.20.0-cp310-none-win32.whl", hash = "sha256:28527c685f237c05445efec62426d285e47a58fb05ba0090a4340b73ecda6dee"}, + {file = "rpds_py-0.20.0-cp310-none-win_amd64.whl", hash = "sha256:238a2d5b1cad28cdc6ed15faf93a998336eb041c4e440dd7f902528b8891b399"}, + {file = "rpds_py-0.20.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:ac2f4f7a98934c2ed6505aead07b979e6f999389f16b714448fb39bbaa86a489"}, + {file = "rpds_py-0.20.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:220002c1b846db9afd83371d08d239fdc865e8f8c5795bbaec20916a76db3318"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d7919548df3f25374a1f5d01fbcd38dacab338ef5f33e044744b5c36729c8db"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:758406267907b3781beee0f0edfe4a179fbd97c0be2e9b1154d7f0a1279cf8e5"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3d61339e9f84a3f0767b1995adfb171a0d00a1185192718a17af6e124728e0f5"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1259c7b3705ac0a0bd38197565a5d603218591d3f6cee6e614e380b6ba61c6f6"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c1dc0f53856b9cc9a0ccca0a7cc61d3d20a7088201c0937f3f4048c1718a209"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7e60cb630f674a31f0368ed32b2a6b4331b8350d67de53c0359992444b116dd3"}, + {file = "rpds_py-0.20.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:dbe982f38565bb50cb7fb061ebf762c2f254ca3d8c20d4006878766e84266272"}, + {file = "rpds_py-0.20.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:514b3293b64187172bc77c8fb0cdae26981618021053b30d8371c3a902d4d5ad"}, + {file = "rpds_py-0.20.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d0a26ffe9d4dd35e4dfdd1e71f46401cff0181c75ac174711ccff0459135fa58"}, + {file = "rpds_py-0.20.0-cp311-none-win32.whl", hash = "sha256:89c19a494bf3ad08c1da49445cc5d13d8fefc265f48ee7e7556839acdacf69d0"}, + {file = "rpds_py-0.20.0-cp311-none-win_amd64.whl", hash = "sha256:c638144ce971df84650d3ed0096e2ae7af8e62ecbbb7b201c8935c370df00a2c"}, + {file = "rpds_py-0.20.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:a84ab91cbe7aab97f7446652d0ed37d35b68a465aeef8fc41932a9d7eee2c1a6"}, + {file = "rpds_py-0.20.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:56e27147a5a4c2c21633ff8475d185734c0e4befd1c989b5b95a5d0db699b21b"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2580b0c34583b85efec8c5c5ec9edf2dfe817330cc882ee972ae650e7b5ef739"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b80d4a7900cf6b66bb9cee5c352b2d708e29e5a37fe9bf784fa97fc11504bf6c"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:50eccbf054e62a7b2209b28dc7a22d6254860209d6753e6b78cfaeb0075d7bee"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:49a8063ea4296b3a7e81a5dfb8f7b2d73f0b1c20c2af401fb0cdf22e14711a96"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea438162a9fcbee3ecf36c23e6c68237479f89f962f82dae83dc15feeceb37e4"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:18d7585c463087bddcfa74c2ba267339f14f2515158ac4db30b1f9cbdb62c8ef"}, + {file = "rpds_py-0.20.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d4c7d1a051eeb39f5c9547e82ea27cbcc28338482242e3e0b7768033cb083821"}, + {file = "rpds_py-0.20.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:e4df1e3b3bec320790f699890d41c59d250f6beda159ea3c44c3f5bac1976940"}, + {file = "rpds_py-0.20.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2cf126d33a91ee6eedc7f3197b53e87a2acdac63602c0f03a02dd69e4b138174"}, + {file = "rpds_py-0.20.0-cp312-none-win32.whl", hash = "sha256:8bc7690f7caee50b04a79bf017a8d020c1f48c2a1077ffe172abec59870f1139"}, + {file = "rpds_py-0.20.0-cp312-none-win_amd64.whl", hash = "sha256:0e13e6952ef264c40587d510ad676a988df19adea20444c2b295e536457bc585"}, + {file = "rpds_py-0.20.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:aa9a0521aeca7d4941499a73ad7d4f8ffa3d1affc50b9ea11d992cd7eff18a29"}, + {file = "rpds_py-0.20.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:4a1f1d51eccb7e6c32ae89243cb352389228ea62f89cd80823ea7dd1b98e0b91"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a86a9b96070674fc88b6f9f71a97d2c1d3e5165574615d1f9168ecba4cecb24"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6c8ef2ebf76df43f5750b46851ed1cdf8f109d7787ca40035fe19fbdc1acc5a7"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b74b25f024b421d5859d156750ea9a65651793d51b76a2e9238c05c9d5f203a9"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:57eb94a8c16ab08fef6404301c38318e2c5a32216bf5de453e2714c964c125c8"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1940dae14e715e2e02dfd5b0f64a52e8374a517a1e531ad9412319dc3ac7879"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d20277fd62e1b992a50c43f13fbe13277a31f8c9f70d59759c88f644d66c619f"}, + {file = "rpds_py-0.20.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:06db23d43f26478303e954c34c75182356ca9aa7797d22c5345b16871ab9c45c"}, + {file = "rpds_py-0.20.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:b2a5db5397d82fa847e4c624b0c98fe59d2d9b7cf0ce6de09e4d2e80f8f5b3f2"}, + {file = "rpds_py-0.20.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:5a35df9f5548fd79cb2f52d27182108c3e6641a4feb0f39067911bf2adaa3e57"}, + {file = "rpds_py-0.20.0-cp313-none-win32.whl", hash = "sha256:fd2d84f40633bc475ef2d5490b9c19543fbf18596dcb1b291e3a12ea5d722f7a"}, + {file = "rpds_py-0.20.0-cp313-none-win_amd64.whl", hash = "sha256:9bc2d153989e3216b0559251b0c260cfd168ec78b1fac33dd485750a228db5a2"}, + {file = "rpds_py-0.20.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:f2fbf7db2012d4876fb0d66b5b9ba6591197b0f165db8d99371d976546472a24"}, + {file = "rpds_py-0.20.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:1e5f3cd7397c8f86c8cc72d5a791071431c108edd79872cdd96e00abd8497d29"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce9845054c13696f7af7f2b353e6b4f676dab1b4b215d7fe5e05c6f8bb06f965"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c3e130fd0ec56cb76eb49ef52faead8ff09d13f4527e9b0c400307ff72b408e1"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4b16aa0107ecb512b568244ef461f27697164d9a68d8b35090e9b0c1c8b27752"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aa7f429242aae2947246587d2964fad750b79e8c233a2367f71b554e9447949c"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:af0fc424a5842a11e28956e69395fbbeab2c97c42253169d87e90aac2886d751"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b8c00a3b1e70c1d3891f0db1b05292747f0dbcfb49c43f9244d04c70fbc40eb8"}, + {file = "rpds_py-0.20.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:40ce74fc86ee4645d0a225498d091d8bc61f39b709ebef8204cb8b5a464d3c0e"}, + {file = "rpds_py-0.20.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4fe84294c7019456e56d93e8ababdad5a329cd25975be749c3f5f558abb48253"}, + {file = "rpds_py-0.20.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:338ca4539aad4ce70a656e5187a3a31c5204f261aef9f6ab50e50bcdffaf050a"}, + {file = "rpds_py-0.20.0-cp38-none-win32.whl", hash = "sha256:54b43a2b07db18314669092bb2de584524d1ef414588780261e31e85846c26a5"}, + {file = "rpds_py-0.20.0-cp38-none-win_amd64.whl", hash = "sha256:a1862d2d7ce1674cffa6d186d53ca95c6e17ed2b06b3f4c476173565c862d232"}, + {file = "rpds_py-0.20.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:3fde368e9140312b6e8b6c09fb9f8c8c2f00999d1823403ae90cc00480221b22"}, + {file = "rpds_py-0.20.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9824fb430c9cf9af743cf7aaf6707bf14323fb51ee74425c380f4c846ea70789"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:11ef6ce74616342888b69878d45e9f779b95d4bd48b382a229fe624a409b72c5"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c52d3f2f82b763a24ef52f5d24358553e8403ce05f893b5347098014f2d9eff2"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9d35cef91e59ebbeaa45214861874bc6f19eb35de96db73e467a8358d701a96c"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d72278a30111e5b5525c1dd96120d9e958464316f55adb030433ea905866f4de"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4c29cbbba378759ac5786730d1c3cb4ec6f8ababf5c42a9ce303dc4b3d08cda"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6632f2d04f15d1bd6fe0eedd3b86d9061b836ddca4c03d5cf5c7e9e6b7c14580"}, + {file = "rpds_py-0.20.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:d0b67d87bb45ed1cd020e8fbf2307d449b68abc45402fe1a4ac9e46c3c8b192b"}, + {file = "rpds_py-0.20.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ec31a99ca63bf3cd7f1a5ac9fe95c5e2d060d3c768a09bc1d16e235840861420"}, + {file = "rpds_py-0.20.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:22e6c9976e38f4d8c4a63bd8a8edac5307dffd3ee7e6026d97f3cc3a2dc02a0b"}, + {file = "rpds_py-0.20.0-cp39-none-win32.whl", hash = "sha256:569b3ea770c2717b730b61998b6c54996adee3cef69fc28d444f3e7920313cf7"}, + {file = "rpds_py-0.20.0-cp39-none-win_amd64.whl", hash = "sha256:e6900ecdd50ce0facf703f7a00df12374b74bbc8ad9fe0f6559947fb20f82364"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:617c7357272c67696fd052811e352ac54ed1d9b49ab370261a80d3b6ce385045"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9426133526f69fcaba6e42146b4e12d6bc6c839b8b555097020e2b78ce908dcc"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:deb62214c42a261cb3eb04d474f7155279c1a8a8c30ac89b7dcb1721d92c3c02"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fcaeb7b57f1a1e071ebd748984359fef83ecb026325b9d4ca847c95bc7311c92"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d454b8749b4bd70dd0a79f428731ee263fa6995f83ccb8bada706e8d1d3ff89d"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d807dc2051abe041b6649681dce568f8e10668e3c1c6543ebae58f2d7e617855"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3c20f0ddeb6e29126d45f89206b8291352b8c5b44384e78a6499d68b52ae511"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b7f19250ceef892adf27f0399b9e5afad019288e9be756d6919cb58892129f51"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:4f1ed4749a08379555cebf4650453f14452eaa9c43d0a95c49db50c18b7da075"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:dcedf0b42bcb4cfff4101d7771a10532415a6106062f005ab97d1d0ab5681c60"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:39ed0d010457a78f54090fafb5d108501b5aa5604cc22408fc1c0c77eac14344"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:bb273176be34a746bdac0b0d7e4e2c467323d13640b736c4c477881a3220a989"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f918a1a130a6dfe1d7fe0f105064141342e7dd1611f2e6a21cd2f5c8cb1cfb3e"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f60012a73aa396be721558caa3a6fd49b3dd0033d1675c6d59c4502e870fcf0c"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d2b1ad682a3dfda2a4e8ad8572f3100f95fad98cb99faf37ff0ddfe9cbf9d03"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:614fdafe9f5f19c63ea02817fa4861c606a59a604a77c8cdef5aa01d28b97921"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fa518bcd7600c584bf42e6617ee8132869e877db2f76bcdc281ec6a4113a53ab"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0475242f447cc6cb8a9dd486d68b2ef7fbee84427124c232bff5f63b1fe11e5"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f90a4cd061914a60bd51c68bcb4357086991bd0bb93d8aa66a6da7701370708f"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:def7400461c3a3f26e49078302e1c1b38f6752342c77e3cf72ce91ca69fb1bc1"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:65794e4048ee837494aea3c21a28ad5fc080994dfba5b036cf84de37f7ad5074"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:faefcc78f53a88f3076b7f8be0a8f8d35133a3ecf7f3770895c25f8813460f08"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:5b4f105deeffa28bbcdff6c49b34e74903139afa690e35d2d9e3c2c2fba18cec"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:fdfc3a892927458d98f3d55428ae46b921d1f7543b89382fdb483f5640daaec8"}, + {file = "rpds_py-0.20.0.tar.gz", hash = "sha256:d72a210824facfdaf8768cf2d7ca25a042c30320b3020de2fa04640920d4e121"}, ] [[package]] name = "safetensors" -version = "0.4.3" +version = "0.4.5" description = "" optional = false python-versions = ">=3.7" files = [ - {file = "safetensors-0.4.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:dcf5705cab159ce0130cd56057f5f3425023c407e170bca60b4868048bae64fd"}, - {file = "safetensors-0.4.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:bb4f8c5d0358a31e9a08daeebb68f5e161cdd4018855426d3f0c23bb51087055"}, - {file = "safetensors-0.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70a5319ef409e7f88686a46607cbc3c428271069d8b770076feaf913664a07ac"}, - {file = "safetensors-0.4.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fb9c65bd82f9ef3ce4970dc19ee86be5f6f93d032159acf35e663c6bea02b237"}, - {file = "safetensors-0.4.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:edb5698a7bc282089f64c96c477846950358a46ede85a1c040e0230344fdde10"}, - {file = "safetensors-0.4.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:efcc860be094b8d19ac61b452ec635c7acb9afa77beb218b1d7784c6d41fe8ad"}, - {file = "safetensors-0.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d88b33980222085dd6001ae2cad87c6068e0991d4f5ccf44975d216db3b57376"}, - {file = "safetensors-0.4.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5fc6775529fb9f0ce2266edd3e5d3f10aab068e49f765e11f6f2a63b5367021d"}, - {file = "safetensors-0.4.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9c6ad011c1b4e3acff058d6b090f1da8e55a332fbf84695cf3100c649cc452d1"}, - {file = "safetensors-0.4.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8c496c5401c1b9c46d41a7688e8ff5b0310a3b9bae31ce0f0ae870e1ea2b8caf"}, - {file = "safetensors-0.4.3-cp310-none-win32.whl", hash = "sha256:38e2a8666178224a51cca61d3cb4c88704f696eac8f72a49a598a93bbd8a4af9"}, - {file = "safetensors-0.4.3-cp310-none-win_amd64.whl", hash = "sha256:393e6e391467d1b2b829c77e47d726f3b9b93630e6a045b1d1fca67dc78bf632"}, - {file = "safetensors-0.4.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:22f3b5d65e440cec0de8edaa672efa888030802e11c09b3d6203bff60ebff05a"}, - {file = "safetensors-0.4.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7c4fa560ebd4522adddb71dcd25d09bf211b5634003f015a4b815b7647d62ebe"}, - {file = "safetensors-0.4.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e9afd5358719f1b2cf425fad638fc3c887997d6782da317096877e5b15b2ce93"}, - {file = "safetensors-0.4.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d8c5093206ef4b198600ae484230402af6713dab1bd5b8e231905d754022bec7"}, - {file = "safetensors-0.4.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e0b2104df1579d6ba9052c0ae0e3137c9698b2d85b0645507e6fd1813b70931a"}, - {file = "safetensors-0.4.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8cf18888606dad030455d18f6c381720e57fc6a4170ee1966adb7ebc98d4d6a3"}, - {file = "safetensors-0.4.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0bf4f9d6323d9f86eef5567eabd88f070691cf031d4c0df27a40d3b4aaee755b"}, - {file = "safetensors-0.4.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:585c9ae13a205807b63bef8a37994f30c917ff800ab8a1ca9c9b5d73024f97ee"}, - {file = "safetensors-0.4.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faefeb3b81bdfb4e5a55b9bbdf3d8d8753f65506e1d67d03f5c851a6c87150e9"}, - {file = "safetensors-0.4.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:befdf0167ad626f22f6aac6163477fcefa342224a22f11fdd05abb3995c1783c"}, - {file = "safetensors-0.4.3-cp311-none-win32.whl", hash = "sha256:a7cef55929dcbef24af3eb40bedec35d82c3c2fa46338bb13ecf3c5720af8a61"}, - {file = "safetensors-0.4.3-cp311-none-win_amd64.whl", hash = "sha256:840b7ac0eff5633e1d053cc9db12fdf56b566e9403b4950b2dc85393d9b88d67"}, - {file = "safetensors-0.4.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:22d21760dc6ebae42e9c058d75aa9907d9f35e38f896e3c69ba0e7b213033856"}, - {file = "safetensors-0.4.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8d22c1a10dff3f64d0d68abb8298a3fd88ccff79f408a3e15b3e7f637ef5c980"}, - {file = "safetensors-0.4.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1648568667f820b8c48317c7006221dc40aced1869908c187f493838a1362bc"}, - {file = "safetensors-0.4.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:446e9fe52c051aeab12aac63d1017e0f68a02a92a027b901c4f8e931b24e5397"}, - {file = "safetensors-0.4.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fef5d70683643618244a4f5221053567ca3e77c2531e42ad48ae05fae909f542"}, - {file = "safetensors-0.4.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a1f4430cc0c9d6afa01214a4b3919d0a029637df8e09675ceef1ca3f0dfa0df"}, - {file = "safetensors-0.4.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d603846a8585b9432a0fd415db1d4c57c0f860eb4aea21f92559ff9902bae4d"}, - {file = "safetensors-0.4.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a844cdb5d7cbc22f5f16c7e2a0271170750763c4db08381b7f696dbd2c78a361"}, - {file = "safetensors-0.4.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:88887f69f7a00cf02b954cdc3034ffb383b2303bc0ab481d4716e2da51ddc10e"}, - {file = "safetensors-0.4.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ee463219d9ec6c2be1d331ab13a8e0cd50d2f32240a81d498266d77d07b7e71e"}, - {file = "safetensors-0.4.3-cp312-none-win32.whl", hash = "sha256:d0dd4a1db09db2dba0f94d15addc7e7cd3a7b0d393aa4c7518c39ae7374623c3"}, - {file = "safetensors-0.4.3-cp312-none-win_amd64.whl", hash = "sha256:d14d30c25897b2bf19b6fb5ff7e26cc40006ad53fd4a88244fdf26517d852dd7"}, - {file = "safetensors-0.4.3-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:d1456f814655b224d4bf6e7915c51ce74e389b413be791203092b7ff78c936dd"}, - {file = "safetensors-0.4.3-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:455d538aa1aae4a8b279344a08136d3f16334247907b18a5c3c7fa88ef0d3c46"}, - {file = "safetensors-0.4.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf476bca34e1340ee3294ef13e2c625833f83d096cfdf69a5342475602004f95"}, - {file = "safetensors-0.4.3-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:02ef3a24face643456020536591fbd3c717c5abaa2737ec428ccbbc86dffa7a4"}, - {file = "safetensors-0.4.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7de32d0d34b6623bb56ca278f90db081f85fb9c5d327e3c18fd23ac64f465768"}, - {file = "safetensors-0.4.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a0deb16a1d3ea90c244ceb42d2c6c276059616be21a19ac7101aa97da448faf"}, - {file = "safetensors-0.4.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c59d51f182c729f47e841510b70b967b0752039f79f1de23bcdd86462a9b09ee"}, - {file = "safetensors-0.4.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1f598b713cc1a4eb31d3b3203557ac308acf21c8f41104cdd74bf640c6e538e3"}, - {file = "safetensors-0.4.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:5757e4688f20df083e233b47de43845d1adb7e17b6cf7da5f8444416fc53828d"}, - {file = "safetensors-0.4.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:fe746d03ed8d193674a26105e4f0fe6c726f5bb602ffc695b409eaf02f04763d"}, - {file = "safetensors-0.4.3-cp37-none-win32.whl", hash = "sha256:0d5ffc6a80f715c30af253e0e288ad1cd97a3d0086c9c87995e5093ebc075e50"}, - {file = "safetensors-0.4.3-cp37-none-win_amd64.whl", hash = "sha256:a11c374eb63a9c16c5ed146457241182f310902bd2a9c18255781bb832b6748b"}, - {file = "safetensors-0.4.3-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:b1e31be7945f66be23f4ec1682bb47faa3df34cb89fc68527de6554d3c4258a4"}, - {file = "safetensors-0.4.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:03a4447c784917c9bf01d8f2ac5080bc15c41692202cd5f406afba16629e84d6"}, - {file = "safetensors-0.4.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d244bcafeb1bc06d47cfee71727e775bca88a8efda77a13e7306aae3813fa7e4"}, - {file = "safetensors-0.4.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53c4879b9c6bd7cd25d114ee0ef95420e2812e676314300624594940a8d6a91f"}, - {file = "safetensors-0.4.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:74707624b81f1b7f2b93f5619d4a9f00934d5948005a03f2c1845ffbfff42212"}, - {file = "safetensors-0.4.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0d52c958dc210265157573f81d34adf54e255bc2b59ded6218500c9b15a750eb"}, - {file = "safetensors-0.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f9568f380f513a60139971169c4a358b8731509cc19112369902eddb33faa4d"}, - {file = "safetensors-0.4.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0d9cd8e1560dfc514b6d7859247dc6a86ad2f83151a62c577428d5102d872721"}, - {file = "safetensors-0.4.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:89f9f17b0dacb913ed87d57afbc8aad85ea42c1085bd5de2f20d83d13e9fc4b2"}, - {file = "safetensors-0.4.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:1139eb436fd201c133d03c81209d39ac57e129f5e74e34bb9ab60f8d9b726270"}, - {file = "safetensors-0.4.3-cp38-none-win32.whl", hash = "sha256:d9c289f140a9ae4853fc2236a2ffc9a9f2d5eae0cb673167e0f1b8c18c0961ac"}, - {file = "safetensors-0.4.3-cp38-none-win_amd64.whl", hash = "sha256:622afd28968ef3e9786562d352659a37de4481a4070f4ebac883f98c5836563e"}, - {file = "safetensors-0.4.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:8651c7299cbd8b4161a36cd6a322fa07d39cd23535b144d02f1c1972d0c62f3c"}, - {file = "safetensors-0.4.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e375d975159ac534c7161269de24ddcd490df2157b55c1a6eeace6cbb56903f0"}, - {file = "safetensors-0.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:084fc436e317f83f7071fc6a62ca1c513b2103db325cd09952914b50f51cf78f"}, - {file = "safetensors-0.4.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:41a727a7f5e6ad9f1db6951adee21bbdadc632363d79dc434876369a17de6ad6"}, - {file = "safetensors-0.4.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e7dbbde64b6c534548696808a0e01276d28ea5773bc9a2dfb97a88cd3dffe3df"}, - {file = "safetensors-0.4.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bbae3b4b9d997971431c346edbfe6e41e98424a097860ee872721e176040a893"}, - {file = "safetensors-0.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01e4b22e3284cd866edeabe4f4d896229495da457229408d2e1e4810c5187121"}, - {file = "safetensors-0.4.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dd37306546b58d3043eb044c8103a02792cc024b51d1dd16bd3dd1f334cb3ed"}, - {file = "safetensors-0.4.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d8815b5e1dac85fc534a97fd339e12404db557878c090f90442247e87c8aeaea"}, - {file = "safetensors-0.4.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:e011cc162503c19f4b1fd63dfcddf73739c7a243a17dac09b78e57a00983ab35"}, - {file = "safetensors-0.4.3-cp39-none-win32.whl", hash = "sha256:01feb3089e5932d7e662eda77c3ecc389f97c0883c4a12b5cfdc32b589a811c3"}, - {file = "safetensors-0.4.3-cp39-none-win_amd64.whl", hash = "sha256:3f9cdca09052f585e62328c1c2923c70f46814715c795be65f0b93f57ec98a02"}, - {file = "safetensors-0.4.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:1b89381517891a7bb7d1405d828b2bf5d75528299f8231e9346b8eba092227f9"}, - {file = "safetensors-0.4.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:cd6fff9e56df398abc5866b19a32124815b656613c1c5ec0f9350906fd798aac"}, - {file = "safetensors-0.4.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:840caf38d86aa7014fe37ade5d0d84e23dcfbc798b8078015831996ecbc206a3"}, - {file = "safetensors-0.4.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f9650713b2cfa9537a2baf7dd9fee458b24a0aaaa6cafcea8bdd5fb2b8efdc34"}, - {file = "safetensors-0.4.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e4119532cd10dba04b423e0f86aecb96cfa5a602238c0aa012f70c3a40c44b50"}, - {file = "safetensors-0.4.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:e066e8861eef6387b7c772344d1fe1f9a72800e04ee9a54239d460c400c72aab"}, - {file = "safetensors-0.4.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:90964917f5b0fa0fa07e9a051fbef100250c04d150b7026ccbf87a34a54012e0"}, - {file = "safetensors-0.4.3-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:c41e1893d1206aa7054029681778d9a58b3529d4c807002c156d58426c225173"}, - {file = "safetensors-0.4.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ae7613a119a71a497d012ccc83775c308b9c1dab454806291427f84397d852fd"}, - {file = "safetensors-0.4.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f9bac020faba7f5dc481e881b14b6425265feabb5bfc552551d21189c0eddc3"}, - {file = "safetensors-0.4.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:420a98f593ff9930f5822560d14c395ccbc57342ddff3b463bc0b3d6b1951550"}, - {file = "safetensors-0.4.3-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:f5e6883af9a68c0028f70a4c19d5a6ab6238a379be36ad300a22318316c00cb0"}, - {file = "safetensors-0.4.3-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:cdd0a3b5da66e7f377474599814dbf5cbf135ff059cc73694de129b58a5e8a2c"}, - {file = "safetensors-0.4.3-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:9bfb92f82574d9e58401d79c70c716985dc049b635fef6eecbb024c79b2c46ad"}, - {file = "safetensors-0.4.3-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:3615a96dd2dcc30eb66d82bc76cda2565f4f7bfa89fcb0e31ba3cea8a1a9ecbb"}, - {file = "safetensors-0.4.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:868ad1b6fc41209ab6bd12f63923e8baeb1a086814cb2e81a65ed3d497e0cf8f"}, - {file = "safetensors-0.4.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7ffba80aa49bd09195145a7fd233a7781173b422eeb995096f2b30591639517"}, - {file = "safetensors-0.4.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c0acbe31340ab150423347e5b9cc595867d814244ac14218932a5cf1dd38eb39"}, - {file = "safetensors-0.4.3-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:19bbdf95de2cf64f25cd614c5236c8b06eb2cfa47cbf64311f4b5d80224623a3"}, - {file = "safetensors-0.4.3-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:b852e47eb08475c2c1bd8131207b405793bfc20d6f45aff893d3baaad449ed14"}, - {file = "safetensors-0.4.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:5d07cbca5b99babb692d76d8151bec46f461f8ad8daafbfd96b2fca40cadae65"}, - {file = "safetensors-0.4.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1ab6527a20586d94291c96e00a668fa03f86189b8a9defa2cdd34a1a01acc7d5"}, - {file = "safetensors-0.4.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:02318f01e332cc23ffb4f6716e05a492c5f18b1d13e343c49265149396284a44"}, - {file = "safetensors-0.4.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec4b52ce9a396260eb9731eb6aea41a7320de22ed73a1042c2230af0212758ce"}, - {file = "safetensors-0.4.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:018b691383026a2436a22b648873ed11444a364324e7088b99cd2503dd828400"}, - {file = "safetensors-0.4.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:309b10dbcab63269ecbf0e2ca10ce59223bb756ca5d431ce9c9eeabd446569da"}, - {file = "safetensors-0.4.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:b277482120df46e27a58082df06a15aebda4481e30a1c21eefd0921ae7e03f65"}, - {file = "safetensors-0.4.3.tar.gz", hash = "sha256:2f85fc50c4e07a21e95c24e07460fe6f7e2859d0ce88092838352b798ce711c2"}, + {file = "safetensors-0.4.5-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:a63eaccd22243c67e4f2b1c3e258b257effc4acd78f3b9d397edc8cf8f1298a7"}, + {file = "safetensors-0.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:23fc9b4ec7b602915cbb4ec1a7c1ad96d2743c322f20ab709e2c35d1b66dad27"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6885016f34bef80ea1085b7e99b3c1f92cb1be78a49839203060f67b40aee761"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:133620f443450429322f238fda74d512c4008621227fccf2f8cf4a76206fea7c"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4fb3e0609ec12d2a77e882f07cced530b8262027f64b75d399f1504ffec0ba56"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d0f1dd769f064adc33831f5e97ad07babbd728427f98e3e1db6902e369122737"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c6d156bdb26732feada84f9388a9f135528c1ef5b05fae153da365ad4319c4c5"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9e347d77e2c77eb7624400ccd09bed69d35c0332f417ce8c048d404a096c593b"}, + {file = "safetensors-0.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9f556eea3aec1d3d955403159fe2123ddd68e880f83954ee9b4a3f2e15e716b6"}, + {file = "safetensors-0.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:9483f42be3b6bc8ff77dd67302de8ae411c4db39f7224dec66b0eb95822e4163"}, + {file = "safetensors-0.4.5-cp310-none-win32.whl", hash = "sha256:7389129c03fadd1ccc37fd1ebbc773f2b031483b04700923c3511d2a939252cc"}, + {file = "safetensors-0.4.5-cp310-none-win_amd64.whl", hash = "sha256:e98ef5524f8b6620c8cdef97220c0b6a5c1cef69852fcd2f174bb96c2bb316b1"}, + {file = "safetensors-0.4.5-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:21f848d7aebd5954f92538552d6d75f7c1b4500f51664078b5b49720d180e47c"}, + {file = "safetensors-0.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bb07000b19d41e35eecef9a454f31a8b4718a185293f0d0b1c4b61d6e4487971"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09dedf7c2fda934ee68143202acff6e9e8eb0ddeeb4cfc24182bef999efa9f42"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:59b77e4b7a708988d84f26de3ebead61ef1659c73dcbc9946c18f3b1786d2688"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5d3bc83e14d67adc2e9387e511097f254bd1b43c3020440e708858c684cbac68"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:39371fc551c1072976073ab258c3119395294cf49cdc1f8476794627de3130df"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a6c19feda32b931cae0acd42748a670bdf56bee6476a046af20181ad3fee4090"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a659467495de201e2f282063808a41170448c78bada1e62707b07a27b05e6943"}, + {file = "safetensors-0.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:bad5e4b2476949bcd638a89f71b6916fa9a5cae5c1ae7eede337aca2100435c0"}, + {file = "safetensors-0.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a3a315a6d0054bc6889a17f5668a73f94f7fe55121ff59e0a199e3519c08565f"}, + {file = "safetensors-0.4.5-cp311-none-win32.whl", hash = "sha256:a01e232e6d3d5cf8b1667bc3b657a77bdab73f0743c26c1d3c5dd7ce86bd3a92"}, + {file = "safetensors-0.4.5-cp311-none-win_amd64.whl", hash = "sha256:cbd39cae1ad3e3ef6f63a6f07296b080c951f24cec60188378e43d3713000c04"}, + {file = "safetensors-0.4.5-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:473300314e026bd1043cef391bb16a8689453363381561b8a3e443870937cc1e"}, + {file = "safetensors-0.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:801183a0f76dc647f51a2d9141ad341f9665602a7899a693207a82fb102cc53e"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1524b54246e422ad6fb6aea1ac71edeeb77666efa67230e1faf6999df9b2e27f"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b3139098e3e8b2ad7afbca96d30ad29157b50c90861084e69fcb80dec7430461"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:65573dc35be9059770808e276b017256fa30058802c29e1038eb1c00028502ea"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fd33da8e9407559f8779c82a0448e2133737f922d71f884da27184549416bfed"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3685ce7ed036f916316b567152482b7e959dc754fcc4a8342333d222e05f407c"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dde2bf390d25f67908278d6f5d59e46211ef98e44108727084d4637ee70ab4f1"}, + {file = "safetensors-0.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7469d70d3de970b1698d47c11ebbf296a308702cbaae7fcb993944751cf985f4"}, + {file = "safetensors-0.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3a6ba28118636a130ccbb968bc33d4684c48678695dba2590169d5ab03a45646"}, + {file = "safetensors-0.4.5-cp312-none-win32.whl", hash = "sha256:c859c7ed90b0047f58ee27751c8e56951452ed36a67afee1b0a87847d065eec6"}, + {file = "safetensors-0.4.5-cp312-none-win_amd64.whl", hash = "sha256:b5a8810ad6a6f933fff6c276eae92c1da217b39b4d8b1bc1c0b8af2d270dc532"}, + {file = "safetensors-0.4.5-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:25e5f8e2e92a74f05b4ca55686234c32aac19927903792b30ee6d7bd5653d54e"}, + {file = "safetensors-0.4.5-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:81efb124b58af39fcd684254c645e35692fea81c51627259cdf6d67ff4458916"}, + {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:585f1703a518b437f5103aa9cf70e9bd437cb78eea9c51024329e4fb8a3e3679"}, + {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4b99fbf72e3faf0b2f5f16e5e3458b93b7d0a83984fe8d5364c60aa169f2da89"}, + {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b17b299ca9966ca983ecda1c0791a3f07f9ca6ab5ded8ef3d283fff45f6bcd5f"}, + {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:76ded72f69209c9780fdb23ea89e56d35c54ae6abcdec67ccb22af8e696e449a"}, + {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2783956926303dcfeb1de91a4d1204cd4089ab441e622e7caee0642281109db3"}, + {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d94581aab8c6b204def4d7320f07534d6ee34cd4855688004a4354e63b639a35"}, + {file = "safetensors-0.4.5-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:67e1e7cb8678bb1b37ac48ec0df04faf689e2f4e9e81e566b5c63d9f23748523"}, + {file = "safetensors-0.4.5-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:dbd280b07e6054ea68b0cb4b16ad9703e7d63cd6890f577cb98acc5354780142"}, + {file = "safetensors-0.4.5-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:77d9b228da8374c7262046a36c1f656ba32a93df6cc51cd4453af932011e77f1"}, + {file = "safetensors-0.4.5-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:500cac01d50b301ab7bb192353317035011c5ceeef0fca652f9f43c000bb7f8d"}, + {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:75331c0c746f03158ded32465b7d0b0e24c5a22121743662a2393439c43a45cf"}, + {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:670e95fe34e0d591d0529e5e59fd9d3d72bc77b1444fcaa14dccda4f36b5a38b"}, + {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:098923e2574ff237c517d6e840acada8e5b311cb1fa226019105ed82e9c3b62f"}, + {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:13ca0902d2648775089fa6a0c8fc9e6390c5f8ee576517d33f9261656f851e3f"}, + {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f0032bedc869c56f8d26259fe39cd21c5199cd57f2228d817a0e23e8370af25"}, + {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f4b15f51b4f8f2a512341d9ce3475cacc19c5fdfc5db1f0e19449e75f95c7dc8"}, + {file = "safetensors-0.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:f6594d130d0ad933d885c6a7b75c5183cb0e8450f799b80a39eae2b8508955eb"}, + {file = "safetensors-0.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:60c828a27e852ded2c85fc0f87bf1ec20e464c5cd4d56ff0e0711855cc2e17f8"}, + {file = "safetensors-0.4.5-cp37-none-win32.whl", hash = "sha256:6d3de65718b86c3eeaa8b73a9c3d123f9307a96bbd7be9698e21e76a56443af5"}, + {file = "safetensors-0.4.5-cp37-none-win_amd64.whl", hash = "sha256:5a2d68a523a4cefd791156a4174189a4114cf0bf9c50ceb89f261600f3b2b81a"}, + {file = "safetensors-0.4.5-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:e7a97058f96340850da0601a3309f3d29d6191b0702b2da201e54c6e3e44ccf0"}, + {file = "safetensors-0.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:63bfd425e25f5c733f572e2246e08a1c38bd6f2e027d3f7c87e2e43f228d1345"}, + {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3664ac565d0e809b0b929dae7ccd74e4d3273cd0c6d1220c6430035befb678e"}, + {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:313514b0b9b73ff4ddfb4edd71860696dbe3c1c9dc4d5cc13dbd74da283d2cbf"}, + {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31fa33ee326f750a2f2134a6174773c281d9a266ccd000bd4686d8021f1f3dac"}, + {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:09566792588d77b68abe53754c9f1308fadd35c9f87be939e22c623eaacbed6b"}, + {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:309aaec9b66cbf07ad3a2e5cb8a03205663324fea024ba391594423d0f00d9fe"}, + {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:53946c5813b8f9e26103c5efff4a931cc45d874f45229edd68557ffb35ffb9f8"}, + {file = "safetensors-0.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:868f9df9e99ad1e7f38c52194063a982bc88fedc7d05096f4f8160403aaf4bd6"}, + {file = "safetensors-0.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:9cc9449bd0b0bc538bd5e268221f0c5590bc5c14c1934a6ae359d44410dc68c4"}, + {file = "safetensors-0.4.5-cp38-none-win32.whl", hash = "sha256:83c4f13a9e687335c3928f615cd63a37e3f8ef072a3f2a0599fa09f863fb06a2"}, + {file = "safetensors-0.4.5-cp38-none-win_amd64.whl", hash = "sha256:b98d40a2ffa560653f6274e15b27b3544e8e3713a44627ce268f419f35c49478"}, + {file = "safetensors-0.4.5-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:cf727bb1281d66699bef5683b04d98c894a2803442c490a8d45cd365abfbdeb2"}, + {file = "safetensors-0.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:96f1d038c827cdc552d97e71f522e1049fef0542be575421f7684756a748e457"}, + {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:139fbee92570ecea774e6344fee908907db79646d00b12c535f66bc78bd5ea2c"}, + {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c36302c1c69eebb383775a89645a32b9d266878fab619819ce660309d6176c9b"}, + {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d641f5b8149ea98deb5ffcf604d764aad1de38a8285f86771ce1abf8e74c4891"}, + {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b4db6a61d968de73722b858038c616a1bebd4a86abe2688e46ca0cc2d17558f2"}, + {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b75a616e02f21b6f1d5785b20cecbab5e2bd3f6358a90e8925b813d557666ec1"}, + {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:788ee7d04cc0e0e7f944c52ff05f52a4415b312f5efd2ee66389fb7685ee030c"}, + {file = "safetensors-0.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:87bc42bd04fd9ca31396d3ca0433db0be1411b6b53ac5a32b7845a85d01ffc2e"}, + {file = "safetensors-0.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4037676c86365a721a8c9510323a51861d703b399b78a6b4486a54a65a975fca"}, + {file = "safetensors-0.4.5-cp39-none-win32.whl", hash = "sha256:1500418454529d0ed5c1564bda376c4ddff43f30fce9517d9bee7bcce5a8ef50"}, + {file = "safetensors-0.4.5-cp39-none-win_amd64.whl", hash = "sha256:9d1a94b9d793ed8fe35ab6d5cea28d540a46559bafc6aae98f30ee0867000cab"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:fdadf66b5a22ceb645d5435a0be7a0292ce59648ca1d46b352f13cff3ea80410"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d42ffd4c2259f31832cb17ff866c111684c87bd930892a1ba53fed28370c918c"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd8a1f6d2063a92cd04145c7fd9e31a1c7d85fbec20113a14b487563fdbc0597"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:951d2fcf1817f4fb0ef0b48f6696688a4e852a95922a042b3f96aaa67eedc920"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6ac85d9a8c1af0e3132371d9f2d134695a06a96993c2e2f0bbe25debb9e3f67a"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:e3cec4a29eb7fe8da0b1c7988bc3828183080439dd559f720414450de076fcab"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:21742b391b859e67b26c0b2ac37f52c9c0944a879a25ad2f9f9f3cd61e7fda8f"}, + {file = "safetensors-0.4.5-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:c7db3006a4915151ce1913652e907cdede299b974641a83fbc092102ac41b644"}, + {file = "safetensors-0.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f68bf99ea970960a237f416ea394e266e0361895753df06e3e06e6ea7907d98b"}, + {file = "safetensors-0.4.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8158938cf3324172df024da511839d373c40fbfaa83e9abf467174b2910d7b4c"}, + {file = "safetensors-0.4.5-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:540ce6c4bf6b58cb0fd93fa5f143bc0ee341c93bb4f9287ccd92cf898cc1b0dd"}, + {file = "safetensors-0.4.5-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:bfeaa1a699c6b9ed514bd15e6a91e74738b71125a9292159e3d6b7f0a53d2cde"}, + {file = "safetensors-0.4.5-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:01c8f00da537af711979e1b42a69a8ec9e1d7112f208e0e9b8a35d2c381085ef"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a0dd565f83b30f2ca79b5d35748d0d99dd4b3454f80e03dfb41f0038e3bdf180"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:023b6e5facda76989f4cba95a861b7e656b87e225f61811065d5c501f78cdb3f"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9633b663393d5796f0b60249549371e392b75a0b955c07e9c6f8708a87fc841f"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78dd8adfb48716233c45f676d6e48534d34b4bceb50162c13d1f0bdf6f78590a"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e8deb16c4321d61ae72533b8451ec4a9af8656d1c61ff81aa49f966406e4b68"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:52452fa5999dc50c4decaf0c53aa28371f7f1e0fe5c2dd9129059fbe1e1599c7"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:d5f23198821e227cfc52d50fa989813513db381255c6d100927b012f0cfec63d"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f4beb84b6073b1247a773141a6331117e35d07134b3bb0383003f39971d414bb"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:68814d599d25ed2fdd045ed54d370d1d03cf35e02dce56de44c651f828fb9b7b"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f0b6453c54c57c1781292c46593f8a37254b8b99004c68d6c3ce229688931a22"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:adaa9c6dead67e2dd90d634f89131e43162012479d86e25618e821a03d1eb1dc"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:73e7d408e9012cd17511b382b43547850969c7979efc2bc353f317abaf23c84c"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:775409ce0fcc58b10773fdb4221ed1eb007de10fe7adbdf8f5e8a56096b6f0bc"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:834001bed193e4440c4a3950a31059523ee5090605c907c66808664c932b549c"}, + {file = "safetensors-0.4.5.tar.gz", hash = "sha256:d73de19682deabb02524b3d5d1f8b3aaba94c72f1bbfc7911b9b9d5d391c0310"}, ] [package.extras] @@ -2936,73 +3000,85 @@ test = ["array-api-strict", "asv", "gmpy2", "hypothesis (>=6.30)", "mpmath", "po [[package]] name = "sentencepiece" -version = "0.1.99" +version = "0.2.0" description = "SentencePiece python wrapper" optional = false python-versions = "*" files = [ - {file = "sentencepiece-0.1.99-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0eb528e70571b7c02723e5804322469b82fe7ea418c96051d0286c0fa028db73"}, - {file = "sentencepiece-0.1.99-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:77d7fafb2c4e4659cbdf303929503f37a26eabc4ff31d3a79bf1c5a1b338caa7"}, - {file = "sentencepiece-0.1.99-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:be9cf5b9e404c245aeb3d3723c737ba7a8f5d4ba262ef233a431fa6c45f732a0"}, - {file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:baed1a26464998f9710d20e52607c29ffd4293e7c71c6a1f83f51ad0911ec12c"}, - {file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9832f08bb372d4c8b567612f8eab9e36e268dff645f1c28f9f8e851be705f6d1"}, - {file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:019e7535108e309dae2b253a75834fc3128240aa87c00eb80732078cdc182588"}, - {file = "sentencepiece-0.1.99-cp310-cp310-win32.whl", hash = "sha256:fa16a830416bb823fa2a52cbdd474d1f7f3bba527fd2304fb4b140dad31bb9bc"}, - {file = "sentencepiece-0.1.99-cp310-cp310-win_amd64.whl", hash = "sha256:14b0eccb7b641d4591c3e12ae44cab537d68352e4d3b6424944f0c447d2348d5"}, - {file = "sentencepiece-0.1.99-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6d3c56f24183a1e8bd61043ff2c58dfecdc68a5dd8955dc13bab83afd5f76b81"}, - {file = "sentencepiece-0.1.99-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ed6ea1819fd612c989999e44a51bf556d0ef6abfb553080b9be3d347e18bcfb7"}, - {file = "sentencepiece-0.1.99-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a2a0260cd1fb7bd8b4d4f39dc2444a8d5fd4e0a0c4d5c899810ef1abf99b2d45"}, - {file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a1abff4d1ff81c77cac3cc6fefa34fa4b8b371e5ee51cb7e8d1ebc996d05983"}, - {file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:004e6a621d4bc88978eecb6ea7959264239a17b70f2cbc348033d8195c9808ec"}, - {file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db361e03342c41680afae5807590bc88aa0e17cfd1a42696a160e4005fcda03b"}, - {file = "sentencepiece-0.1.99-cp311-cp311-win32.whl", hash = "sha256:2d95e19168875b70df62916eb55428a0cbcb834ac51d5a7e664eda74def9e1e0"}, - {file = "sentencepiece-0.1.99-cp311-cp311-win_amd64.whl", hash = "sha256:f90d73a6f81248a909f55d8e6ef56fec32d559e1e9af045f0b0322637cb8e5c7"}, - {file = "sentencepiece-0.1.99-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:62e24c81e74bd87a6e0d63c51beb6527e4c0add67e1a17bac18bcd2076afcfeb"}, - {file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57efcc2d51caff20d9573567d9fd3f854d9efe613ed58a439c78c9f93101384a"}, - {file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6a904c46197993bd1e95b93a6e373dca2f170379d64441041e2e628ad4afb16f"}, - {file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d89adf59854741c0d465f0e1525b388c0d174f611cc04af54153c5c4f36088c4"}, - {file = "sentencepiece-0.1.99-cp36-cp36m-win32.whl", hash = "sha256:47c378146928690d1bc106fdf0da768cebd03b65dd8405aa3dd88f9c81e35dba"}, - {file = "sentencepiece-0.1.99-cp36-cp36m-win_amd64.whl", hash = "sha256:9ba142e7a90dd6d823c44f9870abdad45e6c63958eb60fe44cca6828d3b69da2"}, - {file = "sentencepiece-0.1.99-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b7b1a9ae4d7c6f1f867e63370cca25cc17b6f4886729595b885ee07a58d3cec3"}, - {file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0f644c9d4d35c096a538507b2163e6191512460035bf51358794a78515b74f7"}, - {file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c8843d23a0f686d85e569bd6dcd0dd0e0cbc03731e63497ca6d5bacd18df8b85"}, - {file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33e6f690a1caebb4867a2e367afa1918ad35be257ecdb3455d2bbd787936f155"}, - {file = "sentencepiece-0.1.99-cp37-cp37m-win32.whl", hash = "sha256:8a321866c2f85da7beac74a824b4ad6ddc2a4c9bccd9382529506d48f744a12c"}, - {file = "sentencepiece-0.1.99-cp37-cp37m-win_amd64.whl", hash = "sha256:c42f753bcfb7661c122a15b20be7f684b61fc8592c89c870adf52382ea72262d"}, - {file = "sentencepiece-0.1.99-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:85b476406da69c70586f0bb682fcca4c9b40e5059814f2db92303ea4585c650c"}, - {file = "sentencepiece-0.1.99-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cfbcfe13c69d3f87b7fcd5da168df7290a6d006329be71f90ba4f56bc77f8561"}, - {file = "sentencepiece-0.1.99-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:445b0ec381af1cd4eef95243e7180c63d9c384443c16c4c47a28196bd1cda937"}, - {file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6890ea0f2b4703f62d0bf27932e35808b1f679bdb05c7eeb3812b935ba02001"}, - {file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fb71af492b0eefbf9f2501bec97bcd043b6812ab000d119eaf4bd33f9e283d03"}, - {file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:27b866b5bd3ddd54166bbcbf5c8d7dd2e0b397fac8537991c7f544220b1f67bc"}, - {file = "sentencepiece-0.1.99-cp38-cp38-win32.whl", hash = "sha256:b133e8a499eac49c581c3c76e9bdd08c338cc1939e441fee6f92c0ccb5f1f8be"}, - {file = "sentencepiece-0.1.99-cp38-cp38-win_amd64.whl", hash = "sha256:0eaf3591dd0690a87f44f4df129cf8d05d8a4029b5b6709b489b8e27f9a9bcff"}, - {file = "sentencepiece-0.1.99-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:38efeda9bbfb55052d482a009c6a37e52f42ebffcea9d3a98a61de7aee356a28"}, - {file = "sentencepiece-0.1.99-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c030b081dc1e1bcc9fadc314b19b740715d3d566ad73a482da20d7d46fd444c"}, - {file = "sentencepiece-0.1.99-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:84dbe53e02e4f8a2e45d2ac3e430d5c83182142658e25edd76539b7648928727"}, - {file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b0f55d0a0ee1719b4b04221fe0c9f0c3461dc3dabd77a035fa2f4788eb3ef9a"}, - {file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18e800f206cd235dc27dc749299e05853a4e4332e8d3dfd81bf13d0e5b9007d9"}, - {file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae1c40cda8f9d5b0423cfa98542735c0235e7597d79caf318855cdf971b2280"}, - {file = "sentencepiece-0.1.99-cp39-cp39-win32.whl", hash = "sha256:c84ce33af12ca222d14a1cdd37bd76a69401e32bc68fe61c67ef6b59402f4ab8"}, - {file = "sentencepiece-0.1.99-cp39-cp39-win_amd64.whl", hash = "sha256:350e5c74d739973f1c9643edb80f7cc904dc948578bcb1d43c6f2b173e5d18dd"}, - {file = "sentencepiece-0.1.99.tar.gz", hash = "sha256:189c48f5cb2949288f97ccdb97f0473098d9c3dcf5a3d99d4eabe719ec27297f"}, + {file = "sentencepiece-0.2.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:188779e1298a1c8b8253c7d3ad729cb0a9891e5cef5e5d07ce4592c54869e227"}, + {file = "sentencepiece-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bed9cf85b296fa2b76fc2547b9cbb691a523864cebaee86304c43a7b4cb1b452"}, + {file = "sentencepiece-0.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d7b67e724bead13f18db6e1d10b6bbdc454af574d70efbb36f27d90387be1ca3"}, + {file = "sentencepiece-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2fde4b08cfe237be4484c6c7c2e2c75fb862cfeab6bd5449ce4caeafd97b767a"}, + {file = "sentencepiece-0.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c378492056202d1c48a4979650981635fd97875a00eabb1f00c6a236b013b5e"}, + {file = "sentencepiece-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1380ce6540a368de2ef6d7e6ba14ba8f3258df650d39ba7d833b79ee68a52040"}, + {file = "sentencepiece-0.2.0-cp310-cp310-win32.whl", hash = "sha256:a1151d6a6dd4b43e552394aed0edfe9292820272f0194bd56c7c1660a0c06c3d"}, + {file = "sentencepiece-0.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:d490142b0521ef22bc1085f061d922a2a6666175bb6b42e588ff95c0db6819b2"}, + {file = "sentencepiece-0.2.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:17982700c4f6dbb55fa3594f3d7e5dd1c8659a274af3738e33c987d2a27c9d5c"}, + {file = "sentencepiece-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7c867012c0e8bcd5bdad0f791609101cb5c66acb303ab3270218d6debc68a65e"}, + {file = "sentencepiece-0.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7fd6071249c74f779c5b27183295b9202f8dedb68034e716784364443879eaa6"}, + {file = "sentencepiece-0.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27f90c55a65013cbb8f4d7aab0599bf925cde4adc67ae43a0d323677b5a1c6cb"}, + {file = "sentencepiece-0.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b293734059ef656dcd65be62ff771507bea8fed0a711b6733976e1ed3add4553"}, + {file = "sentencepiece-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e58b47f933aca74c6a60a79dcb21d5b9e47416256c795c2d58d55cec27f9551d"}, + {file = "sentencepiece-0.2.0-cp311-cp311-win32.whl", hash = "sha256:c581258cf346b327c62c4f1cebd32691826306f6a41d8c4bec43b010dee08e75"}, + {file = "sentencepiece-0.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:0993dbc665f4113017892f1b87c3904a44d0640eda510abcacdfb07f74286d36"}, + {file = "sentencepiece-0.2.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:ea5f536e32ea8ec96086ee00d7a4a131ce583a1b18d130711707c10e69601cb2"}, + {file = "sentencepiece-0.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d0cb51f53b6aae3c36bafe41e86167c71af8370a039f542c43b0cce5ef24a68c"}, + {file = "sentencepiece-0.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3212121805afc58d8b00ab4e7dd1f8f76c203ddb9dc94aa4079618a31cf5da0f"}, + {file = "sentencepiece-0.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2a3149e3066c2a75e0d68a43eb632d7ae728c7925b517f4c05c40f6f7280ce08"}, + {file = "sentencepiece-0.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:632f3594d3e7ac8b367bca204cb3fd05a01d5b21455acd097ea4c0e30e2f63d7"}, + {file = "sentencepiece-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f295105c6bdbb05bd5e1b0cafbd78ff95036f5d3641e7949455a3f4e5e7c3109"}, + {file = "sentencepiece-0.2.0-cp312-cp312-win32.whl", hash = "sha256:fb89f811e5efd18bab141afc3fea3de141c3f69f3fe9e898f710ae7fe3aab251"}, + {file = "sentencepiece-0.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:7a673a72aab81fef5ebe755c6e0cc60087d1f3a4700835d40537183c1703a45f"}, + {file = "sentencepiece-0.2.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:4547683f330289ec4f093027bfeb87f9ef023b2eb6f879fdc4a8187c7e0ffb90"}, + {file = "sentencepiece-0.2.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7cd6175f7eaec7142d2bf6f6597ce7db4c9ac89acf93fcdb17410c3a8b781eeb"}, + {file = "sentencepiece-0.2.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:859ba1acde782609a0910a26a60e16c191a82bf39b5621107552c0cd79fad00f"}, + {file = "sentencepiece-0.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bcbbef6cc277f8f18f36959e305f10b1c620442d75addc79c21d7073ae581b50"}, + {file = "sentencepiece-0.2.0-cp36-cp36m-win32.whl", hash = "sha256:536b934e244829e3fe6c4f198652cd82da48adb9aa145c9f00889542726dee3d"}, + {file = "sentencepiece-0.2.0-cp36-cp36m-win_amd64.whl", hash = "sha256:0a91aaa3c769b52440df56fafda683b3aa48e3f2169cf7ee5b8c8454a7f3ae9b"}, + {file = "sentencepiece-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:787e480ca4c1d08c9985a7eb1eae4345c107729c99e9b5a9a00f2575fc7d4b4b"}, + {file = "sentencepiece-0.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4d158189eb2ecffea3a51edf6d25e110b3678ec47f1a40f2d541eafbd8f6250"}, + {file = "sentencepiece-0.2.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d1e5ca43013e8935f25457a4fca47e315780172c3e821b4b13a890668911c792"}, + {file = "sentencepiece-0.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7140d9e5a74a0908493bb4a13f1f16a401297bd755ada4c707e842fbf6f0f5bf"}, + {file = "sentencepiece-0.2.0-cp37-cp37m-win32.whl", hash = "sha256:6cf333625234f247ab357b0bd9836638405ea9082e1543d5b8408f014979dcbf"}, + {file = "sentencepiece-0.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:ff88712338b01031910e8e61e7239aff3ce8869ee31a47df63cb38aadd591bea"}, + {file = "sentencepiece-0.2.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:20813a68d4c221b1849c62c30e1281ea81687894d894b8d4a0f4677d9311e0f5"}, + {file = "sentencepiece-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:926ef920ae2e8182db31d3f5d081ada57804e3e1d3a8c4ef8b117f9d9fb5a945"}, + {file = "sentencepiece-0.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:89f65f69636b7e9c015b79dff9c9985a9bc7d19ded6f79ef9f1ec920fdd73ecf"}, + {file = "sentencepiece-0.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0f67eae0dbe6f2d7d6ba50a354623d787c99965f068b81e145d53240198021b0"}, + {file = "sentencepiece-0.2.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:98501e075f35dd1a1d5a20f65be26839fcb1938752ec61539af008a5aa6f510b"}, + {file = "sentencepiece-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3d1d2cc4882e8d6a1adf9d5927d7716f80617fc693385661caff21888972269"}, + {file = "sentencepiece-0.2.0-cp38-cp38-win32.whl", hash = "sha256:b99a308a2e5e569031ab164b74e6fab0b6f37dfb493c32f7816225f4d411a6dd"}, + {file = "sentencepiece-0.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:cdb701eec783d3ec86b7cd4c763adad8eaf6b46db37ee1c36e5e6c44b3fe1b5f"}, + {file = "sentencepiece-0.2.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:1e0f9c4d0a6b0af59b613175f019916e28ade076e21242fd5be24340d8a2f64a"}, + {file = "sentencepiece-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:298f21cc1366eb60311aedba3169d30f885c363ddbf44214b0a587d2908141ad"}, + {file = "sentencepiece-0.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3f1ec95aa1e5dab11f37ac7eff190493fd87770f7a8b81ebc9dd768d1a3c8704"}, + {file = "sentencepiece-0.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7b06b70af54daa4b4904cbb90b4eb6d35c9f3252fdc86c9c32d5afd4d30118d8"}, + {file = "sentencepiece-0.2.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:22e37bac44dd6603388cb598c64ff7a76e41ca774646f21c23aadfbf5a2228ab"}, + {file = "sentencepiece-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0461324897735512a32d222e3d886e24ad6a499761952b6bda2a9ee6e4313ea5"}, + {file = "sentencepiece-0.2.0-cp39-cp39-win32.whl", hash = "sha256:38aed822fb76435fa1f12185f10465a94ab9e51d5e8a9159e9a540ce926f0ffd"}, + {file = "sentencepiece-0.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:d8cf876516548b5a1d6ac4745d8b554f5c07891d55da557925e5c13ff0b4e6ad"}, + {file = "sentencepiece-0.2.0.tar.gz", hash = "sha256:a52c19171daaf2e697dc6cbe67684e0fa341b1248966f6aebb541de654d15843"}, ] [[package]] name = "setuptools" -version = "71.1.0" +version = "75.1.0" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "setuptools-71.1.0-py3-none-any.whl", hash = "sha256:33874fdc59b3188304b2e7c80d9029097ea31627180896fb549c578ceb8a0855"}, - {file = "setuptools-71.1.0.tar.gz", hash = "sha256:032d42ee9fb536e33087fb66cac5f840eb9391ed05637b3f2a76a7c8fb477936"}, + {file = "setuptools-75.1.0-py3-none-any.whl", hash = "sha256:35ab7fd3bcd95e6b7fd704e4a1539513edad446c097797f2985e0e4b960772f2"}, + {file = "setuptools-75.1.0.tar.gz", hash = "sha256:d59a21b17a275fb872a9c3dae73963160ae079f1049ed956880cd7c09b120538"}, ] [package.extras] -core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.text (>=3.7)", "more-itertools (>=8.8)", "ordered-set (>=3.1.1)", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] -test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "mypy (==1.11.*)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (<0.4)", "pytest-ruff (>=0.2.1)", "pytest-ruff (>=0.3.2)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] +core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.collections", "jaraco.functools", "jaraco.text (>=3.7)", "more-itertools", "more-itertools (>=8.8)", "packaging", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.11.*)", "pytest-mypy"] [[package]] name = "six" @@ -3017,13 +3093,13 @@ files = [ [[package]] name = "sympy" -version = "1.13.1" +version = "1.13.3" description = "Computer algebra system (CAS) in Python" optional = true python-versions = ">=3.8" files = [ - {file = "sympy-1.13.1-py3-none-any.whl", hash = "sha256:db36cdc64bf61b9b24578b6f7bab1ecdd2452cf008f34faa33776680c26d66f8"}, - {file = "sympy-1.13.1.tar.gz", hash = "sha256:9cebf7e04ff162015ce31c9c6c9144daa34a93bd082f54fd8f12deca4f47515f"}, + {file = "sympy-1.13.3-py3-none-any.whl", hash = "sha256:54612cf55a62755ee71824ce692986f23c88ffa77207b30c1368eda4a7060f73"}, + {file = "sympy-1.13.3.tar.gz", hash = "sha256:b27fd2c6530e0ab39e275fc9b683895367e51d5da91baa8d3d64db2565fec4d9"}, ] [package.dependencies] @@ -3045,111 +3121,111 @@ files = [ [[package]] name = "tokenizers" -version = "0.19.1" +version = "0.20.0" description = "" optional = false python-versions = ">=3.7" files = [ - {file = "tokenizers-0.19.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:952078130b3d101e05ecfc7fc3640282d74ed26bcf691400f872563fca15ac97"}, - {file = "tokenizers-0.19.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:82c8b8063de6c0468f08e82c4e198763e7b97aabfe573fd4cf7b33930ca4df77"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f03727225feaf340ceeb7e00604825addef622d551cbd46b7b775ac834c1e1c4"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:453e4422efdfc9c6b6bf2eae00d5e323f263fff62b29a8c9cd526c5003f3f642"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:02e81bf089ebf0e7f4df34fa0207519f07e66d8491d963618252f2e0729e0b46"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b07c538ba956843833fee1190cf769c60dc62e1cf934ed50d77d5502194d63b1"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28cab1582e0eec38b1f38c1c1fb2e56bce5dc180acb1724574fc5f47da2a4fe"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b01afb7193d47439f091cd8f070a1ced347ad0f9144952a30a41836902fe09e"}, - {file = "tokenizers-0.19.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7fb297edec6c6841ab2e4e8f357209519188e4a59b557ea4fafcf4691d1b4c98"}, - {file = "tokenizers-0.19.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2e8a3dd055e515df7054378dc9d6fa8c8c34e1f32777fb9a01fea81496b3f9d3"}, - {file = "tokenizers-0.19.1-cp310-none-win32.whl", hash = "sha256:7ff898780a155ea053f5d934925f3902be2ed1f4d916461e1a93019cc7250837"}, - {file = "tokenizers-0.19.1-cp310-none-win_amd64.whl", hash = "sha256:bea6f9947e9419c2fda21ae6c32871e3d398cba549b93f4a65a2d369662d9403"}, - {file = "tokenizers-0.19.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:5c88d1481f1882c2e53e6bb06491e474e420d9ac7bdff172610c4f9ad3898059"}, - {file = "tokenizers-0.19.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ddf672ed719b4ed82b51499100f5417d7d9f6fb05a65e232249268f35de5ed14"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dadc509cc8a9fe460bd274c0e16ac4184d0958117cf026e0ea8b32b438171594"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dfedf31824ca4915b511b03441784ff640378191918264268e6923da48104acc"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ac11016d0a04aa6487b1513a3a36e7bee7eec0e5d30057c9c0408067345c48d2"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:76951121890fea8330d3a0df9a954b3f2a37e3ec20e5b0530e9a0044ca2e11fe"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b342d2ce8fc8d00f376af068e3274e2e8649562e3bc6ae4a67784ded6b99428d"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d16ff18907f4909dca9b076b9c2d899114dd6abceeb074eca0c93e2353f943aa"}, - {file = "tokenizers-0.19.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:706a37cc5332f85f26efbe2bdc9ef8a9b372b77e4645331a405073e4b3a8c1c6"}, - {file = "tokenizers-0.19.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:16baac68651701364b0289979ecec728546133e8e8fe38f66fe48ad07996b88b"}, - {file = "tokenizers-0.19.1-cp311-none-win32.whl", hash = "sha256:9ed240c56b4403e22b9584ee37d87b8bfa14865134e3e1c3fb4b2c42fafd3256"}, - {file = "tokenizers-0.19.1-cp311-none-win_amd64.whl", hash = "sha256:ad57d59341710b94a7d9dbea13f5c1e7d76fd8d9bcd944a7a6ab0b0da6e0cc66"}, - {file = "tokenizers-0.19.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:621d670e1b1c281a1c9698ed89451395d318802ff88d1fc1accff0867a06f153"}, - {file = "tokenizers-0.19.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d924204a3dbe50b75630bd16f821ebda6a5f729928df30f582fb5aade90c818a"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:4f3fefdc0446b1a1e6d81cd4c07088ac015665d2e812f6dbba4a06267d1a2c95"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9620b78e0b2d52ef07b0d428323fb34e8ea1219c5eac98c2596311f20f1f9266"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04ce49e82d100594715ac1b2ce87d1a36e61891a91de774755f743babcd0dd52"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c5c2ff13d157afe413bf7e25789879dd463e5a4abfb529a2d8f8473d8042e28f"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3174c76efd9d08f836bfccaca7cfec3f4d1c0a4cf3acbc7236ad577cc423c840"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7c9d5b6c0e7a1e979bec10ff960fae925e947aab95619a6fdb4c1d8ff3708ce3"}, - {file = "tokenizers-0.19.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a179856d1caee06577220ebcfa332af046d576fb73454b8f4d4b0ba8324423ea"}, - {file = "tokenizers-0.19.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:952b80dac1a6492170f8c2429bd11fcaa14377e097d12a1dbe0ef2fb2241e16c"}, - {file = "tokenizers-0.19.1-cp312-none-win32.whl", hash = "sha256:01d62812454c188306755c94755465505836fd616f75067abcae529c35edeb57"}, - {file = "tokenizers-0.19.1-cp312-none-win_amd64.whl", hash = "sha256:b70bfbe3a82d3e3fb2a5e9b22a39f8d1740c96c68b6ace0086b39074f08ab89a"}, - {file = "tokenizers-0.19.1-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:bb9dfe7dae85bc6119d705a76dc068c062b8b575abe3595e3c6276480e67e3f1"}, - {file = "tokenizers-0.19.1-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:1f0360cbea28ea99944ac089c00de7b2e3e1c58f479fb8613b6d8d511ce98267"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:71e3ec71f0e78780851fef28c2a9babe20270404c921b756d7c532d280349214"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b82931fa619dbad979c0ee8e54dd5278acc418209cc897e42fac041f5366d626"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e8ff5b90eabdcdaa19af697885f70fe0b714ce16709cf43d4952f1f85299e73a"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e742d76ad84acbdb1a8e4694f915fe59ff6edc381c97d6dfdd054954e3478ad4"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d8c5d59d7b59885eab559d5bc082b2985555a54cda04dda4c65528d90ad252ad"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b2da5c32ed869bebd990c9420df49813709e953674c0722ff471a116d97b22d"}, - {file = "tokenizers-0.19.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:638e43936cc8b2cbb9f9d8dde0fe5e7e30766a3318d2342999ae27f68fdc9bd6"}, - {file = "tokenizers-0.19.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:78e769eb3b2c79687d9cb0f89ef77223e8e279b75c0a968e637ca7043a84463f"}, - {file = "tokenizers-0.19.1-cp37-none-win32.whl", hash = "sha256:72791f9bb1ca78e3ae525d4782e85272c63faaef9940d92142aa3eb79f3407a3"}, - {file = "tokenizers-0.19.1-cp37-none-win_amd64.whl", hash = "sha256:f3bbb7a0c5fcb692950b041ae11067ac54826204318922da754f908d95619fbc"}, - {file = "tokenizers-0.19.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:07f9295349bbbcedae8cefdbcfa7f686aa420be8aca5d4f7d1ae6016c128c0c5"}, - {file = "tokenizers-0.19.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:10a707cc6c4b6b183ec5dbfc5c34f3064e18cf62b4a938cb41699e33a99e03c1"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6309271f57b397aa0aff0cbbe632ca9d70430839ca3178bf0f06f825924eca22"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ad23d37d68cf00d54af184586d79b84075ada495e7c5c0f601f051b162112dc"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:427c4f0f3df9109314d4f75b8d1f65d9477033e67ffaec4bca53293d3aca286d"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e83a31c9cf181a0a3ef0abad2b5f6b43399faf5da7e696196ddd110d332519ee"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c27b99889bd58b7e301468c0838c5ed75e60c66df0d4db80c08f43462f82e0d3"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bac0b0eb952412b0b196ca7a40e7dce4ed6f6926489313414010f2e6b9ec2adf"}, - {file = "tokenizers-0.19.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8a6298bde623725ca31c9035a04bf2ef63208d266acd2bed8c2cb7d2b7d53ce6"}, - {file = "tokenizers-0.19.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:08a44864e42fa6d7d76d7be4bec62c9982f6f6248b4aa42f7302aa01e0abfd26"}, - {file = "tokenizers-0.19.1-cp38-none-win32.whl", hash = "sha256:1de5bc8652252d9357a666e609cb1453d4f8e160eb1fb2830ee369dd658e8975"}, - {file = "tokenizers-0.19.1-cp38-none-win_amd64.whl", hash = "sha256:0bcce02bf1ad9882345b34d5bd25ed4949a480cf0e656bbd468f4d8986f7a3f1"}, - {file = "tokenizers-0.19.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:0b9394bd204842a2a1fd37fe29935353742be4a3460b6ccbaefa93f58a8df43d"}, - {file = "tokenizers-0.19.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4692ab92f91b87769d950ca14dbb61f8a9ef36a62f94bad6c82cc84a51f76f6a"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6258c2ef6f06259f70a682491c78561d492e885adeaf9f64f5389f78aa49a051"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c85cf76561fbd01e0d9ea2d1cbe711a65400092bc52b5242b16cfd22e51f0c58"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:670b802d4d82bbbb832ddb0d41df7015b3e549714c0e77f9bed3e74d42400fbe"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:85aa3ab4b03d5e99fdd31660872249df5e855334b6c333e0bc13032ff4469c4a"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cbf001afbbed111a79ca47d75941e9e5361297a87d186cbfc11ed45e30b5daba"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4c89aa46c269e4e70c4d4f9d6bc644fcc39bb409cb2a81227923404dd6f5227"}, - {file = "tokenizers-0.19.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:39c1ec76ea1027438fafe16ecb0fb84795e62e9d643444c1090179e63808c69d"}, - {file = "tokenizers-0.19.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c2a0d47a89b48d7daa241e004e71fb5a50533718897a4cd6235cb846d511a478"}, - {file = "tokenizers-0.19.1-cp39-none-win32.whl", hash = "sha256:61b7fe8886f2e104d4caf9218b157b106207e0f2a4905c9c7ac98890688aabeb"}, - {file = "tokenizers-0.19.1-cp39-none-win_amd64.whl", hash = "sha256:f97660f6c43efd3e0bfd3f2e3e5615bf215680bad6ee3d469df6454b8c6e8256"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3b11853f17b54c2fe47742c56d8a33bf49ce31caf531e87ac0d7d13d327c9334"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d26194ef6c13302f446d39972aaa36a1dda6450bc8949f5eb4c27f51191375bd"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e8d1ed93beda54bbd6131a2cb363a576eac746d5c26ba5b7556bc6f964425594"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca407133536f19bdec44b3da117ef0d12e43f6d4b56ac4c765f37eca501c7bda"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce05fde79d2bc2e46ac08aacbc142bead21614d937aac950be88dc79f9db9022"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:35583cd46d16f07c054efd18b5d46af4a2f070a2dd0a47914e66f3ff5efb2b1e"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:43350270bfc16b06ad3f6f07eab21f089adb835544417afda0f83256a8bf8b75"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:b4399b59d1af5645bcee2072a463318114c39b8547437a7c2d6a186a1b5a0e2d"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6852c5b2a853b8b0ddc5993cd4f33bfffdca4fcc5d52f89dd4b8eada99379285"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bcd266ae85c3d39df2f7e7d0e07f6c41a55e9a3123bb11f854412952deacd828"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ecb2651956eea2aa0a2d099434134b1b68f1c31f9a5084d6d53f08ed43d45ff2"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:b279ab506ec4445166ac476fb4d3cc383accde1ea152998509a94d82547c8e2a"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:89183e55fb86e61d848ff83753f64cded119f5d6e1f553d14ffee3700d0a4a49"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:b2edbc75744235eea94d595a8b70fe279dd42f3296f76d5a86dde1d46e35f574"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:0e64bfde9a723274e9a71630c3e9494ed7b4c0f76a1faacf7fe294cd26f7ae7c"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:0b5ca92bfa717759c052e345770792d02d1f43b06f9e790ca0a1db62838816f3"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6f8a20266e695ec9d7a946a019c1d5ca4eddb6613d4f466888eee04f16eedb85"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:63c38f45d8f2a2ec0f3a20073cccb335b9f99f73b3c69483cd52ebc75369d8a1"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:dd26e3afe8a7b61422df3176e06664503d3f5973b94f45d5c45987e1cb711876"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:eddd5783a4a6309ce23432353cdb36220e25cbb779bfa9122320666508b44b88"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:56ae39d4036b753994476a1b935584071093b55c7a72e3b8288e68c313ca26e7"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f9939ca7e58c2758c01b40324a59c034ce0cebad18e0d4563a9b1beab3018243"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6c330c0eb815d212893c67a032e9dc1b38a803eccb32f3e8172c19cc69fbb439"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec11802450a2487cdf0e634b750a04cbdc1c4d066b97d94ce7dd2cb51ebb325b"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2b718f316b596f36e1dae097a7d5b91fc5b85e90bf08b01ff139bd8953b25af"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:ed69af290c2b65169f0ba9034d1dc39a5db9459b32f1dd8b5f3f32a3fcf06eab"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f8a9c828277133af13f3859d1b6bf1c3cb6e9e1637df0e45312e6b7c2e622b1f"}, - {file = "tokenizers-0.19.1.tar.gz", hash = "sha256:ee59e6680ed0fdbe6b724cf38bd70400a0c1dd623b07ac729087270caeac88e3"}, + {file = "tokenizers-0.20.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:6cff5c5e37c41bc5faa519d6f3df0679e4b37da54ea1f42121719c5e2b4905c0"}, + {file = "tokenizers-0.20.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:62a56bf75c27443432456f4ca5ca055befa95e25be8a28141cc495cac8ae4d6d"}, + {file = "tokenizers-0.20.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68cc7de6a63f09c4a86909c2597b995aa66e19df852a23aea894929c74369929"}, + {file = "tokenizers-0.20.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:053c37ecee482cc958fdee53af3c6534286a86f5d35aac476f7c246830e53ae5"}, + {file = "tokenizers-0.20.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3d7074aaabc151a6363fa03db5493fc95b423b2a1874456783989e96d541c7b6"}, + {file = "tokenizers-0.20.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a11435780f2acd89e8fefe5e81cecf01776f6edb9b3ac95bcb76baee76b30b90"}, + {file = "tokenizers-0.20.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9a81cd2712973b007d84268d45fc3f6f90a79c31dfe7f1925e6732f8d2959987"}, + {file = "tokenizers-0.20.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7dfd796ab9d909f76fb93080e1c7c8309f196ecb316eb130718cd5e34231c69"}, + {file = "tokenizers-0.20.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:8029ad2aa8cb00605c9374566034c1cc1b15130713e0eb5afcef6cface8255c9"}, + {file = "tokenizers-0.20.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ca4d54260ebe97d59dfa9a30baa20d0c4dd9137d99a8801700055c561145c24e"}, + {file = "tokenizers-0.20.0-cp310-none-win32.whl", hash = "sha256:95ee16b57cec11b86a7940174ec5197d506439b0f415ab3859f254b1dffe9df0"}, + {file = "tokenizers-0.20.0-cp310-none-win_amd64.whl", hash = "sha256:0a61a11e93eeadbf02aea082ffc75241c4198e0608bbbac4f65a9026851dcf37"}, + {file = "tokenizers-0.20.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:6636b798b3c4d6c9b1af1a918bd07c867808e5a21c64324e95318a237e6366c3"}, + {file = "tokenizers-0.20.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ec603e42eaf499ffd58b9258162add948717cf21372458132f14e13a6bc7172"}, + {file = "tokenizers-0.20.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cce124264903a8ea6f8f48e1cc7669e5ef638c18bd4ab0a88769d5f92debdf7f"}, + {file = "tokenizers-0.20.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:07bbeba0231cf8de07aa6b9e33e9779ff103d47042eeeb859a8c432e3292fb98"}, + {file = "tokenizers-0.20.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:06c0ca8397b35d38b83a44a9c6929790c1692957d88541df061cb34d82ebbf08"}, + {file = "tokenizers-0.20.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ca6557ac3b83d912dfbb1f70ab56bd4b0594043916688e906ede09f42e192401"}, + {file = "tokenizers-0.20.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a5ad94c9e80ac6098328bee2e3264dbced4c6faa34429994d473f795ec58ef4"}, + {file = "tokenizers-0.20.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b5c7f906ee6bec30a9dc20268a8b80f3b9584de1c9f051671cb057dc6ce28f6"}, + {file = "tokenizers-0.20.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:31e087e9ee1b8f075b002bfee257e858dc695f955b43903e1bb4aa9f170e37fe"}, + {file = "tokenizers-0.20.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c3124fb6f3346cb3d8d775375d3b429bf4dcfc24f739822702009d20a4297990"}, + {file = "tokenizers-0.20.0-cp311-none-win32.whl", hash = "sha256:a4bb8b40ba9eefa621fdcabf04a74aa6038ae3be0c614c6458bd91a4697a452f"}, + {file = "tokenizers-0.20.0-cp311-none-win_amd64.whl", hash = "sha256:2b709d371f1fe60a28ef0c5c67815952d455ca7f34dbe7197eaaed3cc54b658e"}, + {file = "tokenizers-0.20.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:15c81a17d0d66f4987c6ca16f4bea7ec253b8c7ed1bb00fdc5d038b1bb56e714"}, + {file = "tokenizers-0.20.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6a531cdf1fb6dc41c984c785a3b299cb0586de0b35683842a3afbb1e5207f910"}, + {file = "tokenizers-0.20.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:06caabeb4587f8404e0cd9d40f458e9cba3e815c8155a38e579a74ff3e2a4301"}, + {file = "tokenizers-0.20.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8768f964f23f5b9f50546c0369c75ab3262de926983888bbe8b98be05392a79c"}, + {file = "tokenizers-0.20.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:626403860152c816f97b649fd279bd622c3d417678c93b4b1a8909b6380b69a8"}, + {file = "tokenizers-0.20.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9c1b88fa9e5ff062326f4bf82681da5a96fca7104d921a6bd7b1e6fcf224af26"}, + {file = "tokenizers-0.20.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d7e559436a07dc547f22ce1101f26d8b2fad387e28ec8e7e1e3b11695d681d8"}, + {file = "tokenizers-0.20.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e48afb75e50449848964e4a67b0da01261dd3aa8df8daecf10db8fd7f5b076eb"}, + {file = "tokenizers-0.20.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:baf5d0e1ff44710a95eefc196dd87666ffc609fd447c5e5b68272a7c3d342a1d"}, + {file = "tokenizers-0.20.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:e5e56df0e8ed23ba60ae3848c3f069a0710c4b197218fe4f89e27eba38510768"}, + {file = "tokenizers-0.20.0-cp312-none-win32.whl", hash = "sha256:ec53e5ecc142a82432f9c6c677dbbe5a2bfee92b8abf409a9ecb0d425ee0ce75"}, + {file = "tokenizers-0.20.0-cp312-none-win_amd64.whl", hash = "sha256:f18661ece72e39c0dfaa174d6223248a15b457dbd4b0fc07809b8e6d3ca1a234"}, + {file = "tokenizers-0.20.0-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:f7065b1084d8d1a03dc89d9aad69bcbc8415d4bc123c367063eb32958cd85054"}, + {file = "tokenizers-0.20.0-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:e5d4069e4714e3f7ba0a4d3d44f9d84a432cd4e4aa85c3d7dd1f51440f12e4a1"}, + {file = "tokenizers-0.20.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:799b808529e54b7e1a36350bda2aeb470e8390e484d3e98c10395cee61d4e3c6"}, + {file = "tokenizers-0.20.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7f9baa027cc8a281ad5f7725a93c204d7a46986f88edbe8ef7357f40a23fb9c7"}, + {file = "tokenizers-0.20.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:010ec7f3f7a96adc4c2a34a3ada41fa14b4b936b5628b4ff7b33791258646c6b"}, + {file = "tokenizers-0.20.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98d88f06155335b14fd78e32ee28ca5b2eb30fced4614e06eb14ae5f7fba24ed"}, + {file = "tokenizers-0.20.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e13eb000ef540c2280758d1b9cfa5fe424b0424ae4458f440e6340a4f18b2638"}, + {file = "tokenizers-0.20.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fab3cf066ff426f7e6d70435dc28a9ff01b2747be83810e397cba106f39430b0"}, + {file = "tokenizers-0.20.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:39fa3761b30a89368f322e5daf4130dce8495b79ad831f370449cdacfb0c0d37"}, + {file = "tokenizers-0.20.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c8da0fba4d179ddf2607821575998df3c294aa59aa8df5a6646dc64bc7352bce"}, + {file = "tokenizers-0.20.0-cp37-none-win32.whl", hash = "sha256:fada996d6da8cf213f6e3c91c12297ad4f6cdf7a85c2fadcd05ec32fa6846fcd"}, + {file = "tokenizers-0.20.0-cp37-none-win_amd64.whl", hash = "sha256:7d29aad702279e0760c265fcae832e89349078e3418dd329732d4503259fd6bd"}, + {file = "tokenizers-0.20.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:099c68207f3ef0227ecb6f80ab98ea74de559f7b124adc7b17778af0250ee90a"}, + {file = "tokenizers-0.20.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:68012d8a8cddb2eab3880870d7e2086cb359c7f7a2b03f5795044f5abff4e850"}, + {file = "tokenizers-0.20.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9253bdd209c6aee168deca7d0e780581bf303e0058f268f9bb06859379de19b6"}, + {file = "tokenizers-0.20.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8f868600ddbcb0545905ed075eb7218a0756bf6c09dae7528ea2f8436ebd2c93"}, + {file = "tokenizers-0.20.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9a9643d9c8c5f99b6aba43fd10034f77cc6c22c31f496d2f0ee183047d948fa0"}, + {file = "tokenizers-0.20.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c375c6a889aeab44734028bc65cc070acf93ccb0f9368be42b67a98e1063d3f6"}, + {file = "tokenizers-0.20.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e359f852328e254f070bbd09a19a568421d23388f04aad9f2fb7da7704c7228d"}, + {file = "tokenizers-0.20.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d98b01a309d4387f3b1c1dd68a8b8136af50376cf146c1b7e8d8ead217a5be4b"}, + {file = "tokenizers-0.20.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:459f7537119554c2899067dec1ac74a00d02beef6558f4ee2e99513bf6d568af"}, + {file = "tokenizers-0.20.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:392b87ec89452628c045c9f2a88bc2a827f4c79e7d84bc3b72752b74c2581f70"}, + {file = "tokenizers-0.20.0-cp38-none-win32.whl", hash = "sha256:55a393f893d2ed4dd95a1553c2e42d4d4086878266f437b03590d3f81984c4fe"}, + {file = "tokenizers-0.20.0-cp38-none-win_amd64.whl", hash = "sha256:30ffe33c5c2f2aab8e9a3340d0110dd9f7ace7eec7362e20a697802306bd8068"}, + {file = "tokenizers-0.20.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:aa2d4a6fed2a7e3f860c7fc9d48764bb30f2649d83915d66150d6340e06742b8"}, + {file = "tokenizers-0.20.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b5ef0f814084a897e9071fc4a868595f018c5c92889197bdc4bf19018769b148"}, + {file = "tokenizers-0.20.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc1e1b791e8c3bf4c4f265f180dadaff1c957bf27129e16fdd5e5d43c2d3762c"}, + {file = "tokenizers-0.20.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b69e55e481459c07885263743a0d3c18d52db19bae8226a19bcca4aaa213fff"}, + {file = "tokenizers-0.20.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4806b4d82e27a2512bc23057b2986bc8b85824914286975b84d8105ff40d03d9"}, + {file = "tokenizers-0.20.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9859e9ef13adf5a473ccab39d31bff9c550606ae3c784bf772b40f615742a24f"}, + {file = "tokenizers-0.20.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ef703efedf4c20488a8eb17637b55973745b27997ff87bad88ed499b397d1144"}, + {file = "tokenizers-0.20.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6eec0061bab94b1841ab87d10831fdf1b48ebaed60e6d66d66dbe1d873f92bf5"}, + {file = "tokenizers-0.20.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:980f3d0d7e73f845b69087f29a63c11c7eb924c4ad6b358da60f3db4cf24bdb4"}, + {file = "tokenizers-0.20.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:7c157550a2f3851b29d7fdc9dc059fcf81ff0c0fc49a1e5173a89d533ed043fa"}, + {file = "tokenizers-0.20.0-cp39-none-win32.whl", hash = "sha256:8a3d2f4d08608ec4f9895ec25b4b36a97f05812543190a5f2c3cd19e8f041e5a"}, + {file = "tokenizers-0.20.0-cp39-none-win_amd64.whl", hash = "sha256:d90188d12afd0c75e537f9a1d92f9c7375650188ee4f48fdc76f9e38afbd2251"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:d68e15f1815357b059ec266062340c343ea7f98f7f330602df81ffa3474b6122"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:23f9ecec637b9bc80da5f703808d29ed5329e56b5aa8d791d1088014f48afadc"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f830b318ee599e3d0665b3e325f85bc75ee2d2ca6285f52e439dc22b64691580"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b3dc750def789cb1de1b5a37657919545e1d9ffa667658b3fa9cb7862407a1b8"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e26e6c755ae884c2ea6135cd215bdd0fccafe4ee62405014b8c3cd19954e3ab9"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:a1158c7174f427182e08baa2a8ded2940f2b4a3e94969a85cc9cfd16004cbcea"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:6324826287a3fc198898d3dcf758fe4a8479e42d6039f4c59e2cedd3cf92f64e"}, + {file = "tokenizers-0.20.0-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:7d8653149405bb0c16feaf9cfee327fdb6aaef9dc2998349fec686f35e81c4e2"}, + {file = "tokenizers-0.20.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b8a2dc1e402a155e97309287ca085c80eb1b7fab8ae91527d3b729181639fa51"}, + {file = "tokenizers-0.20.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07bef67b20aa6e5f7868c42c7c5eae4d24f856274a464ae62e47a0f2cccec3da"}, + {file = "tokenizers-0.20.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da06e397182ff53789c506c7833220c192952c57e1581a53f503d8d953e2d67e"}, + {file = "tokenizers-0.20.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:302f7e11a14814028b7fc88c45a41f1bbe9b5b35fd76d6869558d1d1809baa43"}, + {file = "tokenizers-0.20.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:055ec46e807b875589dfbe3d9259f9a6ee43394fb553b03b3d1e9541662dbf25"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e3144b8acebfa6ae062e8f45f7ed52e4b50fb6c62f93afc8871b525ab9fdcab3"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:b52aa3fd14b2a07588c00a19f66511cff5cca8f7266ca3edcdd17f3512ad159f"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2b8cf52779ffc5d4d63a0170fbeb512372bad0dd014ce92bbb9149756c831124"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:983a45dd11a876124378dae71d6d9761822199b68a4c73f32873d8cdaf326a5b"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:df6b819c9a19831ebec581e71a7686a54ab45d90faf3842269a10c11d746de0c"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:e738cfd80795fcafcef89c5731c84b05638a4ab3f412f97d5ed7765466576eb1"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:c8842c7be2fadb9c9edcee233b1b7fe7ade406c99b0973f07439985c1c1d0683"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e47a82355511c373a4a430c4909dc1e518e00031207b1fec536c49127388886b"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:9afbf359004551179a5db19424180c81276682773cff2c5d002f6eaaffe17230"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a07eaa8799a92e6af6f472c21a75bf71575de2af3c0284120b7a09297c0de2f3"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0994b2e5fc53a301071806bc4303e4bc3bdc3f490e92a21338146a36746b0872"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b6466e0355b603d10e3cc3d282d350b646341b601e50969464a54939f9848d0"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:1e86594c2a433cb1ea09cfbe596454448c566e57ee8905bd557e489d93e89986"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:3e14cdef1efa96ecead6ea64a891828432c3ebba128bdc0596e3059fea104ef3"}, + {file = "tokenizers-0.20.0.tar.gz", hash = "sha256:39d7acc43f564c274085cafcd1dae9d36f332456de1a31970296a6b8da4eac8d"}, ] [package.dependencies] @@ -3173,31 +3249,31 @@ files = [ [[package]] name = "torch" -version = "2.4.0" +version = "2.4.1" description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" optional = true python-versions = ">=3.8.0" files = [ - {file = "torch-2.4.0-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:4ed94583e244af51d6a8d28701ca5a9e02d1219e782f5a01dd401f90af17d8ac"}, - {file = "torch-2.4.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:c4ca297b7bd58b506bfd6e78ffd14eb97c0e7797dcd7965df62f50bb575d8954"}, - {file = "torch-2.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:2497cbc7b3c951d69b276ca51fe01c2865db67040ac67f5fc20b03e41d16ea4a"}, - {file = "torch-2.4.0-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:685418ab93730efbee71528821ff54005596970dd497bf03c89204fb7e3f71de"}, - {file = "torch-2.4.0-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:e743adadd8c8152bb8373543964551a7cb7cc20ba898dc8f9c0cdbe47c283de0"}, - {file = "torch-2.4.0-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:7334325c0292cbd5c2eac085f449bf57d3690932eac37027e193ba775703c9e6"}, - {file = "torch-2.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:97730014da4c57ffacb3c09298c6ce05400606e890bd7a05008d13dd086e46b1"}, - {file = "torch-2.4.0-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:f169b4ea6dc93b3a33319611fcc47dc1406e4dd539844dcbd2dec4c1b96e166d"}, - {file = "torch-2.4.0-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:997084a0f9784d2a89095a6dc67c7925e21bf25dea0b3d069b41195016ccfcbb"}, - {file = "torch-2.4.0-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:bc3988e8b36d1e8b998d143255d9408d8c75da4ab6dd0dcfd23b623dfb0f0f57"}, - {file = "torch-2.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:3374128bbf7e62cdaed6c237bfd39809fbcfaa576bee91e904706840c3f2195c"}, - {file = "torch-2.4.0-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:91aaf00bfe1ffa44dc5b52809d9a95129fca10212eca3ac26420eb11727c6288"}, - {file = "torch-2.4.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:cc30457ea5489c62747d3306438af00c606b509d78822a88f804202ba63111ed"}, - {file = "torch-2.4.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:a046491aaf96d1215e65e1fa85911ef2ded6d49ea34c8df4d0638879f2402eef"}, - {file = "torch-2.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:688eec9240f3ce775f22e1e1a5ab9894f3d5fe60f3f586deb7dbd23a46a83916"}, - {file = "torch-2.4.0-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:3af4de2a618fb065e78404c4ba27a818a7b7957eaeff28c6c66ce7fb504b68b8"}, - {file = "torch-2.4.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:618808d3f610d5f180e47a697d4ec90b810953bb1e020f424b2ac7fb0884b545"}, - {file = "torch-2.4.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:ed765d232d23566052ba83632ec73a4fccde00b4c94ad45d63b471b09d63b7a7"}, - {file = "torch-2.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:a2feb98ac470109472fb10dfef38622a7ee08482a16c357863ebc7bc7db7c8f7"}, - {file = "torch-2.4.0-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:8940fc8b97a4c61fdb5d46a368f21f4a3a562a17879e932eb51a5ec62310cb31"}, + {file = "torch-2.4.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:362f82e23a4cd46341daabb76fba08f04cd646df9bfaf5da50af97cb60ca4971"}, + {file = "torch-2.4.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:e8ac1985c3ff0f60d85b991954cfc2cc25f79c84545aead422763148ed2759e3"}, + {file = "torch-2.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:91e326e2ccfb1496e3bee58f70ef605aeb27bd26be07ba64f37dcaac3d070ada"}, + {file = "torch-2.4.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:d36a8ef100f5bff3e9c3cea934b9e0d7ea277cb8210c7152d34a9a6c5830eadd"}, + {file = "torch-2.4.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:0b5f88afdfa05a335d80351e3cea57d38e578c8689f751d35e0ff36bce872113"}, + {file = "torch-2.4.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:ef503165f2341942bfdf2bd520152f19540d0c0e34961232f134dc59ad435be8"}, + {file = "torch-2.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:092e7c2280c860eff762ac08c4bdcd53d701677851670695e0c22d6d345b269c"}, + {file = "torch-2.4.1-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:ddddbd8b066e743934a4200b3d54267a46db02106876d21cf31f7da7a96f98ea"}, + {file = "torch-2.4.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:fdc4fe11db3eb93c1115d3e973a27ac7c1a8318af8934ffa36b0370efe28e042"}, + {file = "torch-2.4.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:18835374f599207a9e82c262153c20ddf42ea49bc76b6eadad8e5f49729f6e4d"}, + {file = "torch-2.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:ebea70ff30544fc021d441ce6b219a88b67524f01170b1c538d7d3ebb5e7f56c"}, + {file = "torch-2.4.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:72b484d5b6cec1a735bf3fa5a1c4883d01748698c5e9cfdbeb4ffab7c7987e0d"}, + {file = "torch-2.4.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:c99e1db4bf0c5347107845d715b4aa1097e601bdc36343d758963055e9599d93"}, + {file = "torch-2.4.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:b57f07e92858db78c5b72857b4f0b33a65b00dc5d68e7948a8494b0314efb880"}, + {file = "torch-2.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:f18197f3f7c15cde2115892b64f17c80dbf01ed72b008020e7da339902742cf6"}, + {file = "torch-2.4.1-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:5fc1d4d7ed265ef853579caf272686d1ed87cebdcd04f2a498f800ffc53dab71"}, + {file = "torch-2.4.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:40f6d3fe3bae74efcf08cb7f8295eaddd8a838ce89e9d26929d4edd6d5e4329d"}, + {file = "torch-2.4.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:c9299c16c9743001ecef515536ac45900247f4338ecdf70746f2461f9e4831db"}, + {file = "torch-2.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:6bce130f2cd2d52ba4e2c6ada461808de7e5eccbac692525337cfb4c19421846"}, + {file = "torch-2.4.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:a38de2803ee6050309aac032676536c3d3b6a9804248537e38e098d0e14817ec"}, ] [package.dependencies] @@ -3216,6 +3292,7 @@ nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \" nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-nccl-cu12 = {version = "2.20.5", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +setuptools = "*" sympy = "*" triton = {version = "3.0.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.13\""} typing-extensions = ">=4.8.0" @@ -3226,13 +3303,13 @@ optree = ["optree (>=0.11.0)"] [[package]] name = "tqdm" -version = "4.66.4" +version = "4.66.5" description = "Fast, Extensible Progress Meter" optional = false python-versions = ">=3.7" files = [ - {file = "tqdm-4.66.4-py3-none-any.whl", hash = "sha256:b75ca56b413b030bc3f00af51fd2c1a1a5eac6a0c1cca83cbb37a5c52abce644"}, - {file = "tqdm-4.66.4.tar.gz", hash = "sha256:e4d936c9de8727928f3be6079590e97d9abfe8d39a590be678eb5919ffc186bb"}, + {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, + {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, ] [package.dependencies] @@ -3246,13 +3323,13 @@ telegram = ["requests"] [[package]] name = "transformers" -version = "4.43.1" +version = "4.45.0" description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow" optional = false python-versions = ">=3.8.0" files = [ - {file = "transformers-4.43.1-py3-none-any.whl", hash = "sha256:eb44b731902e062acbaff196ae4896d7cb3494ddf38275aa00a5fcfb5b34f17d"}, - {file = "transformers-4.43.1.tar.gz", hash = "sha256:662252c4d0e31b6684f68f68d5cc8206dd7f83da80eb3235be3dc5b3c9fdbdbd"}, + {file = "transformers-4.45.0-py3-none-any.whl", hash = "sha256:f04a82926676056afb3bbf4df7d76ceb1fc2b2746247a87f3f9be4674adc95d7"}, + {file = "transformers-4.45.0.tar.gz", hash = "sha256:29629f87965acc7b15e458a24580832d85da18ddc119410211747fe778c200ce"}, ] [package.dependencies] @@ -3264,21 +3341,21 @@ pyyaml = ">=5.1" regex = "!=2019.12.17" requests = "*" safetensors = ">=0.4.1" -tokenizers = ">=0.19,<0.20" +tokenizers = ">=0.20,<0.21" tqdm = ">=4.27" [package.extras] -accelerate = ["accelerate (>=0.21.0)"] -agents = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch"] -all = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm (<=0.9.16)", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision"] +accelerate = ["accelerate (>=0.26.0)"] +agents = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.26.0)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch"] +all = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.26.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm (<=0.9.16)", "tokenizers (>=0.20,<0.21)", "torch", "torchaudio", "torchvision"] audio = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] -benchmark = ["optimum-benchmark (>=0.2.0)"] +benchmark = ["optimum-benchmark (>=0.3.0)"] codecarbon = ["codecarbon (==1.2.0)"] -deepspeed = ["accelerate (>=0.21.0)", "deepspeed (>=0.9.3)"] -deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.21.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.9.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk", "optuna", "parameterized", "protobuf", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.4.4)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] -dev = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "librosa", "nltk", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.4.4)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "timm (<=0.9.16)", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] -dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "librosa", "nltk", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.4.4)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.19,<0.20)", "urllib3 (<2.0.0)"] -dev-torch = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.4.4)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "timeout-decorator", "timm (<=0.9.16)", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] +deepspeed = ["accelerate (>=0.26.0)", "deepspeed (>=0.9.3)"] +deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.26.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.9.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk (<=3.8.1)", "optuna", "parameterized", "protobuf", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] +dev = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.26.0)", "av (==9.2.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "libcst", "librosa", "nltk (<=3.8.1)", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rich", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "timm (<=0.9.16)", "tokenizers (>=0.20,<0.21)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] +dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "libcst", "librosa", "nltk (<=3.8.1)", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rich", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.20,<0.21)", "urllib3 (<2.0.0)"] +dev-torch = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.26.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "libcst", "librosa", "nltk (<=3.8.1)", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rich", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "timeout-decorator", "timm (<=0.9.16)", "tokenizers (>=0.20,<0.21)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] flax = ["flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "optax (>=0.0.8,<=0.1.4)", "scipy (<1.13.0)"] flax-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] ftfy = ["ftfy"] @@ -3289,26 +3366,27 @@ natten = ["natten (>=0.14.6,<0.15.0)"] onnx = ["onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "tf2onnx"] onnxruntime = ["onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)"] optuna = ["optuna"] -quality = ["GitPython (<3.1.19)", "datasets (!=2.5.0)", "isort (>=5.5.4)", "ruff (==0.4.4)", "urllib3 (<2.0.0)"] +quality = ["GitPython (<3.1.19)", "datasets (!=2.5.0)", "isort (>=5.5.4)", "libcst", "rich", "ruff (==0.5.1)", "urllib3 (<2.0.0)"] ray = ["ray[tune] (>=2.7.0)"] retrieval = ["datasets (!=2.5.0)", "faiss-cpu"] -ruff = ["ruff (==0.4.4)"] +ruff = ["ruff (==0.5.1)"] sagemaker = ["sagemaker (>=2.31.0)"] sentencepiece = ["protobuf", "sentencepiece (>=0.1.91,!=0.1.92)"] serving = ["fastapi", "pydantic", "starlette", "uvicorn"] sigopt = ["sigopt"] sklearn = ["scikit-learn"] speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] -testing = ["GitPython (<3.1.19)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk", "parameterized", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.4.4)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] +testing = ["GitPython (<3.1.19)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk (<=3.8.1)", "parameterized", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] tf = ["keras-nlp (>=0.3.1,<0.14.0)", "onnxconverter-common", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx"] tf-cpu = ["keras (>2.9,<2.16)", "keras-nlp (>=0.3.1,<0.14.0)", "onnxconverter-common", "tensorflow-cpu (>2.9,<2.16)", "tensorflow-probability (<0.24)", "tensorflow-text (<2.16)", "tf2onnx"] tf-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] +tiktoken = ["blobfile", "tiktoken"] timm = ["timm (<=0.9.16)"] -tokenizers = ["tokenizers (>=0.19,<0.20)"] -torch = ["accelerate (>=0.21.0)", "torch"] +tokenizers = ["tokenizers (>=0.20,<0.21)"] +torch = ["accelerate (>=0.26.0)", "torch"] torch-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] torch-vision = ["Pillow (>=10.0.1,<=15.0)", "torchvision"] -torchhub = ["filelock", "huggingface-hub (>=0.23.2,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.19,<0.20)", "torch", "tqdm (>=4.27)"] +torchhub = ["filelock", "huggingface-hub (>=0.23.2,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.20,<0.21)", "torch", "tqdm (>=4.27)"] video = ["av (==9.2.0)", "decord (==0.6.0)"] vision = ["Pillow (>=10.0.1,<=15.0)"] @@ -3324,6 +3402,11 @@ files = [ {file = "triton-3.0.0-1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:34e509deb77f1c067d8640725ef00c5cbfcb2052a1a3cb6a6d343841f92624eb"}, {file = "triton-3.0.0-1-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:bcbf3b1c48af6a28011a5c40a5b3b9b5330530c3827716b5fbf6d7adcc1e53e9"}, {file = "triton-3.0.0-1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:6e5727202f7078c56f91ff13ad0c1abab14a0e7f2c87e91b12b6f64f3e8ae609"}, + {file = "triton-3.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39b052da883351fdf6be3d93cedae6db3b8e3988d3b09ed221bccecfa9612230"}, + {file = "triton-3.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cd34f19a8582af96e6291d4afce25dac08cb2a5d218c599163761e8e0827208e"}, + {file = "triton-3.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d5e10de8c011adeb7c878c6ce0dd6073b14367749e34467f1cff2bde1b78253"}, + {file = "triton-3.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8903767951bf86ec960b4fe4e21bc970055afc65e9d57e916d79ae3c93665e3"}, + {file = "triton-3.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:41004fb1ae9a53fcb3e970745feb87f0e3c94c6ce1ba86e95fa3b8537894bef7"}, ] [package.dependencies] @@ -3367,24 +3450,24 @@ files = [ [[package]] name = "tzdata" -version = "2024.1" +version = "2024.2" description = "Provider of IANA time zone data" optional = true python-versions = ">=2" files = [ - {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, - {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, + {file = "tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd"}, + {file = "tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc"}, ] [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -3488,218 +3571,235 @@ files = [ [[package]] name = "xxhash" -version = "3.4.1" +version = "3.5.0" description = "Python binding for xxHash" optional = true python-versions = ">=3.7" files = [ - {file = "xxhash-3.4.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:91dbfa55346ad3e18e738742236554531a621042e419b70ad8f3c1d9c7a16e7f"}, - {file = "xxhash-3.4.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:665a65c2a48a72068fcc4d21721510df5f51f1142541c890491afc80451636d2"}, - {file = "xxhash-3.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb11628470a6004dc71a09fe90c2f459ff03d611376c1debeec2d648f44cb693"}, - {file = "xxhash-3.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5bef2a7dc7b4f4beb45a1edbba9b9194c60a43a89598a87f1a0226d183764189"}, - {file = "xxhash-3.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c0f7b2d547d72c7eda7aa817acf8791f0146b12b9eba1d4432c531fb0352228"}, - {file = "xxhash-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:00f2fdef6b41c9db3d2fc0e7f94cb3db86693e5c45d6de09625caad9a469635b"}, - {file = "xxhash-3.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:23cfd9ca09acaf07a43e5a695143d9a21bf00f5b49b15c07d5388cadf1f9ce11"}, - {file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6a9ff50a3cf88355ca4731682c168049af1ca222d1d2925ef7119c1a78e95b3b"}, - {file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:f1d7c69a1e9ca5faa75546fdd267f214f63f52f12692f9b3a2f6467c9e67d5e7"}, - {file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:672b273040d5d5a6864a36287f3514efcd1d4b1b6a7480f294c4b1d1ee1b8de0"}, - {file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:4178f78d70e88f1c4a89ff1ffe9f43147185930bb962ee3979dba15f2b1cc799"}, - {file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:9804b9eb254d4b8cc83ab5a2002128f7d631dd427aa873c8727dba7f1f0d1c2b"}, - {file = "xxhash-3.4.1-cp310-cp310-win32.whl", hash = "sha256:c09c49473212d9c87261d22c74370457cfff5db2ddfc7fd1e35c80c31a8c14ce"}, - {file = "xxhash-3.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:ebbb1616435b4a194ce3466d7247df23499475c7ed4eb2681a1fa42ff766aff6"}, - {file = "xxhash-3.4.1-cp310-cp310-win_arm64.whl", hash = "sha256:25dc66be3db54f8a2d136f695b00cfe88018e59ccff0f3b8f545869f376a8a46"}, - {file = "xxhash-3.4.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:58c49083801885273e262c0f5bbeac23e520564b8357fbb18fb94ff09d3d3ea5"}, - {file = "xxhash-3.4.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b526015a973bfbe81e804a586b703f163861da36d186627e27524f5427b0d520"}, - {file = "xxhash-3.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36ad4457644c91a966f6fe137d7467636bdc51a6ce10a1d04f365c70d6a16d7e"}, - {file = "xxhash-3.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:248d3e83d119770f96003271fe41e049dd4ae52da2feb8f832b7a20e791d2920"}, - {file = "xxhash-3.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2070b6d5bbef5ee031666cf21d4953c16e92c2f8a24a94b5c240f8995ba3b1d0"}, - {file = "xxhash-3.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2746035f518f0410915e247877f7df43ef3372bf36cfa52cc4bc33e85242641"}, - {file = "xxhash-3.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2a8ba6181514681c2591840d5632fcf7356ab287d4aff1c8dea20f3c78097088"}, - {file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aac5010869240e95f740de43cd6a05eae180c59edd182ad93bf12ee289484fa"}, - {file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4cb11d8debab1626181633d184b2372aaa09825bde709bf927704ed72765bed1"}, - {file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b29728cff2c12f3d9f1d940528ee83918d803c0567866e062683f300d1d2eff3"}, - {file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:a15cbf3a9c40672523bdb6ea97ff74b443406ba0ab9bca10ceccd9546414bd84"}, - {file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:6e66df260fed01ed8ea790c2913271641c58481e807790d9fca8bfd5a3c13844"}, - {file = "xxhash-3.4.1-cp311-cp311-win32.whl", hash = "sha256:e867f68a8f381ea12858e6d67378c05359d3a53a888913b5f7d35fbf68939d5f"}, - {file = "xxhash-3.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:200a5a3ad9c7c0c02ed1484a1d838b63edcf92ff538770ea07456a3732c577f4"}, - {file = "xxhash-3.4.1-cp311-cp311-win_arm64.whl", hash = "sha256:1d03f1c0d16d24ea032e99f61c552cb2b77d502e545187338bea461fde253583"}, - {file = "xxhash-3.4.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c4bbba9b182697a52bc0c9f8ec0ba1acb914b4937cd4a877ad78a3b3eeabefb3"}, - {file = "xxhash-3.4.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9fd28a9da300e64e434cfc96567a8387d9a96e824a9be1452a1e7248b7763b78"}, - {file = "xxhash-3.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6066d88c9329ab230e18998daec53d819daeee99d003955c8db6fc4971b45ca3"}, - {file = "xxhash-3.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:93805bc3233ad89abf51772f2ed3355097a5dc74e6080de19706fc447da99cd3"}, - {file = "xxhash-3.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:64da57d5ed586ebb2ecdde1e997fa37c27fe32fe61a656b77fabbc58e6fbff6e"}, - {file = "xxhash-3.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a97322e9a7440bf3c9805cbaac090358b43f650516486746f7fa482672593df"}, - {file = "xxhash-3.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bbe750d512982ee7d831838a5dee9e9848f3fb440e4734cca3f298228cc957a6"}, - {file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:fd79d4087727daf4d5b8afe594b37d611ab95dc8e29fe1a7517320794837eb7d"}, - {file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:743612da4071ff9aa4d055f3f111ae5247342931dedb955268954ef7201a71ff"}, - {file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:b41edaf05734092f24f48c0958b3c6cbaaa5b7e024880692078c6b1f8247e2fc"}, - {file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:a90356ead70d715fe64c30cd0969072de1860e56b78adf7c69d954b43e29d9fa"}, - {file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ac56eebb364e44c85e1d9e9cc5f6031d78a34f0092fea7fc80478139369a8b4a"}, - {file = "xxhash-3.4.1-cp312-cp312-win32.whl", hash = "sha256:911035345932a153c427107397c1518f8ce456f93c618dd1c5b54ebb22e73747"}, - {file = "xxhash-3.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:f31ce76489f8601cc7b8713201ce94b4bd7b7ce90ba3353dccce7e9e1fee71fa"}, - {file = "xxhash-3.4.1-cp312-cp312-win_arm64.whl", hash = "sha256:b5beb1c6a72fdc7584102f42c4d9df232ee018ddf806e8c90906547dfb43b2da"}, - {file = "xxhash-3.4.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:6d42b24d1496deb05dee5a24ed510b16de1d6c866c626c2beb11aebf3be278b9"}, - {file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3b685fab18876b14a8f94813fa2ca80cfb5ab6a85d31d5539b7cd749ce9e3624"}, - {file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:419ffe34c17ae2df019a4685e8d3934d46b2e0bbe46221ab40b7e04ed9f11137"}, - {file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0e041ce5714f95251a88670c114b748bca3bf80cc72400e9f23e6d0d59cf2681"}, - {file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc860d887c5cb2f524899fb8338e1bb3d5789f75fac179101920d9afddef284b"}, - {file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:312eba88ffe0a05e332e3a6f9788b73883752be63f8588a6dc1261a3eaaaf2b2"}, - {file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:e01226b6b6a1ffe4e6bd6d08cfcb3ca708b16f02eb06dd44f3c6e53285f03e4f"}, - {file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:9f3025a0d5d8cf406a9313cd0d5789c77433ba2004b1c75439b67678e5136537"}, - {file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:6d3472fd4afef2a567d5f14411d94060099901cd8ce9788b22b8c6f13c606a93"}, - {file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:43984c0a92f06cac434ad181f329a1445017c33807b7ae4f033878d860a4b0f2"}, - {file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a55e0506fdb09640a82ec4f44171273eeabf6f371a4ec605633adb2837b5d9d5"}, - {file = "xxhash-3.4.1-cp37-cp37m-win32.whl", hash = "sha256:faec30437919555b039a8bdbaba49c013043e8f76c999670aef146d33e05b3a0"}, - {file = "xxhash-3.4.1-cp37-cp37m-win_amd64.whl", hash = "sha256:c9e1b646af61f1fc7083bb7b40536be944f1ac67ef5e360bca2d73430186971a"}, - {file = "xxhash-3.4.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:961d948b7b1c1b6c08484bbce3d489cdf153e4122c3dfb07c2039621243d8795"}, - {file = "xxhash-3.4.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:719a378930504ab159f7b8e20fa2aa1896cde050011af838af7e7e3518dd82de"}, - {file = "xxhash-3.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:74fb5cb9406ccd7c4dd917f16630d2e5e8cbbb02fc2fca4e559b2a47a64f4940"}, - {file = "xxhash-3.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5dab508ac39e0ab988039bc7f962c6ad021acd81fd29145962b068df4148c476"}, - {file = "xxhash-3.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8c59f3e46e7daf4c589e8e853d700ef6607afa037bfad32c390175da28127e8c"}, - {file = "xxhash-3.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8cc07256eff0795e0f642df74ad096f8c5d23fe66bc138b83970b50fc7f7f6c5"}, - {file = "xxhash-3.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e9f749999ed80f3955a4af0eb18bb43993f04939350b07b8dd2f44edc98ffee9"}, - {file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:7688d7c02149a90a3d46d55b341ab7ad1b4a3f767be2357e211b4e893efbaaf6"}, - {file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a8b4977963926f60b0d4f830941c864bed16aa151206c01ad5c531636da5708e"}, - {file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:8106d88da330f6535a58a8195aa463ef5281a9aa23b04af1848ff715c4398fb4"}, - {file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4c76a77dbd169450b61c06fd2d5d436189fc8ab7c1571d39265d4822da16df22"}, - {file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:11f11357c86d83e53719c592021fd524efa9cf024dc7cb1dfb57bbbd0d8713f2"}, - {file = "xxhash-3.4.1-cp38-cp38-win32.whl", hash = "sha256:0c786a6cd74e8765c6809892a0d45886e7c3dc54de4985b4a5eb8b630f3b8e3b"}, - {file = "xxhash-3.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:aabf37fb8fa27430d50507deeab2ee7b1bcce89910dd10657c38e71fee835594"}, - {file = "xxhash-3.4.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6127813abc1477f3a83529b6bbcfeddc23162cece76fa69aee8f6a8a97720562"}, - {file = "xxhash-3.4.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ef2e194262f5db16075caea7b3f7f49392242c688412f386d3c7b07c7733a70a"}, - {file = "xxhash-3.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:71be94265b6c6590f0018bbf73759d21a41c6bda20409782d8117e76cd0dfa8b"}, - {file = "xxhash-3.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:10e0a619cdd1c0980e25eb04e30fe96cf8f4324758fa497080af9c21a6de573f"}, - {file = "xxhash-3.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fa122124d2e3bd36581dd78c0efa5f429f5220313479fb1072858188bc2d5ff1"}, - {file = "xxhash-3.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e17032f5a4fea0a074717fe33477cb5ee723a5f428de7563e75af64bfc1b1e10"}, - {file = "xxhash-3.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca7783b20e3e4f3f52f093538895863f21d18598f9a48211ad757680c3bd006f"}, - {file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d77d09a1113899fad5f354a1eb4f0a9afcf58cefff51082c8ad643ff890e30cf"}, - {file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:21287bcdd299fdc3328cc0fbbdeaa46838a1c05391264e51ddb38a3f5b09611f"}, - {file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:dfd7a6cc483e20b4ad90224aeb589e64ec0f31e5610ab9957ff4314270b2bf31"}, - {file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:543c7fcbc02bbb4840ea9915134e14dc3dc15cbd5a30873a7a5bf66039db97ec"}, - {file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:fe0a98d990e433013f41827b62be9ab43e3cf18e08b1483fcc343bda0d691182"}, - {file = "xxhash-3.4.1-cp39-cp39-win32.whl", hash = "sha256:b9097af00ebf429cc7c0e7d2fdf28384e4e2e91008130ccda8d5ae653db71e54"}, - {file = "xxhash-3.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:d699b921af0dcde50ab18be76c0d832f803034d80470703700cb7df0fbec2832"}, - {file = "xxhash-3.4.1-cp39-cp39-win_arm64.whl", hash = "sha256:2be491723405e15cc099ade1280133ccfbf6322d2ef568494fb7d07d280e7eee"}, - {file = "xxhash-3.4.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:431625fad7ab5649368c4849d2b49a83dc711b1f20e1f7f04955aab86cd307bc"}, - {file = "xxhash-3.4.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc6dbd5fc3c9886a9e041848508b7fb65fd82f94cc793253990f81617b61fe49"}, - {file = "xxhash-3.4.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3ff8dbd0ec97aec842476cb8ccc3e17dd288cd6ce3c8ef38bff83d6eb927817"}, - {file = "xxhash-3.4.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef73a53fe90558a4096e3256752268a8bdc0322f4692ed928b6cd7ce06ad4fe3"}, - {file = "xxhash-3.4.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:450401f42bbd274b519d3d8dcf3c57166913381a3d2664d6609004685039f9d3"}, - {file = "xxhash-3.4.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a162840cf4de8a7cd8720ff3b4417fbc10001eefdd2d21541a8226bb5556e3bb"}, - {file = "xxhash-3.4.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b736a2a2728ba45017cb67785e03125a79d246462dfa892d023b827007412c52"}, - {file = "xxhash-3.4.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d0ae4c2e7698adef58710d6e7a32ff518b66b98854b1c68e70eee504ad061d8"}, - {file = "xxhash-3.4.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d6322c4291c3ff174dcd104fae41500e75dad12be6f3085d119c2c8a80956c51"}, - {file = "xxhash-3.4.1-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:dd59ed668801c3fae282f8f4edadf6dc7784db6d18139b584b6d9677ddde1b6b"}, - {file = "xxhash-3.4.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:92693c487e39523a80474b0394645b393f0ae781d8db3474ccdcead0559ccf45"}, - {file = "xxhash-3.4.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4603a0f642a1e8d7f3ba5c4c25509aca6a9c1cc16f85091004a7028607ead663"}, - {file = "xxhash-3.4.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fa45e8cbfbadb40a920fe9ca40c34b393e0b067082d94006f7f64e70c7490a6"}, - {file = "xxhash-3.4.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:595b252943b3552de491ff51e5bb79660f84f033977f88f6ca1605846637b7c6"}, - {file = "xxhash-3.4.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:562d8b8f783c6af969806aaacf95b6c7b776929ae26c0cd941d54644ea7ef51e"}, - {file = "xxhash-3.4.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:41ddeae47cf2828335d8d991f2d2b03b0bdc89289dc64349d712ff8ce59d0647"}, - {file = "xxhash-3.4.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c44d584afdf3c4dbb3277e32321d1a7b01d6071c1992524b6543025fb8f4206f"}, - {file = "xxhash-3.4.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd7bddb3a5b86213cc3f2c61500c16945a1b80ecd572f3078ddbbe68f9dabdfb"}, - {file = "xxhash-3.4.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9ecb6c987b62437c2f99c01e97caf8d25660bf541fe79a481d05732e5236719c"}, - {file = "xxhash-3.4.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:696b4e18b7023527d5c50ed0626ac0520edac45a50ec7cf3fc265cd08b1f4c03"}, - {file = "xxhash-3.4.1.tar.gz", hash = "sha256:0379d6cf1ff987cd421609a264ce025e74f346e3e145dd106c0cc2e3ec3f99a9"}, + {file = "xxhash-3.5.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ece616532c499ee9afbb83078b1b952beffef121d989841f7f4b3dc5ac0fd212"}, + {file = "xxhash-3.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3171f693dbc2cef6477054a665dc255d996646b4023fe56cb4db80e26f4cc520"}, + {file = "xxhash-3.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7c5d3e570ef46adaf93fc81b44aca6002b5a4d8ca11bd0580c07eac537f36680"}, + {file = "xxhash-3.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7cb29a034301e2982df8b1fe6328a84f4b676106a13e9135a0d7e0c3e9f806da"}, + {file = "xxhash-3.5.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d0d307d27099bb0cbeea7260eb39ed4fdb99c5542e21e94bb6fd29e49c57a23"}, + {file = "xxhash-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0342aafd421795d740e514bc9858ebddfc705a75a8c5046ac56d85fe97bf196"}, + {file = "xxhash-3.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3dbbd9892c5ebffeca1ed620cf0ade13eb55a0d8c84e0751a6653adc6ac40d0c"}, + {file = "xxhash-3.5.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:4cc2d67fdb4d057730c75a64c5923abfa17775ae234a71b0200346bfb0a7f482"}, + {file = "xxhash-3.5.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:ec28adb204b759306a3d64358a5e5c07d7b1dd0ccbce04aa76cb9377b7b70296"}, + {file = "xxhash-3.5.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:1328f6d8cca2b86acb14104e381225a3d7b42c92c4b86ceae814e5c400dbb415"}, + {file = "xxhash-3.5.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:8d47ebd9f5d9607fd039c1fbf4994e3b071ea23eff42f4ecef246ab2b7334198"}, + {file = "xxhash-3.5.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:b96d559e0fcddd3343c510a0fe2b127fbff16bf346dd76280b82292567523442"}, + {file = "xxhash-3.5.0-cp310-cp310-win32.whl", hash = "sha256:61c722ed8d49ac9bc26c7071eeaa1f6ff24053d553146d5df031802deffd03da"}, + {file = "xxhash-3.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:9bed5144c6923cc902cd14bb8963f2d5e034def4486ab0bbe1f58f03f042f9a9"}, + {file = "xxhash-3.5.0-cp310-cp310-win_arm64.whl", hash = "sha256:893074d651cf25c1cc14e3bea4fceefd67f2921b1bb8e40fcfeba56820de80c6"}, + {file = "xxhash-3.5.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:02c2e816896dc6f85922ced60097bcf6f008dedfc5073dcba32f9c8dd786f3c1"}, + {file = "xxhash-3.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6027dcd885e21581e46d3c7f682cfb2b870942feeed58a21c29583512c3f09f8"}, + {file = "xxhash-3.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1308fa542bbdbf2fa85e9e66b1077eea3a88bef38ee8a06270b4298a7a62a166"}, + {file = "xxhash-3.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c28b2fdcee797e1c1961cd3bcd3d545cab22ad202c846235197935e1df2f8ef7"}, + {file = "xxhash-3.5.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:924361811732ddad75ff23e90efd9ccfda4f664132feecb90895bade6a1b4623"}, + {file = "xxhash-3.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89997aa1c4b6a5b1e5b588979d1da048a3c6f15e55c11d117a56b75c84531f5a"}, + {file = "xxhash-3.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:685c4f4e8c59837de103344eb1c8a3851f670309eb5c361f746805c5471b8c88"}, + {file = "xxhash-3.5.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:dbd2ecfbfee70bc1a4acb7461fa6af7748ec2ab08ac0fa298f281c51518f982c"}, + {file = "xxhash-3.5.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:25b5a51dc3dfb20a10833c8eee25903fd2e14059e9afcd329c9da20609a307b2"}, + {file = "xxhash-3.5.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a8fb786fb754ef6ff8c120cb96629fb518f8eb5a61a16aac3a979a9dbd40a084"}, + {file = "xxhash-3.5.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:a905ad00ad1e1c34fe4e9d7c1d949ab09c6fa90c919860c1534ff479f40fd12d"}, + {file = "xxhash-3.5.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:963be41bcd49f53af6d795f65c0da9b4cc518c0dd9c47145c98f61cb464f4839"}, + {file = "xxhash-3.5.0-cp311-cp311-win32.whl", hash = "sha256:109b436096d0a2dd039c355fa3414160ec4d843dfecc64a14077332a00aeb7da"}, + {file = "xxhash-3.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:b702f806693201ad6c0a05ddbbe4c8f359626d0b3305f766077d51388a6bac58"}, + {file = "xxhash-3.5.0-cp311-cp311-win_arm64.whl", hash = "sha256:c4dcb4120d0cc3cc448624147dba64e9021b278c63e34a38789b688fd0da9bf3"}, + {file = "xxhash-3.5.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:14470ace8bd3b5d51318782cd94e6f94431974f16cb3b8dc15d52f3b69df8e00"}, + {file = "xxhash-3.5.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:59aa1203de1cb96dbeab595ded0ad0c0056bb2245ae11fac11c0ceea861382b9"}, + {file = "xxhash-3.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:08424f6648526076e28fae6ea2806c0a7d504b9ef05ae61d196d571e5c879c84"}, + {file = "xxhash-3.5.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:61a1ff00674879725b194695e17f23d3248998b843eb5e933007ca743310f793"}, + {file = "xxhash-3.5.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2f2c61bee5844d41c3eb015ac652a0229e901074951ae48581d58bfb2ba01be"}, + {file = "xxhash-3.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d32a592cac88d18cc09a89172e1c32d7f2a6e516c3dfde1b9adb90ab5df54a6"}, + {file = "xxhash-3.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:70dabf941dede727cca579e8c205e61121afc9b28516752fd65724be1355cc90"}, + {file = "xxhash-3.5.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e5d0ddaca65ecca9c10dcf01730165fd858533d0be84c75c327487c37a906a27"}, + {file = "xxhash-3.5.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:3e5b5e16c5a480fe5f59f56c30abdeba09ffd75da8d13f6b9b6fd224d0b4d0a2"}, + {file = "xxhash-3.5.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:149b7914451eb154b3dfaa721315117ea1dac2cc55a01bfbd4df7c68c5dd683d"}, + {file = "xxhash-3.5.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:eade977f5c96c677035ff39c56ac74d851b1cca7d607ab3d8f23c6b859379cab"}, + {file = "xxhash-3.5.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:fa9f547bd98f5553d03160967866a71056a60960be00356a15ecc44efb40ba8e"}, + {file = "xxhash-3.5.0-cp312-cp312-win32.whl", hash = "sha256:f7b58d1fd3551b8c80a971199543379be1cee3d0d409e1f6d8b01c1a2eebf1f8"}, + {file = "xxhash-3.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:fa0cafd3a2af231b4e113fba24a65d7922af91aeb23774a8b78228e6cd785e3e"}, + {file = "xxhash-3.5.0-cp312-cp312-win_arm64.whl", hash = "sha256:586886c7e89cb9828bcd8a5686b12e161368e0064d040e225e72607b43858ba2"}, + {file = "xxhash-3.5.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:37889a0d13b0b7d739cfc128b1c902f04e32de17b33d74b637ad42f1c55101f6"}, + {file = "xxhash-3.5.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:97a662338797c660178e682f3bc180277b9569a59abfb5925e8620fba00b9fc5"}, + {file = "xxhash-3.5.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7f85e0108d51092bdda90672476c7d909c04ada6923c14ff9d913c4f7dc8a3bc"}, + {file = "xxhash-3.5.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cd2fd827b0ba763ac919440042302315c564fdb797294d86e8cdd4578e3bc7f3"}, + {file = "xxhash-3.5.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:82085c2abec437abebf457c1d12fccb30cc8b3774a0814872511f0f0562c768c"}, + {file = "xxhash-3.5.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07fda5de378626e502b42b311b049848c2ef38784d0d67b6f30bb5008642f8eb"}, + {file = "xxhash-3.5.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c279f0d2b34ef15f922b77966640ade58b4ccdfef1c4d94b20f2a364617a493f"}, + {file = "xxhash-3.5.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:89e66ceed67b213dec5a773e2f7a9e8c58f64daeb38c7859d8815d2c89f39ad7"}, + {file = "xxhash-3.5.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:bcd51708a633410737111e998ceb3b45d3dbc98c0931f743d9bb0a209033a326"}, + {file = "xxhash-3.5.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:3ff2c0a34eae7df88c868be53a8dd56fbdf592109e21d4bfa092a27b0bf4a7bf"}, + {file = "xxhash-3.5.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:4e28503dccc7d32e0b9817aa0cbfc1f45f563b2c995b7a66c4c8a0d232e840c7"}, + {file = "xxhash-3.5.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:a6c50017518329ed65a9e4829154626f008916d36295b6a3ba336e2458824c8c"}, + {file = "xxhash-3.5.0-cp313-cp313-win32.whl", hash = "sha256:53a068fe70301ec30d868ece566ac90d873e3bb059cf83c32e76012c889b8637"}, + {file = "xxhash-3.5.0-cp313-cp313-win_amd64.whl", hash = "sha256:80babcc30e7a1a484eab952d76a4f4673ff601f54d5142c26826502740e70b43"}, + {file = "xxhash-3.5.0-cp313-cp313-win_arm64.whl", hash = "sha256:4811336f1ce11cac89dcbd18f3a25c527c16311709a89313c3acaf771def2d4b"}, + {file = "xxhash-3.5.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:6e5f70f6dca1d3b09bccb7daf4e087075ff776e3da9ac870f86ca316736bb4aa"}, + {file = "xxhash-3.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e76e83efc7b443052dd1e585a76201e40b3411fe3da7af4fe434ec51b2f163b"}, + {file = "xxhash-3.5.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:33eac61d0796ca0591f94548dcfe37bb193671e0c9bcf065789b5792f2eda644"}, + {file = "xxhash-3.5.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0ec70a89be933ea49222fafc3999987d7899fc676f688dd12252509434636622"}, + {file = "xxhash-3.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd86b8e7f703ec6ff4f351cfdb9f428955859537125904aa8c963604f2e9d3e7"}, + {file = "xxhash-3.5.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0adfbd36003d9f86c8c97110039f7539b379f28656a04097e7434d3eaf9aa131"}, + {file = "xxhash-3.5.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:63107013578c8a730419adc05608756c3fa640bdc6abe806c3123a49fb829f43"}, + {file = "xxhash-3.5.0-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:683b94dbd1ca67557850b86423318a2e323511648f9f3f7b1840408a02b9a48c"}, + {file = "xxhash-3.5.0-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:5d2a01dcce81789cf4b12d478b5464632204f4c834dc2d064902ee27d2d1f0ee"}, + {file = "xxhash-3.5.0-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:a9d360a792cbcce2fe7b66b8d51274ec297c53cbc423401480e53b26161a290d"}, + {file = "xxhash-3.5.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:f0b48edbebea1b7421a9c687c304f7b44d0677c46498a046079d445454504737"}, + {file = "xxhash-3.5.0-cp37-cp37m-win32.whl", hash = "sha256:7ccb800c9418e438b44b060a32adeb8393764da7441eb52aa2aa195448935306"}, + {file = "xxhash-3.5.0-cp37-cp37m-win_amd64.whl", hash = "sha256:c3bc7bf8cb8806f8d1c9bf149c18708cb1c406520097d6b0a73977460ea03602"}, + {file = "xxhash-3.5.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:74752ecaa544657d88b1d1c94ae68031e364a4d47005a90288f3bab3da3c970f"}, + {file = "xxhash-3.5.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:dee1316133c9b463aa81aca676bc506d3f80d8f65aeb0bba2b78d0b30c51d7bd"}, + {file = "xxhash-3.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:602d339548d35a8579c6b013339fb34aee2df9b4e105f985443d2860e4d7ffaa"}, + {file = "xxhash-3.5.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:695735deeddfb35da1677dbc16a083445360e37ff46d8ac5c6fcd64917ff9ade"}, + {file = "xxhash-3.5.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1030a39ba01b0c519b1a82f80e8802630d16ab95dc3f2b2386a0b5c8ed5cbb10"}, + {file = "xxhash-3.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a5bc08f33c4966f4eb6590d6ff3ceae76151ad744576b5fc6c4ba8edd459fdec"}, + {file = "xxhash-3.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160e0c19ee500482ddfb5d5570a0415f565d8ae2b3fd69c5dcfce8a58107b1c3"}, + {file = "xxhash-3.5.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:f1abffa122452481a61c3551ab3c89d72238e279e517705b8b03847b1d93d738"}, + {file = "xxhash-3.5.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:d5e9db7ef3ecbfc0b4733579cea45713a76852b002cf605420b12ef3ef1ec148"}, + {file = "xxhash-3.5.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:23241ff6423378a731d84864bf923a41649dc67b144debd1077f02e6249a0d54"}, + {file = "xxhash-3.5.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:82b833d5563fefd6fceafb1aed2f3f3ebe19f84760fdd289f8b926731c2e6e91"}, + {file = "xxhash-3.5.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:0a80ad0ffd78bef9509eee27b4a29e56f5414b87fb01a888353e3d5bda7038bd"}, + {file = "xxhash-3.5.0-cp38-cp38-win32.whl", hash = "sha256:50ac2184ffb1b999e11e27c7e3e70cc1139047e7ebc1aa95ed12f4269abe98d4"}, + {file = "xxhash-3.5.0-cp38-cp38-win_amd64.whl", hash = "sha256:392f52ebbb932db566973693de48f15ce787cabd15cf6334e855ed22ea0be5b3"}, + {file = "xxhash-3.5.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bfc8cdd7f33d57f0468b0614ae634cc38ab9202c6957a60e31d285a71ebe0301"}, + {file = "xxhash-3.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e0c48b6300cd0b0106bf49169c3e0536408dfbeb1ccb53180068a18b03c662ab"}, + {file = "xxhash-3.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fe1a92cfbaa0a1253e339ccec42dbe6db262615e52df591b68726ab10338003f"}, + {file = "xxhash-3.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:33513d6cc3ed3b559134fb307aae9bdd94d7e7c02907b37896a6c45ff9ce51bd"}, + {file = "xxhash-3.5.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eefc37f6138f522e771ac6db71a6d4838ec7933939676f3753eafd7d3f4c40bc"}, + {file = "xxhash-3.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a606c8070ada8aa2a88e181773fa1ef17ba65ce5dd168b9d08038e2a61b33754"}, + {file = "xxhash-3.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:42eca420c8fa072cc1dd62597635d140e78e384a79bb4944f825fbef8bfeeef6"}, + {file = "xxhash-3.5.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:604253b2143e13218ff1ef0b59ce67f18b8bd1c4205d2ffda22b09b426386898"}, + {file = "xxhash-3.5.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:6e93a5ad22f434d7876665444a97e713a8f60b5b1a3521e8df11b98309bff833"}, + {file = "xxhash-3.5.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:7a46e1d6d2817ba8024de44c4fd79913a90e5f7265434cef97026215b7d30df6"}, + {file = "xxhash-3.5.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:30eb2efe6503c379b7ab99c81ba4a779748e3830241f032ab46bd182bf5873af"}, + {file = "xxhash-3.5.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:c8aa771ff2c13dd9cda8166d685d7333d389fae30a4d2bb39d63ab5775de8606"}, + {file = "xxhash-3.5.0-cp39-cp39-win32.whl", hash = "sha256:5ed9ebc46f24cf91034544b26b131241b699edbfc99ec5e7f8f3d02d6eb7fba4"}, + {file = "xxhash-3.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:220f3f896c6b8d0316f63f16c077d52c412619e475f9372333474ee15133a558"}, + {file = "xxhash-3.5.0-cp39-cp39-win_arm64.whl", hash = "sha256:a7b1d8315d9b5e9f89eb2933b73afae6ec9597a258d52190944437158b49d38e"}, + {file = "xxhash-3.5.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:2014c5b3ff15e64feecb6b713af12093f75b7926049e26a580e94dcad3c73d8c"}, + {file = "xxhash-3.5.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fab81ef75003eda96239a23eda4e4543cedc22e34c373edcaf744e721a163986"}, + {file = "xxhash-3.5.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4e2febf914ace002132aa09169cc572e0d8959d0f305f93d5828c4836f9bc5a6"}, + {file = "xxhash-3.5.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5d3a10609c51da2a1c0ea0293fc3968ca0a18bd73838455b5bca3069d7f8e32b"}, + {file = "xxhash-3.5.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:5a74f23335b9689b66eb6dbe2a931a88fcd7a4c2cc4b1cb0edba8ce381c7a1da"}, + {file = "xxhash-3.5.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2b4154c00eb22e4d543f472cfca430e7962a0f1d0f3778334f2e08a7ba59363c"}, + {file = "xxhash-3.5.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d30bbc1644f726b825b3278764240f449d75f1a8bdda892e641d4a688b1494ae"}, + {file = "xxhash-3.5.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fa0b72f2423e2aa53077e54a61c28e181d23effeaafd73fcb9c494e60930c8e"}, + {file = "xxhash-3.5.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:13de2b76c1835399b2e419a296d5b38dc4855385d9e96916299170085ef72f57"}, + {file = "xxhash-3.5.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0691bfcc4f9c656bcb96cc5db94b4d75980b9d5589f2e59de790091028580837"}, + {file = "xxhash-3.5.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:297595fe6138d4da2c8ce9e72a04d73e58725bb60f3a19048bc96ab2ff31c692"}, + {file = "xxhash-3.5.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc1276d369452040cbb943300dc8abeedab14245ea44056a2943183822513a18"}, + {file = "xxhash-3.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2061188a1ba352fc699c82bff722f4baacb4b4b8b2f0c745d2001e56d0dfb514"}, + {file = "xxhash-3.5.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:38c384c434021e4f62b8d9ba0bc9467e14d394893077e2c66d826243025e1f81"}, + {file = "xxhash-3.5.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e6a4dd644d72ab316b580a1c120b375890e4c52ec392d4aef3c63361ec4d77d1"}, + {file = "xxhash-3.5.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:531af8845aaadcadf951b7e0c1345c6b9c68a990eeb74ff9acd8501a0ad6a1c9"}, + {file = "xxhash-3.5.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ce379bcaa9fcc00f19affa7773084dd09f5b59947b3fb47a1ceb0179f91aaa1"}, + {file = "xxhash-3.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd1b2281d01723f076df3c8188f43f2472248a6b63118b036e641243656b1b0f"}, + {file = "xxhash-3.5.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9c770750cc80e8694492244bca7251385188bc5597b6a39d98a9f30e8da984e0"}, + {file = "xxhash-3.5.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b150b8467852e1bd844387459aa6fbe11d7f38b56e901f9f3b3e6aba0d660240"}, + {file = "xxhash-3.5.0.tar.gz", hash = "sha256:84f2caddf951c9cbf8dc2e22a89d4ccf5d86391ac6418fe81e3c67d0cf60b45f"}, ] [[package]] name = "yarl" -version = "1.9.4" +version = "1.12.1" description = "Yet another URL library" optional = true -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "yarl-1.9.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a8c1df72eb746f4136fe9a2e72b0c9dc1da1cbd23b5372f94b5820ff8ae30e0e"}, - {file = "yarl-1.9.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a3a6ed1d525bfb91b3fc9b690c5a21bb52de28c018530ad85093cc488bee2dd2"}, - {file = "yarl-1.9.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c38c9ddb6103ceae4e4498f9c08fac9b590c5c71b0370f98714768e22ac6fa66"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9e09c9d74f4566e905a0b8fa668c58109f7624db96a2171f21747abc7524234"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8477c1ee4bd47c57d49621a062121c3023609f7a13b8a46953eb6c9716ca392"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d5ff2c858f5f6a42c2a8e751100f237c5e869cbde669a724f2062d4c4ef93551"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:357495293086c5b6d34ca9616a43d329317feab7917518bc97a08f9e55648455"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:54525ae423d7b7a8ee81ba189f131054defdb122cde31ff17477951464c1691c"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:801e9264d19643548651b9db361ce3287176671fb0117f96b5ac0ee1c3530d53"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e516dc8baf7b380e6c1c26792610230f37147bb754d6426462ab115a02944385"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:7d5aaac37d19b2904bb9dfe12cdb08c8443e7ba7d2852894ad448d4b8f442863"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:54beabb809ffcacbd9d28ac57b0db46e42a6e341a030293fb3185c409e626b8b"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bac8d525a8dbc2a1507ec731d2867025d11ceadcb4dd421423a5d42c56818541"}, - {file = "yarl-1.9.4-cp310-cp310-win32.whl", hash = "sha256:7855426dfbddac81896b6e533ebefc0af2f132d4a47340cee6d22cac7190022d"}, - {file = "yarl-1.9.4-cp310-cp310-win_amd64.whl", hash = "sha256:848cd2a1df56ddbffeb375535fb62c9d1645dde33ca4d51341378b3f5954429b"}, - {file = "yarl-1.9.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:35a2b9396879ce32754bd457d31a51ff0a9d426fd9e0e3c33394bf4b9036b099"}, - {file = "yarl-1.9.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c7d56b293cc071e82532f70adcbd8b61909eec973ae9d2d1f9b233f3d943f2c"}, - {file = "yarl-1.9.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d8a1c6c0be645c745a081c192e747c5de06e944a0d21245f4cf7c05e457c36e0"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4b3c1ffe10069f655ea2d731808e76e0f452fc6c749bea04781daf18e6039525"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:549d19c84c55d11687ddbd47eeb348a89df9cb30e1993f1b128f4685cd0ebbf8"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a7409f968456111140c1c95301cadf071bd30a81cbd7ab829169fb9e3d72eae9"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e23a6d84d9d1738dbc6e38167776107e63307dfc8ad108e580548d1f2c587f42"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d8b889777de69897406c9fb0b76cdf2fd0f31267861ae7501d93003d55f54fbe"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:03caa9507d3d3c83bca08650678e25364e1843b484f19986a527630ca376ecce"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4e9035df8d0880b2f1c7f5031f33f69e071dfe72ee9310cfc76f7b605958ceb9"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:c0ec0ed476f77db9fb29bca17f0a8fcc7bc97ad4c6c1d8959c507decb22e8572"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:ee04010f26d5102399bd17f8df8bc38dc7ccd7701dc77f4a68c5b8d733406958"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:49a180c2e0743d5d6e0b4d1a9e5f633c62eca3f8a86ba5dd3c471060e352ca98"}, - {file = "yarl-1.9.4-cp311-cp311-win32.whl", hash = "sha256:81eb57278deb6098a5b62e88ad8281b2ba09f2f1147c4767522353eaa6260b31"}, - {file = "yarl-1.9.4-cp311-cp311-win_amd64.whl", hash = "sha256:d1d2532b340b692880261c15aee4dc94dd22ca5d61b9db9a8a361953d36410b1"}, - {file = "yarl-1.9.4-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0d2454f0aef65ea81037759be5ca9947539667eecebca092733b2eb43c965a81"}, - {file = "yarl-1.9.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:44d8ffbb9c06e5a7f529f38f53eda23e50d1ed33c6c869e01481d3fafa6b8142"}, - {file = "yarl-1.9.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:aaaea1e536f98754a6e5c56091baa1b6ce2f2700cc4a00b0d49eca8dea471074"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3777ce5536d17989c91696db1d459574e9a9bd37660ea7ee4d3344579bb6f129"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9fc5fc1eeb029757349ad26bbc5880557389a03fa6ada41703db5e068881e5f2"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ea65804b5dc88dacd4a40279af0cdadcfe74b3e5b4c897aa0d81cf86927fee78"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa102d6d280a5455ad6a0f9e6d769989638718e938a6a0a2ff3f4a7ff8c62cc4"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:09efe4615ada057ba2d30df871d2f668af661e971dfeedf0c159927d48bbeff0"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:008d3e808d03ef28542372d01057fd09168419cdc8f848efe2804f894ae03e51"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6f5cb257bc2ec58f437da2b37a8cd48f666db96d47b8a3115c29f316313654ff"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:992f18e0ea248ee03b5a6e8b3b4738850ae7dbb172cc41c966462801cbf62cf7"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0e9d124c191d5b881060a9e5060627694c3bdd1fe24c5eecc8d5d7d0eb6faabc"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3986b6f41ad22988e53d5778f91855dc0399b043fc8946d4f2e68af22ee9ff10"}, - {file = "yarl-1.9.4-cp312-cp312-win32.whl", hash = "sha256:4b21516d181cd77ebd06ce160ef8cc2a5e9ad35fb1c5930882baff5ac865eee7"}, - {file = "yarl-1.9.4-cp312-cp312-win_amd64.whl", hash = "sha256:a9bd00dc3bc395a662900f33f74feb3e757429e545d831eef5bb280252631984"}, - {file = "yarl-1.9.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:63b20738b5aac74e239622d2fe30df4fca4942a86e31bf47a81a0e94c14df94f"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7d7f7de27b8944f1fee2c26a88b4dabc2409d2fea7a9ed3df79b67277644e17"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c74018551e31269d56fab81a728f683667e7c28c04e807ba08f8c9e3bba32f14"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ca06675212f94e7a610e85ca36948bb8fc023e458dd6c63ef71abfd482481aa5"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5aef935237d60a51a62b86249839b51345f47564208c6ee615ed2a40878dccdd"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2b134fd795e2322b7684155b7855cc99409d10b2e408056db2b93b51a52accc7"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d25039a474c4c72a5ad4b52495056f843a7ff07b632c1b92ea9043a3d9950f6e"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f7d6b36dd2e029b6bcb8a13cf19664c7b8e19ab3a58e0fefbb5b8461447ed5ec"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:957b4774373cf6f709359e5c8c4a0af9f6d7875db657adb0feaf8d6cb3c3964c"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:d7eeb6d22331e2fd42fce928a81c697c9ee2d51400bd1a28803965883e13cead"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:6a962e04b8f91f8c4e5917e518d17958e3bdee71fd1d8b88cdce74dd0ebbf434"}, - {file = "yarl-1.9.4-cp37-cp37m-win32.whl", hash = "sha256:f3bc6af6e2b8f92eced34ef6a96ffb248e863af20ef4fde9448cc8c9b858b749"}, - {file = "yarl-1.9.4-cp37-cp37m-win_amd64.whl", hash = "sha256:ad4d7a90a92e528aadf4965d685c17dacff3df282db1121136c382dc0b6014d2"}, - {file = "yarl-1.9.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ec61d826d80fc293ed46c9dd26995921e3a82146feacd952ef0757236fc137be"}, - {file = "yarl-1.9.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8be9e837ea9113676e5754b43b940b50cce76d9ed7d2461df1af39a8ee674d9f"}, - {file = "yarl-1.9.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bef596fdaa8f26e3d66af846bbe77057237cb6e8efff8cd7cc8dff9a62278bbf"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2d47552b6e52c3319fede1b60b3de120fe83bde9b7bddad11a69fb0af7db32f1"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:84fc30f71689d7fc9168b92788abc977dc8cefa806909565fc2951d02f6b7d57"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4aa9741085f635934f3a2583e16fcf62ba835719a8b2b28fb2917bb0537c1dfa"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:206a55215e6d05dbc6c98ce598a59e6fbd0c493e2de4ea6cc2f4934d5a18d130"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07574b007ee20e5c375a8fe4a0789fad26db905f9813be0f9fef5a68080de559"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5a2e2433eb9344a163aced6a5f6c9222c0786e5a9e9cac2c89f0b28433f56e23"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:6ad6d10ed9b67a382b45f29ea028f92d25bc0bc1daf6c5b801b90b5aa70fb9ec"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:6fe79f998a4052d79e1c30eeb7d6c1c1056ad33300f682465e1b4e9b5a188b78"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:a825ec844298c791fd28ed14ed1bffc56a98d15b8c58a20e0e08c1f5f2bea1be"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8619d6915b3b0b34420cf9b2bb6d81ef59d984cb0fde7544e9ece32b4b3043c3"}, - {file = "yarl-1.9.4-cp38-cp38-win32.whl", hash = "sha256:686a0c2f85f83463272ddffd4deb5e591c98aac1897d65e92319f729c320eece"}, - {file = "yarl-1.9.4-cp38-cp38-win_amd64.whl", hash = "sha256:a00862fb23195b6b8322f7d781b0dc1d82cb3bcac346d1e38689370cc1cc398b"}, - {file = "yarl-1.9.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:604f31d97fa493083ea21bd9b92c419012531c4e17ea6da0f65cacdcf5d0bd27"}, - {file = "yarl-1.9.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8a854227cf581330ffa2c4824d96e52ee621dd571078a252c25e3a3b3d94a1b1"}, - {file = "yarl-1.9.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ba6f52cbc7809cd8d74604cce9c14868306ae4aa0282016b641c661f981a6e91"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a6327976c7c2f4ee6816eff196e25385ccc02cb81427952414a64811037bbc8b"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8397a3817d7dcdd14bb266283cd1d6fc7264a48c186b986f32e86d86d35fbac5"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e0381b4ce23ff92f8170080c97678040fc5b08da85e9e292292aba67fdac6c34"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23d32a2594cb5d565d358a92e151315d1b2268bc10f4610d098f96b147370136"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ddb2a5c08a4eaaba605340fdee8fc08e406c56617566d9643ad8bf6852778fc7"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:26a1dc6285e03f3cc9e839a2da83bcbf31dcb0d004c72d0730e755b33466c30e"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:18580f672e44ce1238b82f7fb87d727c4a131f3a9d33a5e0e82b793362bf18b4"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:29e0f83f37610f173eb7e7b5562dd71467993495e568e708d99e9d1944f561ec"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:1f23e4fe1e8794f74b6027d7cf19dc25f8b63af1483d91d595d4a07eca1fb26c"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:db8e58b9d79200c76956cefd14d5c90af54416ff5353c5bfd7cbe58818e26ef0"}, - {file = "yarl-1.9.4-cp39-cp39-win32.whl", hash = "sha256:c7224cab95645c7ab53791022ae77a4509472613e839dab722a72abe5a684575"}, - {file = "yarl-1.9.4-cp39-cp39-win_amd64.whl", hash = "sha256:824d6c50492add5da9374875ce72db7a0733b29c2394890aef23d533106e2b15"}, - {file = "yarl-1.9.4-py3-none-any.whl", hash = "sha256:928cecb0ef9d5a7946eb6ff58417ad2fe9375762382f1bf5c55e61645f2c43ad"}, - {file = "yarl-1.9.4.tar.gz", hash = "sha256:566db86717cf8080b99b58b083b773a908ae40f06681e87e589a976faf8246bf"}, + {file = "yarl-1.12.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:64c5b0f2b937fe40d0967516eee5504b23cb247b8b7ffeba7213a467d9646fdc"}, + {file = "yarl-1.12.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:2e430ac432f969ef21770645743611c1618362309e3ad7cab45acd1ad1a540ff"}, + {file = "yarl-1.12.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3e26e64f42bce5ddf9002092b2c37b13071c2e6413d5c05f9fa9de58ed2f7749"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0103c52f8dfe5d573c856322149ddcd6d28f51b4d4a3ee5c4b3c1b0a05c3d034"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b63465b53baeaf2122a337d4ab57d6bbdd09fcadceb17a974cfa8a0300ad9c67"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17d4dc4ff47893a06737b8788ed2ba2f5ac4e8bb40281c8603920f7d011d5bdd"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b54949267bd5704324397efe9fbb6aa306466dee067550964e994d309db5f1"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10b690cd78cbaca2f96a7462f303fdd2b596d3978b49892e4b05a7567c591572"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c85ab016e96a975afbdb9d49ca90f3bca9920ef27c64300843fe91c3d59d8d20"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:c1caa5763d1770216596e0a71b5567f27aac28c95992110212c108ec74589a48"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:595bbcdbfc4a9c6989d7489dca8510cba053ff46b16c84ffd95ac8e90711d419"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:e64f0421892a207d3780903085c1b04efeb53b16803b23d947de5a7261b71355"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:319c206e83e46ec2421b25b300c8482b6fe8a018baca246be308c736d9dab267"}, + {file = "yarl-1.12.1-cp310-cp310-win32.whl", hash = "sha256:da045bd1147d12bd43fb032296640a7cc17a7f2eaba67495988362e99db24fd2"}, + {file = "yarl-1.12.1-cp310-cp310-win_amd64.whl", hash = "sha256:aebbd47df77190ada603157f0b3670d578c110c31746ecc5875c394fdcc59a99"}, + {file = "yarl-1.12.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:28389a68981676bf74e2e199fe42f35d1aa27a9c98e3a03e6f58d2d3d054afe1"}, + {file = "yarl-1.12.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f736f54565f8dd7e3ab664fef2bc461d7593a389a7f28d4904af8d55a91bd55f"}, + {file = "yarl-1.12.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6dee0496d5f1a8f57f0f28a16f81a2033fc057a2cf9cd710742d11828f8c80e2"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8981a94a27ac520a398302afb74ae2c0be1c3d2d215c75c582186a006c9e7b0"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ff54340fc1129e8e181827e2234af3ff659b4f17d9bbe77f43bc19e6577fadec"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:54c8cee662b5f8c30ad7eedfc26123f845f007798e4ff1001d9528fe959fd23c"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e97a29b37830ba1262d8dfd48ddb5b28ad4d3ebecc5d93a9c7591d98641ec737"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6c89894cc6f6ddd993813e79244b36b215c14f65f9e4f1660b1f2ba9e5594b95"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:712ba8722c0699daf186de089ddc4677651eb9875ed7447b2ad50697522cbdd9"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:6e9a9f50892153bad5046c2a6df153224aa6f0573a5a8ab44fc54a1e886f6e21"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:1d4017e78fb22bc797c089b746230ad78ecd3cdb215bc0bd61cb72b5867da57e"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:f494c01b28645c431239863cb17af8b8d15b93b0d697a0320d5dd34cd9d7c2fa"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:de4544b1fb29cf14870c4e2b8a897c0242449f5dcebd3e0366aa0aa3cf58a23a"}, + {file = "yarl-1.12.1-cp311-cp311-win32.whl", hash = "sha256:7564525a4673fde53dee7d4c307a961c0951918f0b8c7f09b2c9e02067cf6504"}, + {file = "yarl-1.12.1-cp311-cp311-win_amd64.whl", hash = "sha256:f23bb1a7a6e8e8b612a164fdd08e683bcc16c76f928d6dbb7bdbee2374fbfee6"}, + {file = "yarl-1.12.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:a3e2aff8b822ab0e0bdbed9f50494b3a35629c4b9488ae391659973a37a9f53f"}, + {file = "yarl-1.12.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:22dda2799c8d39041d731e02bf7690f0ef34f1691d9ac9dfcb98dd1e94c8b058"}, + {file = "yarl-1.12.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:18c2a7757561f05439c243f517dbbb174cadfae3a72dee4ae7c693f5b336570f"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:835010cc17d0020e7931d39e487d72c8e01c98e669b6896a8b8c9aa8ca69a949"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e2254fe137c4a360b0a13173a56444f756252c9283ba4d267ca8e9081cd140ea"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f6a071d2c3d39b4104f94fc08ab349e9b19b951ad4b8e3b6d7ea92d6ef7ccaf8"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:73a183042ae0918c82ce2df38c3db2409b0eeae88e3afdfc80fb67471a95b33b"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:326b8a079a9afcac0575971e56dabdf7abb2ea89a893e6949b77adfeb058b50e"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:126309c0f52a2219b3d1048aca00766429a1346596b186d51d9fa5d2070b7b13"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:ba1c779b45a399cc25f511c681016626f69e51e45b9d350d7581998722825af9"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:af1107299cef049ad00a93df4809517be432283a0847bcae48343ebe5ea340dc"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:20d817c0893191b2ab0ba30b45b77761e8dfec30a029b7c7063055ca71157f84"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d4f818f6371970d6a5d1e42878389bbfb69dcde631e4bbac5ec1cb11158565ca"}, + {file = "yarl-1.12.1-cp312-cp312-win32.whl", hash = "sha256:0ac33d22b2604b020569a82d5f8a03ba637ba42cc1adf31f616af70baf81710b"}, + {file = "yarl-1.12.1-cp312-cp312-win_amd64.whl", hash = "sha256:fd24996e12e1ba7c397c44be75ca299da14cde34d74bc5508cce233676cc68d0"}, + {file = "yarl-1.12.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:dea360778e0668a7ad25d7727d03364de8a45bfd5d808f81253516b9f2217765"}, + {file = "yarl-1.12.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1f50a37aeeb5179d293465e522fd686080928c4d89e0ff215e1f963405ec4def"}, + {file = "yarl-1.12.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0274b1b7a9c9c32b7bf250583e673ff99fb9fccb389215841e2652d9982de740"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4f3ab9eb8ab2d585ece959c48d234f7b39ac0ca1954a34d8b8e58a52064bdb3"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8d31dd0245d88cf7239e96e8f2a99f815b06e458a5854150f8e6f0e61618d41b"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a96198d5d26f40557d986c1253bfe0e02d18c9d9b93cf389daf1a3c9f7c755fa"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddae504cfb556fe220efae65e35be63cd11e3c314b202723fc2119ce19f0ca2e"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bce00f3b1f7f644faae89677ca68645ed5365f1c7f874fdd5ebf730a69640d38"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:eee5ff934b0c9f4537ff9596169d56cab1890918004791a7a06b879b3ba2a7ef"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4ea99e64b2ad2635e0f0597b63f5ea6c374791ff2fa81cdd4bad8ed9f047f56f"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:5c667b383529520b8dd6bd496fc318678320cb2a6062fdfe6d3618da6b8790f6"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d920401941cb898ef089422e889759dd403309eb370d0e54f1bdf6ca07fef603"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:501a1576716032cc6d48c7c47bcdc42d682273415a8f2908e7e72cb4625801f3"}, + {file = "yarl-1.12.1-cp313-cp313-win32.whl", hash = "sha256:24416bb5e221e29ddf8aac5b97e94e635ca2c5be44a1617ad6fe32556df44294"}, + {file = "yarl-1.12.1-cp313-cp313-win_amd64.whl", hash = "sha256:71af3766bb46738d12cc288d9b8de7ef6f79c31fd62757e2b8a505fe3680b27f"}, + {file = "yarl-1.12.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c924deab8105f86980983eced740433fb7554a7f66db73991affa4eda99d5402"}, + {file = "yarl-1.12.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5fb475a4cdde582c9528bb412b98f899680492daaba318231e96f1a0a1bb0d53"}, + {file = "yarl-1.12.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:36ee0115b9edca904153a66bb74a9ff1ce38caff015de94eadfb9ba8e6ecd317"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2631c9d7386bd2d4ce24ecc6ebf9ae90b3efd713d588d90504eaa77fec4dba01"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2376d8cf506dffd0e5f2391025ae8675b09711016656590cb03b55894161fcfa"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:24197ba3114cc85ddd4091e19b2ddc62650f2e4a899e51b074dfd52d56cf8c72"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfdf419bf5d3644f94cd7052954fc233522f5a1b371fc0b00219ebd9c14d5798"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8112f640a4f7e7bf59f7cabf0d47a29b8977528c521d73a64d5cc9e99e48a174"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:607d12f0901f6419a8adceb139847c42c83864b85371f58270e42753f9780fa6"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:664380c7ed524a280b6a2d5d9126389c3e96cd6e88986cdb42ca72baa27421d6"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:0d0a5e87bc48d76dfcfc16295201e9812d5f33d55b4a0b7cad1025b92bf8b91b"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:eff6bac402719c14e17efe845d6b98593c56c843aca6def72080fbede755fd1f"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:22839d1d1eab9e4b427828a88a22beb86f67c14d8ff81175505f1cc8493f3500"}, + {file = "yarl-1.12.1-cp38-cp38-win32.whl", hash = "sha256:717f185086bb9d817d4537dd18d5df5d657598cd00e6fc22e4d54d84de266c1d"}, + {file = "yarl-1.12.1-cp38-cp38-win_amd64.whl", hash = "sha256:71978ba778948760cff528235c951ea0ef7a4f9c84ac5a49975f8540f76c3f73"}, + {file = "yarl-1.12.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:30ffc046ebddccb3c4cac72c1a3e1bc343492336f3ca86d24672e90ccc5e788a"}, + {file = "yarl-1.12.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f10954b233d4df5cc3137ffa5ced97f8894152df817e5d149bf05a0ef2ab8134"}, + {file = "yarl-1.12.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2e912b282466444023610e4498e3795c10e7cfd641744524876239fcf01d538d"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6af871f70cfd5b528bd322c65793b5fd5659858cdfaa35fbe563fb99b667ed1f"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c3e4e1f7b08d1ec6b685ccd3e2d762219c550164fbf524498532e39f9413436e"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9a7ee79183f0b17dcede8b6723e7da2ded529cf159a878214be9a5d3098f5b1e"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96c8ff1e1dd680e38af0887927cab407a4e51d84a5f02ae3d6eb87233036c763"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e9905fc2dc1319e4c39837b906a024cf71b1261cc66b0cd89678f779c0c61f5"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:01549468858b87d36f967c97d02e6e54106f444aeb947ed76f8f71f85ed07cec"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:96b34830bd6825ca0220bf005ea99ac83eb9ce51301ddb882dcf613ae6cd95fb"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:2aee7594d2c2221c717a8e394bbed4740029df4c0211ceb0f04815686e99c795"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:15871130439ad10abb25a4631120d60391aa762b85fcab971411e556247210a0"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:838dde2cb570cfbb4cab8a876a0974e8b90973ea40b3ac27a79b8a74c8a2db15"}, + {file = "yarl-1.12.1-cp39-cp39-win32.whl", hash = "sha256:eacbcf30efaca7dc5cb264228ffecdb95fdb1e715b1ec937c0ce6b734161e0c8"}, + {file = "yarl-1.12.1-cp39-cp39-win_amd64.whl", hash = "sha256:76a59d1b63de859398bc7764c860a769499511463c1232155061fe0147f13e01"}, + {file = "yarl-1.12.1-py3-none-any.whl", hash = "sha256:dc3192a81ecd5ff954cecd690327badd5a84d00b877e1573f7c9097ce13e5bfb"}, + {file = "yarl-1.12.1.tar.gz", hash = "sha256:5b860055199aec8d6fe4dcee3c5196ce506ca198a50aab0059ffd26e8e815828"}, ] [package.dependencies] @@ -3708,18 +3808,22 @@ multidict = ">=4.0" [[package]] name = "zipp" -version = "3.19.2" +version = "3.20.2" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false python-versions = ">=3.8" files = [ - {file = "zipp-3.19.2-py3-none-any.whl", hash = "sha256:f091755f667055f2d02b32c53771a7a6c8b47e1fdbc4b72a8b9072b3eef8015c"}, - {file = "zipp-3.19.2.tar.gz", hash = "sha256:bf1dcf6450f873a13e952a29504887c89e6de7506209e5b1bcc3460135d4de19"}, + {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, + {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, ] [package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-ignore-flaky"] +type = ["pytest-mypy"] [extras] accelerate = ["accelerate"] @@ -3734,4 +3838,4 @@ torch = ["torch"] [metadata] lock-version = "2.0" python-versions = ">=3.9,<3.13" -content-hash = "0ff7a244a409b616490cb238995bbe28dedf67ccb8855edafa2b71ee2e777dbd" +content-hash = "be5965e4e13fed32347983dba1690661f3e59a50d59fa26d4f2a8345418dd5a1" diff --git a/server/pyproject.toml b/server/pyproject.toml index 9be06fa5..ef67deb1 100644 --- a/server/pyproject.toml +++ b/server/pyproject.toml @@ -23,10 +23,10 @@ opentelemetry-api = "^1.25.0" opentelemetry-exporter-otlp = "^1.25.0" opentelemetry-instrumentation-grpc = "^0.46b0" hf-transfer = "^0.1.2" -sentencepiece = "^0.1.97" -tokenizers = "^0.19.1" +sentencepiece = "^0.2" +tokenizers = "^0.20" huggingface-hub = "^0.23" -transformers = "^4.43" +transformers = "^4.45" einops = "^0.6.1" texttable = { version = "^1.6.7", optional = true } datasets = { version = "^2.14.0", optional = true } diff --git a/server/requirements_cuda.txt b/server/requirements_cuda.txt index eb521bd6..5de75b6b 100644 --- a/server/requirements_cuda.txt +++ b/server/requirements_cuda.txt @@ -1,19 +1,19 @@ -certifi==2024.7.4 ; python_version >= "3.9" and python_version < "3.13" +certifi==2024.8.30 ; python_version >= "3.9" and python_version < "3.13" charset-normalizer==3.3.2 ; python_version >= "3.9" and python_version < "3.13" click==8.1.7 ; python_version >= "3.9" and python_version < "3.13" colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and (sys_platform == "win32" or platform_system == "Windows") deprecated==1.2.14 ; python_version >= "3.9" and python_version < "3.13" einops==0.6.1 ; python_version >= "3.9" and python_version < "3.13" -filelock==3.15.4 ; python_version >= "3.9" and python_version < "3.13" -fsspec==2024.5.0 ; python_version >= "3.9" and python_version < "3.13" -googleapis-common-protos==1.63.2 ; python_version >= "3.9" and python_version < "3.13" +filelock==3.16.1 ; python_version >= "3.9" and python_version < "3.13" +fsspec==2024.6.1 ; python_version >= "3.9" and python_version < "3.13" +googleapis-common-protos==1.65.0 ; python_version >= "3.9" and python_version < "3.13" grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13" -grpcio-reflection==1.62.2 ; python_version >= "3.9" and python_version < "3.13" -grpcio-status==1.62.2 ; python_version >= "3.9" and python_version < "3.13" -grpcio==1.65.1 ; python_version >= "3.9" and python_version < "3.13" +grpcio-reflection==1.62.3 ; python_version >= "3.9" and python_version < "3.13" +grpcio-status==1.62.3 ; python_version >= "3.9" and python_version < "3.13" +grpcio==1.66.1 ; python_version >= "3.9" and python_version < "3.13" hf-transfer==0.1.8 ; python_version >= "3.9" and python_version < "3.13" huggingface-hub==0.23.5 ; python_version >= "3.9" and python_version < "3.13" -idna==3.7 ; python_version >= "3.9" and python_version < "3.13" +idna==3.10 ; python_version >= "3.9" and python_version < "3.13" importlib-metadata==7.1.0 ; python_version >= "3.9" and python_version < "3.13" loguru==0.6.0 ; python_version >= "3.9" and python_version < "3.13" markdown-it-py==3.0.0 ; python_version >= "3.9" and python_version < "3.13" @@ -32,23 +32,23 @@ opentelemetry-semantic-conventions==0.46b0 ; python_version >= "3.9" and python_ packaging==24.1 ; python_version >= "3.9" and python_version < "3.13" pillow==10.4.0 ; python_version >= "3.9" and python_version < "3.13" prometheus-client==0.20.0 ; python_version >= "3.9" and python_version < "3.13" -protobuf==4.25.3 ; python_version >= "3.9" and python_version < "3.13" +protobuf==4.25.5 ; python_version >= "3.9" and python_version < "3.13" py-cpuinfo==9.0.0 ; python_version >= "3.9" and python_version < "3.13" pygments==2.18.0 ; python_version >= "3.9" and python_version < "3.13" -pyyaml==6.0.1 ; python_version >= "3.9" and python_version < "3.13" -regex==2024.5.15 ; python_version >= "3.9" and python_version < "3.13" +pyyaml==6.0.2 ; python_version >= "3.9" and python_version < "3.13" +regex==2024.9.11 ; python_version >= "3.9" and python_version < "3.13" requests==2.32.3 ; python_version >= "3.9" and python_version < "3.13" -rich==13.7.1 ; python_version >= "3.9" and python_version < "3.13" -safetensors==0.4.3 ; python_version >= "3.9" and python_version < "3.13" +rich==13.8.1 ; python_version >= "3.9" and python_version < "3.13" +safetensors==0.4.5 ; python_version >= "3.9" and python_version < "3.13" scipy==1.13.1 ; python_version >= "3.9" and python_version < "3.13" -sentencepiece==0.1.99 ; python_version >= "3.9" and python_version < "3.13" -setuptools==71.1.0 ; python_version >= "3.9" and python_version < "3.13" -tokenizers==0.19.1 ; python_version >= "3.9" and python_version < "3.13" -tqdm==4.66.4 ; python_version >= "3.9" and python_version < "3.13" -transformers==4.43.1 ; python_version >= "3.9" and python_version < "3.13" +sentencepiece==0.2.0 ; python_version >= "3.9" and python_version < "3.13" +setuptools==75.1.0 ; python_version >= "3.9" and python_version < "3.13" +tokenizers==0.20.0 ; python_version >= "3.9" and python_version < "3.13" +tqdm==4.66.5 ; python_version >= "3.9" and python_version < "3.13" +transformers==4.45.0 ; python_version >= "3.9" and python_version < "3.13" typer==0.6.1 ; python_version >= "3.9" and python_version < "3.13" typing-extensions==4.12.2 ; python_version >= "3.9" and python_version < "3.13" -urllib3==2.2.2 ; python_version >= "3.9" and python_version < "3.13" +urllib3==2.2.3 ; python_version >= "3.9" and python_version < "3.13" win32-setctime==1.1.0 ; python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32" wrapt==1.16.0 ; python_version >= "3.9" and python_version < "3.13" -zipp==3.19.2 ; python_version >= "3.9" and python_version < "3.13" +zipp==3.20.2 ; python_version >= "3.9" and python_version < "3.13" diff --git a/server/requirements_intel.txt b/server/requirements_intel.txt index eb521bd6..5de75b6b 100644 --- a/server/requirements_intel.txt +++ b/server/requirements_intel.txt @@ -1,19 +1,19 @@ -certifi==2024.7.4 ; python_version >= "3.9" and python_version < "3.13" +certifi==2024.8.30 ; python_version >= "3.9" and python_version < "3.13" charset-normalizer==3.3.2 ; python_version >= "3.9" and python_version < "3.13" click==8.1.7 ; python_version >= "3.9" and python_version < "3.13" colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and (sys_platform == "win32" or platform_system == "Windows") deprecated==1.2.14 ; python_version >= "3.9" and python_version < "3.13" einops==0.6.1 ; python_version >= "3.9" and python_version < "3.13" -filelock==3.15.4 ; python_version >= "3.9" and python_version < "3.13" -fsspec==2024.5.0 ; python_version >= "3.9" and python_version < "3.13" -googleapis-common-protos==1.63.2 ; python_version >= "3.9" and python_version < "3.13" +filelock==3.16.1 ; python_version >= "3.9" and python_version < "3.13" +fsspec==2024.6.1 ; python_version >= "3.9" and python_version < "3.13" +googleapis-common-protos==1.65.0 ; python_version >= "3.9" and python_version < "3.13" grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13" -grpcio-reflection==1.62.2 ; python_version >= "3.9" and python_version < "3.13" -grpcio-status==1.62.2 ; python_version >= "3.9" and python_version < "3.13" -grpcio==1.65.1 ; python_version >= "3.9" and python_version < "3.13" +grpcio-reflection==1.62.3 ; python_version >= "3.9" and python_version < "3.13" +grpcio-status==1.62.3 ; python_version >= "3.9" and python_version < "3.13" +grpcio==1.66.1 ; python_version >= "3.9" and python_version < "3.13" hf-transfer==0.1.8 ; python_version >= "3.9" and python_version < "3.13" huggingface-hub==0.23.5 ; python_version >= "3.9" and python_version < "3.13" -idna==3.7 ; python_version >= "3.9" and python_version < "3.13" +idna==3.10 ; python_version >= "3.9" and python_version < "3.13" importlib-metadata==7.1.0 ; python_version >= "3.9" and python_version < "3.13" loguru==0.6.0 ; python_version >= "3.9" and python_version < "3.13" markdown-it-py==3.0.0 ; python_version >= "3.9" and python_version < "3.13" @@ -32,23 +32,23 @@ opentelemetry-semantic-conventions==0.46b0 ; python_version >= "3.9" and python_ packaging==24.1 ; python_version >= "3.9" and python_version < "3.13" pillow==10.4.0 ; python_version >= "3.9" and python_version < "3.13" prometheus-client==0.20.0 ; python_version >= "3.9" and python_version < "3.13" -protobuf==4.25.3 ; python_version >= "3.9" and python_version < "3.13" +protobuf==4.25.5 ; python_version >= "3.9" and python_version < "3.13" py-cpuinfo==9.0.0 ; python_version >= "3.9" and python_version < "3.13" pygments==2.18.0 ; python_version >= "3.9" and python_version < "3.13" -pyyaml==6.0.1 ; python_version >= "3.9" and python_version < "3.13" -regex==2024.5.15 ; python_version >= "3.9" and python_version < "3.13" +pyyaml==6.0.2 ; python_version >= "3.9" and python_version < "3.13" +regex==2024.9.11 ; python_version >= "3.9" and python_version < "3.13" requests==2.32.3 ; python_version >= "3.9" and python_version < "3.13" -rich==13.7.1 ; python_version >= "3.9" and python_version < "3.13" -safetensors==0.4.3 ; python_version >= "3.9" and python_version < "3.13" +rich==13.8.1 ; python_version >= "3.9" and python_version < "3.13" +safetensors==0.4.5 ; python_version >= "3.9" and python_version < "3.13" scipy==1.13.1 ; python_version >= "3.9" and python_version < "3.13" -sentencepiece==0.1.99 ; python_version >= "3.9" and python_version < "3.13" -setuptools==71.1.0 ; python_version >= "3.9" and python_version < "3.13" -tokenizers==0.19.1 ; python_version >= "3.9" and python_version < "3.13" -tqdm==4.66.4 ; python_version >= "3.9" and python_version < "3.13" -transformers==4.43.1 ; python_version >= "3.9" and python_version < "3.13" +sentencepiece==0.2.0 ; python_version >= "3.9" and python_version < "3.13" +setuptools==75.1.0 ; python_version >= "3.9" and python_version < "3.13" +tokenizers==0.20.0 ; python_version >= "3.9" and python_version < "3.13" +tqdm==4.66.5 ; python_version >= "3.9" and python_version < "3.13" +transformers==4.45.0 ; python_version >= "3.9" and python_version < "3.13" typer==0.6.1 ; python_version >= "3.9" and python_version < "3.13" typing-extensions==4.12.2 ; python_version >= "3.9" and python_version < "3.13" -urllib3==2.2.2 ; python_version >= "3.9" and python_version < "3.13" +urllib3==2.2.3 ; python_version >= "3.9" and python_version < "3.13" win32-setctime==1.1.0 ; python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32" wrapt==1.16.0 ; python_version >= "3.9" and python_version < "3.13" -zipp==3.19.2 ; python_version >= "3.9" and python_version < "3.13" +zipp==3.20.2 ; python_version >= "3.9" and python_version < "3.13" diff --git a/server/requirements_rocm.txt b/server/requirements_rocm.txt index eb521bd6..5de75b6b 100644 --- a/server/requirements_rocm.txt +++ b/server/requirements_rocm.txt @@ -1,19 +1,19 @@ -certifi==2024.7.4 ; python_version >= "3.9" and python_version < "3.13" +certifi==2024.8.30 ; python_version >= "3.9" and python_version < "3.13" charset-normalizer==3.3.2 ; python_version >= "3.9" and python_version < "3.13" click==8.1.7 ; python_version >= "3.9" and python_version < "3.13" colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and (sys_platform == "win32" or platform_system == "Windows") deprecated==1.2.14 ; python_version >= "3.9" and python_version < "3.13" einops==0.6.1 ; python_version >= "3.9" and python_version < "3.13" -filelock==3.15.4 ; python_version >= "3.9" and python_version < "3.13" -fsspec==2024.5.0 ; python_version >= "3.9" and python_version < "3.13" -googleapis-common-protos==1.63.2 ; python_version >= "3.9" and python_version < "3.13" +filelock==3.16.1 ; python_version >= "3.9" and python_version < "3.13" +fsspec==2024.6.1 ; python_version >= "3.9" and python_version < "3.13" +googleapis-common-protos==1.65.0 ; python_version >= "3.9" and python_version < "3.13" grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13" -grpcio-reflection==1.62.2 ; python_version >= "3.9" and python_version < "3.13" -grpcio-status==1.62.2 ; python_version >= "3.9" and python_version < "3.13" -grpcio==1.65.1 ; python_version >= "3.9" and python_version < "3.13" +grpcio-reflection==1.62.3 ; python_version >= "3.9" and python_version < "3.13" +grpcio-status==1.62.3 ; python_version >= "3.9" and python_version < "3.13" +grpcio==1.66.1 ; python_version >= "3.9" and python_version < "3.13" hf-transfer==0.1.8 ; python_version >= "3.9" and python_version < "3.13" huggingface-hub==0.23.5 ; python_version >= "3.9" and python_version < "3.13" -idna==3.7 ; python_version >= "3.9" and python_version < "3.13" +idna==3.10 ; python_version >= "3.9" and python_version < "3.13" importlib-metadata==7.1.0 ; python_version >= "3.9" and python_version < "3.13" loguru==0.6.0 ; python_version >= "3.9" and python_version < "3.13" markdown-it-py==3.0.0 ; python_version >= "3.9" and python_version < "3.13" @@ -32,23 +32,23 @@ opentelemetry-semantic-conventions==0.46b0 ; python_version >= "3.9" and python_ packaging==24.1 ; python_version >= "3.9" and python_version < "3.13" pillow==10.4.0 ; python_version >= "3.9" and python_version < "3.13" prometheus-client==0.20.0 ; python_version >= "3.9" and python_version < "3.13" -protobuf==4.25.3 ; python_version >= "3.9" and python_version < "3.13" +protobuf==4.25.5 ; python_version >= "3.9" and python_version < "3.13" py-cpuinfo==9.0.0 ; python_version >= "3.9" and python_version < "3.13" pygments==2.18.0 ; python_version >= "3.9" and python_version < "3.13" -pyyaml==6.0.1 ; python_version >= "3.9" and python_version < "3.13" -regex==2024.5.15 ; python_version >= "3.9" and python_version < "3.13" +pyyaml==6.0.2 ; python_version >= "3.9" and python_version < "3.13" +regex==2024.9.11 ; python_version >= "3.9" and python_version < "3.13" requests==2.32.3 ; python_version >= "3.9" and python_version < "3.13" -rich==13.7.1 ; python_version >= "3.9" and python_version < "3.13" -safetensors==0.4.3 ; python_version >= "3.9" and python_version < "3.13" +rich==13.8.1 ; python_version >= "3.9" and python_version < "3.13" +safetensors==0.4.5 ; python_version >= "3.9" and python_version < "3.13" scipy==1.13.1 ; python_version >= "3.9" and python_version < "3.13" -sentencepiece==0.1.99 ; python_version >= "3.9" and python_version < "3.13" -setuptools==71.1.0 ; python_version >= "3.9" and python_version < "3.13" -tokenizers==0.19.1 ; python_version >= "3.9" and python_version < "3.13" -tqdm==4.66.4 ; python_version >= "3.9" and python_version < "3.13" -transformers==4.43.1 ; python_version >= "3.9" and python_version < "3.13" +sentencepiece==0.2.0 ; python_version >= "3.9" and python_version < "3.13" +setuptools==75.1.0 ; python_version >= "3.9" and python_version < "3.13" +tokenizers==0.20.0 ; python_version >= "3.9" and python_version < "3.13" +tqdm==4.66.5 ; python_version >= "3.9" and python_version < "3.13" +transformers==4.45.0 ; python_version >= "3.9" and python_version < "3.13" typer==0.6.1 ; python_version >= "3.9" and python_version < "3.13" typing-extensions==4.12.2 ; python_version >= "3.9" and python_version < "3.13" -urllib3==2.2.2 ; python_version >= "3.9" and python_version < "3.13" +urllib3==2.2.3 ; python_version >= "3.9" and python_version < "3.13" win32-setctime==1.1.0 ; python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32" wrapt==1.16.0 ; python_version >= "3.9" and python_version < "3.13" -zipp==3.19.2 ; python_version >= "3.9" and python_version < "3.13" +zipp==3.20.2 ; python_version >= "3.9" and python_version < "3.13" diff --git a/server/text_generation_server/models/__init__.py b/server/text_generation_server/models/__init__.py index 99a6ba76..4dabf71d 100644 --- a/server/text_generation_server/models/__init__.py +++ b/server/text_generation_server/models/__init__.py @@ -76,6 +76,7 @@ FLASH_ATTENTION = True try: from text_generation_server.models.flash_causal_lm import FlashCausalLM from text_generation_server.models.vlm_causal_lm import VlmCausalLM + from text_generation_server.models.mllama_causal_lm import MllamaCausalLM from text_generation_server.models.custom_modeling.flash_deepseek_v2_modeling import ( FlashDeepseekV2ForCausalLM, DeepseekV2Config, @@ -112,7 +113,11 @@ try: from text_generation_server.models.custom_modeling.flash_phi_modeling import ( FlashPhiForCausalLM, ) - from text_generation_server.models.idefics import IDEFICSSharded + from text_generation_server.models.idefics_causal_lm import IdeficsCausalLM + from text_generation_server.models.mllama_causal_lm import MllamaCausalLMBatch + from text_generation_server.models.custom_modeling.mllama import ( + MllamaForConditionalGeneration, + ) from text_generation_server.models.custom_modeling.llava_next import ( LlavaNextForConditionalGeneration, ) @@ -149,7 +154,7 @@ except ImportError as e: if FLASH_ATTENTION: __all__.append(FlashCausalLM) - __all__.append(IDEFICSSharded) + __all__.append(IdeficsCausalLM) MAMBA_AVAILABLE = True try: @@ -316,6 +321,12 @@ class ModelType(enum.Enum): "url": "https://huggingface.co/HuggingFaceM4/idefics-9b", "multimodal": True, } + MLLAMA = { + "type": "mllama", + "name": "Mllama", + "url": "https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct", + "multimodal": True, + } __GLOBALS = locals() @@ -1116,7 +1127,7 @@ def get_model( ) if model_type == IDEFICS: if FLASH_ATTENTION: - return IDEFICSSharded( + return IdeficsCausalLM( model_id, revision, quantize=quantize, @@ -1126,6 +1137,22 @@ def get_model( ) else: raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics")) + if model_type == MLLAMA: + if FLASH_ATTENTION: + return MllamaCausalLM( + model_id=model_id, + model_class=MllamaForConditionalGeneration, + batch_class=MllamaCausalLMBatch, + revision=revision, + quantize=quantize, + speculator=speculator, + dtype=dtype, + default_dtype=torch.bfloat16, + trust_remote_code=trust_remote_code, + lora_adapter_ids=lora_adapter_ids, + ) + else: + raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Mllama")) if model_type == IDEFICS2: if FLASH_ATTENTION: return VlmCausalLM( diff --git a/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py b/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py index 358fbbaa..c9ec70cc 100644 --- a/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py @@ -450,6 +450,7 @@ class FlashLlamaLayer(nn.Module): seqlen, max_s, adapter_data, + cross_attention_states, ): normed_hidden_states, res = self.input_layernorm(hidden_states, residual) @@ -487,6 +488,7 @@ class FlashLlamaModel(torch.nn.Module): # Skip fp8 quant for first and last layers self.layers = nn.ModuleList() + self.cross_attention_layers = getattr(config, "cross_attention_layers", []) with no_fp8(weights): self.layers.append( FlashLlamaLayer( @@ -499,22 +501,38 @@ class FlashLlamaModel(torch.nn.Module): ) ) - self.layers.extend( - [ - FlashLlamaLayer( - index=layer_id, - prefix=( - f"model.layers.{layer_id}" - if not prefix - else f"{prefix}.model.layers.{layer_id}" - ), - config=config, - weights=weights, + # Skip first and last layers + for layer_id in range(1, config.num_hidden_layers - 1): + if layer_id in self.cross_attention_layers: + from text_generation_server.models.custom_modeling.mllama import ( + FlashLlamaCrossLayer, + ) + + self.layers.append( + FlashLlamaCrossLayer( + index=layer_id, + prefix=( + f"model.layers.{layer_id}" + if not prefix + else f"{prefix}.model.layers.{layer_id}" + ), + config=config, + weights=weights, + ) + ) + else: + self.layers.append( + FlashLlamaLayer( + index=layer_id, + prefix=( + f"model.layers.{layer_id}" + if not prefix + else f"{prefix}.model.layers.{layer_id}" + ), + config=config, + weights=weights, + ) ) - # Skip first and last layers - for layer_id in range(1, config.num_hidden_layers - 1) - ] - ) with no_fp8(weights): last_layer_id = config.num_hidden_layers - 1 @@ -556,6 +574,7 @@ class FlashLlamaModel(torch.nn.Module): true_max_s: int, prefill_cache_indices: Optional[torch.Tensor], adapter_data, + cross_attention_states=None, ) -> torch.Tensor: hidden_states = inputs_embeds @@ -579,6 +598,7 @@ class FlashLlamaModel(torch.nn.Module): seqlen, max_s, adapter_data, + cross_attention_states, ) hidden_states, _ = self.norm(hidden_states, residual) @@ -625,6 +645,7 @@ class FlashLlamaForCausalLM(torch.nn.Module): prefill_cache_indices: Optional[torch.Tensor] = None, lm_head_indices: Optional[torch.Tensor] = None, adapter_data: Optional[torch.Tensor] = None, + cross_attention_states=None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: inputs_embeds = self.embed_tokens(input_ids) hidden_states = self.model( @@ -639,6 +660,7 @@ class FlashLlamaForCausalLM(torch.nn.Module): true_max_s=max_s, prefill_cache_indices=prefill_cache_indices, adapter_data=adapter_data, + cross_attention_states=cross_attention_states, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] diff --git a/server/text_generation_server/models/custom_modeling/flash_pali_gemma_modeling.py b/server/text_generation_server/models/custom_modeling/flash_pali_gemma_modeling.py index d044b492..0024f2bb 100644 --- a/server/text_generation_server/models/custom_modeling/flash_pali_gemma_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_pali_gemma_modeling.py @@ -48,7 +48,7 @@ class PaliGemmaForConditionalGeneration(nn.Module): bias=True, ) - self.vocab_size = config.vocab_size + self.vocab_size = config.text_config.vocab_size self.config = config text_config = config.text_config diff --git a/server/text_generation_server/models/custom_modeling/mllama.py b/server/text_generation_server/models/custom_modeling/mllama.py new file mode 100644 index 00000000..73536bd6 --- /dev/null +++ b/server/text_generation_server/models/custom_modeling/mllama.py @@ -0,0 +1,995 @@ +# coding=utf-8 +# Copyright 2024 the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch Mllama model.""" + +from typing import Optional, Tuple, List + +import torch +import torch.utils.checkpoint +from torch import nn +import flash_attn_2_cuda + +from transformers.activations import ACT2FN +import torch.nn.functional as F + +from text_generation_server.layers import ( + TensorParallelColumnLinear, + TensorParallelEmbedding, + TensorParallelRowLinear, + FastLinear, +) +from text_generation_server.layers.attention import ( + Seqlen, +) +from text_generation_server.models.custom_modeling.flash_llama_modeling import ( + FlashLlamaForCausalLM, +) + + +def _prepare_aspect_ratio_attention_mask( + aspect_ratio_mask: torch.Tensor, + num_patches: int, + target_length: int, + dtype: torch.dtype, +) -> torch.Tensor: + # Expand aspect ratio mask to target_length + batch_size, max_num_tiles = aspect_ratio_mask.shape + attention_mask = aspect_ratio_mask.view(batch_size, max_num_tiles, 1, 1).to(dtype) + attention_mask = attention_mask.repeat(1, 1, target_length, 1) + + # Mask padding patches + pad_patches = target_length - num_patches + attention_mask[:, :, -pad_patches:] = 0 + + # Invert the mask (0 -> 1, 1 -> 0) + attention_mask = 1 - attention_mask + + # Reshape to 2D and create 4D attention mask + # (batch_size, 1, max_num_tiles * target_length, max_num_tiles * target_length) + attention_mask = attention_mask.reshape( + batch_size, max_num_tiles * target_length, 1 + ) + attention_mask = ( + attention_mask @ attention_mask.transpose(-1, -2) * torch.finfo(dtype).min + ) + attention_mask = attention_mask.unsqueeze(1) + + return attention_mask + + +# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position +def _prepare_4d_causal_attention_mask_with_cache_position( + attention_mask: torch.Tensor, + sequence_length: int, + target_length: int, + dtype: torch.dtype, + device: torch.device, + min_dtype: float, + cache_position: torch.Tensor, + batch_size: int, +): + """ + Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape + `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. + + Args: + attention_mask (`torch.Tensor`): + A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. + sequence_length (`int`): + The sequence length being processed. + target_length (`int`): + The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. + dtype (`torch.dtype`): + The dtype to use for the 4D attention mask. + device (`torch.device`): + The device to plcae the 4D attention mask on. + min_dtype (`float`): + The minimum value representable with the dtype `dtype`. + cache_position (`torch.Tensor`): + Indices depicting the position of the input sequence tokens in the sequence. + batch_size (`torch.Tensor`): + Batch size. + """ + if attention_mask is not None and attention_mask.dim() == 4: + # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. + causal_mask = attention_mask + else: + causal_mask = torch.full( + (sequence_length, target_length), + fill_value=min_dtype, + dtype=dtype, + device=device, + ) + if sequence_length != 1: + causal_mask = torch.triu(causal_mask, diagonal=1) + causal_mask *= torch.arange( + target_length, device=device + ) > cache_position.reshape(-1, 1) + causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) + if attention_mask is not None: + causal_mask = ( + causal_mask.clone() + ) # copy to contiguous memory for in-place edit + mask_length = attention_mask.shape[-1] + padding_mask = ( + causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] + ) + padding_mask = padding_mask == 0 + causal_mask[:, :, :, :mask_length] = causal_mask[ + :, :, :, :mask_length + ].masked_fill(padding_mask, min_dtype) + + return causal_mask + + +def _prepare_cross_attention_mask( + cross_attention_mask: torch.Tensor, + num_vision_tokens: int, + dtype: str, +) -> Tuple[torch.Tensor, torch.Tensor]: + # reshape so it can be used by attn module + batch_size, text_total_length, *_ = cross_attention_mask.shape + cross_attention_mask = cross_attention_mask.repeat_interleave( + num_vision_tokens, dim=3 + ) + cross_attention_mask = cross_attention_mask.view(batch_size, text_total_length, -1) + cross_attention_mask = cross_attention_mask.unsqueeze(1) + + # invert the mask + inverted_cross_attn_mask = (1.0 - cross_attention_mask).to(dtype) + cross_attention_mask = inverted_cross_attn_mask.masked_fill( + inverted_cross_attn_mask.to(torch.bool), torch.finfo(dtype).min + ) + + # apply full-row bias, which return 4D tensor of shape [B, H, S1, 1] where value is 0 if the a full row in cross attn mask's + # last dimension contains negative infinity values, otherwise it's 1 + negative_inf_value = torch.finfo(dtype).min + full_text_row_masked_out_mask = ( + (cross_attention_mask != negative_inf_value) + .any(dim=-1) + .type_as(cross_attention_mask)[..., None] + ) + cross_attention_mask *= full_text_row_masked_out_mask + + return cross_attention_mask, full_text_row_masked_out_mask + + +# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->MllamaVision +class MllamaVisionMLP(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + self.config = config + self.activation_fn = ACT2FN[config.hidden_act] + self.fc1 = TensorParallelColumnLinear.load( + prefix=f"{prefix}.fc1", weights=weights, config=config, bias=True + ) + self.fc2 = TensorParallelRowLinear.load( + prefix=f"{prefix}.fc2", weights=weights, config=config, bias=True + ) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.fc1(hidden_states) + hidden_states = self.activation_fn(hidden_states) + hidden_states = self.fc2(hidden_states) + return hidden_states + + +class MllamaVisionSdpaAttention(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + + self.embed_dim = config.hidden_size + self.head_dim = config.hidden_size // config.attention_heads + self.num_heads = config.attention_heads // weights.process_group.size() + + self.qkv_proj = TensorParallelColumnLinear.load_multi( + config, + prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], + dim=0, + weights=weights, + bias=False, + ) + self.o_proj = TensorParallelRowLinear.load( + config, + prefix=f"{prefix}.o_proj", + weights=weights, + bias=False, + ) + + def forward( + self, + hidden_state: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + qkv = self.qkv_proj(hidden_state) + query, key, value = qkv.split( + [ + self.head_dim * self.num_heads, + self.head_dim * self.num_heads, + self.head_dim * self.num_heads, + ], + dim=2, + ) + + batch_size, q_seq_len, _ = query.shape + _, kv_seq_len, _ = key.shape + + query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim) + key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim) + value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim) + + query = query.transpose(1, 2) + key = key.transpose(1, 2) + value = value.transpose(1, 2) + + attn_output = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.reshape(batch_size, q_seq_len, -1) + + output = self.o_proj(attn_output) + return output + + +class MllamaVisionEncoderLayer(nn.Module): + def __init__(self, *, prefix, config, weights, is_gated: bool): + super().__init__() + + self.hidden_size = config.hidden_size + self.num_attention_heads = config.attention_heads + self.is_gated = is_gated + self.intermediate_size = config.intermediate_size + + self.self_attn = MllamaVisionSdpaAttention( + prefix=f"{prefix}.self_attn", config=config, weights=weights + ) + self.mlp = MllamaVisionMLP( + prefix=f"{prefix}.mlp", config=config, weights=weights + ) + + self.input_layernorm = nn.LayerNorm.load( + prefix=f"{prefix}.input_layernorm", weights=weights, eps=1e-05 + ) + self.post_attention_layernorm = nn.LayerNorm.load( + prefix=f"{prefix}.post_attention_layernorm", weights=weights, eps=1e-05 + ) + + # there used to be an if else here, no code path + if is_gated: + self.gate_attn = nn.Parameter( + weights.get_tensor(f"{prefix}.gate_attn"), requires_grad=False + ) + self.gate_ffn = nn.Parameter( + weights.get_tensor(f"{prefix}.gate_ffn"), requires_grad=False + ) + + def forward( + self, + hidden_state: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + ): + # Self Attention + residual = hidden_state + hidden_state = self.input_layernorm(hidden_state) + hidden_state = self.self_attn(hidden_state, attention_mask=attention_mask) + gate_attn = 1 if not self.is_gated else self.gate_attn.tanh() + hidden_state = residual + gate_attn * hidden_state + + # Feed forward + residual = hidden_state + hidden_state = self.post_attention_layernorm(hidden_state) + hidden_state = self.mlp(hidden_state) + gate_ffn = 1 if not self.is_gated else self.gate_ffn.tanh() + hidden_state = residual + gate_ffn * hidden_state + return hidden_state + + +class MllamaVisionEncoder(nn.Module): + def __init__(self, *, prefix, config, weights, is_gated: bool, num_layers: int): + super().__init__() + self.config = config + self.layers = [ + MllamaVisionEncoderLayer( + prefix=f"{prefix}.layers.{i}", + config=config, + weights=weights, + is_gated=is_gated, + ) + for i in range(num_layers) + ] + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + ): + encoder_states = [hidden_states] + for encoder_layer in self.layers: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + ) + + hidden_states = layer_outputs + encoder_states.append(hidden_states) + + return hidden_states, encoder_states + + +class MllamaPrecomputedAspectRatioEmbedding(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + self.max_num_tiles = config.max_num_tiles + self.hidden_size = config.hidden_size + self.max_aspect_ratio_id = config.max_aspect_ratio_id + + self.embedding = TensorParallelEmbedding( + prefix=f"{prefix}.embedding", weights=weights + ) + self.gate = nn.Parameter( + weights.get_tensor(f"{prefix}.gate"), requires_grad=False + ) + + def forward( + self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor + ) -> torch.Tensor: + embeddings = self.embedding(aspect_ratio_ids) + embeddings = embeddings.reshape(-1, self.max_num_tiles, 1, self.hidden_size) + + # Always gated. + embeddings = embeddings * self.gate.tanh() + + hidden_state = hidden_state + embeddings + return hidden_state + + +class MllamaPrecomputedPositionEmbedding(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + self.max_num_tiles = config.max_num_tiles + self.max_aspect_ratio_id = config.max_aspect_ratio_id + self.num_patches = (config.image_size // config.patch_size) ** 2 + 1 + self.hidden_size = config.hidden_size + self.scale = config.hidden_size**-0.5 + + self.gate = nn.Parameter( + weights.get_tensor(f"{prefix}.gate"), requires_grad=False + ) + + # position embedding + embedding = nn.Parameter( + weights.get_tensor(f"{prefix}.embedding"), requires_grad=False + ) + self.gated_position_embedding = (1 - self.gate.tanh()) * embedding + self.tile_embedding = TensorParallelEmbedding( + prefix=f"{prefix}.tile_embedding", weights=weights + ) + + def forward( + self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor + ) -> torch.Tensor: + # position embeddings + hidden_state = hidden_state + self.gated_position_embedding.view( + 1, 1, self.num_patches, self.hidden_size + ) + + # precomputed tile position embeddings + tile_position_embedding = self.tile_embedding(aspect_ratio_ids) + batch_size = hidden_state.shape[0] + tile_position_embedding = tile_position_embedding.reshape( + batch_size, self.max_num_tiles, self.num_patches, self.hidden_size + ) + gated_tile_position_embedding = self.gate.tanh() * tile_position_embedding + hidden_state = hidden_state + gated_tile_position_embedding + + return hidden_state + + +class MllamaVisionModel(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + self.image_size = config.image_size + self.patch_size = config.patch_size + self.max_num_tiles = config.max_num_tiles + self.hidden_size = config.hidden_size + self.num_channels = config.num_channels + self.intermediate_layers_indices = config.intermediate_layers_indices + + self.num_patches = (self.image_size // self.patch_size) ** 2 + 1 + self.scale = config.hidden_size**-0.5 + self.dtype = weights.dtype + + self.patch_embedding = nn.Conv2d( + in_channels=config.num_channels, + out_channels=self.hidden_size, + kernel_size=self.patch_size, + stride=self.patch_size, + padding="valid", + bias=False, + ) + self.patch_embedding.weight = nn.Parameter( + weights.get_tensor(f"{prefix}.patch_embedding.weight"), requires_grad=False + ) + + self.class_embedding = nn.Parameter( + weights.get_tensor(f"{prefix}.class_embedding"), requires_grad=False + ) + + self.gated_positional_embedding = MllamaPrecomputedPositionEmbedding( + prefix=f"{prefix}.gated_positional_embedding", + config=config, + weights=weights, + ) + + self.pre_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding( + prefix=f"{prefix}.pre_tile_positional_embedding", + config=config, + weights=weights, + ) + self.post_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding( + prefix=f"{prefix}.post_tile_positional_embedding", + config=config, + weights=weights, + ) + + ## layer norms + self.layernorm_pre = nn.LayerNorm.load( + prefix=f"{prefix}.layernorm_pre", + weights=weights, + # torch default + eps=1e-05, + ) + self.layernorm_post = nn.LayerNorm.load( + prefix=f"{prefix}.layernorm_post", + weights=weights, + # torch default + eps=1e-05, + ) + + ## encoders + self.transformer = MllamaVisionEncoder( + prefix=f"{prefix}.transformer", + config=config, + weights=weights, + is_gated=False, + num_layers=config.num_hidden_layers, + ) + self.global_transformer = MllamaVisionEncoder( + prefix=f"{prefix}.global_transformer", + config=config, + weights=weights, + is_gated=True, + num_layers=config.num_global_layers, + ) + + def apply_class_embedding(self, hidden_state: torch.Tensor) -> torch.Tensor: + batch_size, _, hidden_size = hidden_state.shape + class_embedding = self.class_embedding.expand(batch_size, 1, hidden_size) + hidden_state = torch.cat([class_embedding, hidden_state], dim=1) + return hidden_state + + def forward( + self, + pixel_values: torch.Tensor, + aspect_ratio_ids: torch.Tensor, + attention_mask: torch.Tensor, + ) -> torch.Tensor: + batch_size, num_concurrent_media, num_tiles, num_channels, height, width = ( + pixel_values.shape + ) + + pixel_values = pixel_values.reshape( + batch_size * num_concurrent_media * num_tiles, num_channels, height, width + ) + aspect_ratio_ids = aspect_ratio_ids.reshape( + batch_size * num_concurrent_media, -1 + ) + + # patch embedding + patch_embeds = self.patch_embedding(pixel_values) + hidden_state = patch_embeds.flatten(2).transpose(1, 2) + + # tile embeddings + _, num_patches, dim = hidden_state.shape + hidden_state = hidden_state.reshape( + batch_size * num_concurrent_media, num_tiles, -1, dim + ) + hidden_state = self.pre_tile_positional_embedding( + hidden_state, aspect_ratio_ids + ) + + # apply cls token + hidden_state = hidden_state.reshape( + batch_size * num_concurrent_media * num_tiles, num_patches, dim + ) + hidden_state = self.apply_class_embedding(hidden_state) + num_patches += 1 + + # apply position embeddings + hidden_state = hidden_state.reshape( + batch_size * num_concurrent_media, num_tiles, num_patches, dim + ) + hidden_state = self.gated_positional_embedding(hidden_state, aspect_ratio_ids) + + # apply encoder + hidden_state = self.layernorm_pre(hidden_state) + + # Compute the number of tokens to pad + num_padding_patches = (8 - (hidden_state.shape[-2] % 8)) % 8 + # Compute padding tuple for pad function + padding = ( + 0, + 0, + 0, + num_padding_patches, + ) # (pad_left, pad_right, pad_left for dim -2, pad_right for dim -2) + # Pad the tensor + hidden_state = F.pad(hidden_state, padding, mode="constant", value=0) + slice_index = -num_padding_patches if num_padding_patches > 0 else None + + if attention_mask is not None: + attention_mask = attention_mask.reshape( + batch_size * num_concurrent_media, -1 + ) + attention_mask = _prepare_aspect_ratio_attention_mask( + aspect_ratio_mask=attention_mask, + num_patches=self.num_patches, + target_length=hidden_state.shape[2], + dtype=self.dtype, + ) + + hidden_state = hidden_state.view(batch_size * num_concurrent_media, -1, dim) + hidden_state, all_intermediate_hidden_states = self.transformer( + hidden_state, + attention_mask=attention_mask, + ) + intermediate_hidden_states = [ + hidden_state + for idx, hidden_state in enumerate(all_intermediate_hidden_states) + if idx in self.intermediate_layers_indices + ] + intermediate_hidden_states = torch.stack(intermediate_hidden_states, dim=-1) + + # apply global encoder + hidden_state = self.layernorm_post(hidden_state) + hidden_state = hidden_state.reshape( + batch_size * num_concurrent_media, + num_tiles, + num_patches + num_padding_patches, + dim, + ) + hidden_state = self.post_tile_positional_embedding( + hidden_state, aspect_ratio_ids + ) + hidden_state = hidden_state.reshape( + batch_size * num_concurrent_media, + num_tiles * (num_patches + num_padding_patches), + dim, + ) + hidden_state, _ = self.global_transformer( + hidden_state, attention_mask=attention_mask + ) + hidden_state = hidden_state.reshape( + batch_size * num_concurrent_media, + num_tiles, + num_patches + num_padding_patches, + dim, + ) + hidden_state = hidden_state[:, :, :slice_index] + + # adding intermediate layer outputs + hidden_state = hidden_state.reshape( + batch_size, num_concurrent_media, num_tiles, num_patches, dim + ) + intermediate_hidden_states = intermediate_hidden_states.reshape( + batch_size * num_concurrent_media, + num_tiles, + num_patches + num_padding_patches, + -1, + ) + intermediate_hidden_states = intermediate_hidden_states[:, :, :slice_index] + intermediate_hidden_states = intermediate_hidden_states.reshape( + batch_size, num_concurrent_media, num_tiles, num_patches, -1 + ) + hidden_state = torch.cat([hidden_state, intermediate_hidden_states], dim=-1) + return hidden_state + + +class MllamaTextCrossAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, *, prefix, config, weights, layer_idx): + super().__init__() + self.config = config + self.num_heads = self.config.num_attention_heads + self.num_key_value_heads = self.config.num_key_value_heads + self.dropout = config.dropout + self.hidden_size = config.hidden_size + self.head_size = config.hidden_size // self.num_heads + self.num_key_value_groups = self.num_heads // self.num_key_value_heads + self.layer_idx = layer_idx + + self.num_heads = self.num_heads // weights.process_group.size() + self.num_key_value_heads = ( + self.num_key_value_heads // weights.process_group.size() + ) + + self.q_proj = TensorParallelColumnLinear.load( + config, + prefix=f"{prefix}.q_proj", + weights=weights, + bias=False, + ) + self.k_proj = TensorParallelColumnLinear.load( + config, + prefix=f"{prefix}.k_proj", + weights=weights, + bias=False, + ) + self.v_proj = TensorParallelColumnLinear.load( + config, + prefix=f"{prefix}.v_proj", + weights=weights, + bias=False, + ) + self.o_proj = TensorParallelRowLinear.load( + config, + prefix=f"{prefix}.o_proj", + weights=weights, + bias=False, + ) + + self.q_norm = MllamaTextRMSNorm.load( + prefix=f"{prefix}.q_norm", weights=weights, eps=config.rms_norm_eps + ) + self.k_norm = MllamaTextRMSNorm.load( + prefix=f"{prefix}.k_norm", weights=weights, eps=config.rms_norm_eps + ) + self.softmax_scale = self.head_size**-0.5 + + def forward( + self, + hidden_states: torch.Tensor, + cross_attention_states: Optional[torch.Tensor] = None, + # past_key_value=None, + # attention_mask: Optional[torch.Tensor] = None, + # cache_position: Optional[torch.LongTensor] = None, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + # hidden_states = hidden_states.unsqueeze(0) + # bsz, q_len, _ = hidden_states.size() + query_states = self.q_proj(hidden_states) + query_states = query_states.view(-1, self.num_heads, self.head_size) + query_states = self.q_norm(query_states) + + ( + cross_attention_states, + cu_seqlen_q, + cu_seqlen_k, + max_q, + max_k, + indices, + ) = cross_attention_states + + key_states = self.k_proj(cross_attention_states) + value_states = self.v_proj(cross_attention_states) + key_states = key_states.view(-1, self.num_key_value_heads, self.head_size) + value_states = value_states.view(-1, self.num_key_value_heads, self.head_size) + key_states = self.k_norm(key_states) + + # key_states = key_states.repeat(1, self.num_key_value_groups, 1) + # value_states = value_states.repeat(1, self.num_key_value_groups, 1) + + causal = False + # logger.info( + # f"Q: {query_states.shape} -K {key_states.shape} - V{value_states.shape}" + # ) + attn_output = flash_attn_2_cuda.varlen_fwd( + query_states, + key_states, + value_states, + None, + cu_seqlen_q, + cu_seqlen_k, + None, + None, + None, # block_tables + None, + max_q, + max_k, + 0.0, + self.softmax_scale, + False, + causal, # Causal + -1, # window_size_left, + -1, + 0.0, # softcap + False, + None, + )[0] + attn_output = self.o_proj(attn_output.view(-1, self.num_heads * self.head_size)) + + return attn_output + + +# Copied from transformers.models.gemma2.modeling_gemma2.Gemma2MLP with Gemma2->MllamaText +class MllamaTextMLP(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.intermediate_size = ( + config.intermediate_size // weights.process_group.size() + ) + self.gate_up_proj = TensorParallelColumnLinear.load_multi( + config, + prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"], + weights=weights, + dim=0, + bias=False, + ) + self.down_proj = TensorParallelRowLinear.load( + config, + prefix=f"{prefix}.down_proj", + weights=weights, + bias=False, + ) + self.act_fn = ACT2FN[config.hidden_act] + + def forward(self, x): + shape = x.shape + gate_up_states = self.gate_up_proj(x) + gate_up_states = gate_up_states.view(*shape[:-1], 2, self.intermediate_size) + result = self.down_proj( + self.act_fn(gate_up_states[:, 0]) * gate_up_states[:, 1] + ) + return result + + +class FlashLlamaCrossLayer(torch.nn.Module): + """Cross-attention transformer block with tanh-gated attention and feedforward.""" + + def __init__(self, *, prefix, config, weights, index) -> None: + layer_idx = index + super().__init__() + self.cross_attn = MllamaTextCrossAttention( + prefix=f"{prefix}.cross_attn", + config=config, + weights=weights, + layer_idx=layer_idx, + ) + + self.input_layernorm = MllamaTextRMSNorm.load( + prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps + ) + self.cross_attn_attn_gate = torch.nn.Parameter( + weights.get_tensor(f"{prefix}.cross_attn_attn_gate"), requires_grad=False + ) + + self.mlp = MllamaTextMLP(prefix=f"{prefix}.mlp", config=config, weights=weights) + self.post_attention_layernorm = MllamaTextRMSNorm.load( + prefix=f"{prefix}.post_attention_layernorm", + weights=weights, + eps=config.rms_norm_eps, + ) + self.cross_attn_mlp_gate = torch.nn.Parameter( + weights.get_tensor(f"{prefix}.cross_attn_mlp_gate"), requires_grad=False + ) + self.layer_idx = layer_idx + + def forward( + self, + hidden_states, + residual, + cos, + sin, + cu_seqlen_prefill, + kv_cache, + block_tables, + slots, + seqlen, + max_s, + adapter_data, + cross_attention_states, # [ IB, ...] + ) -> Tuple[torch.Tensor, torch.Tensor]: + if cross_attention_states is None: + return hidden_states, residual + if residual is not None: + hidden_states += residual + + indices = cross_attention_states[-1] + out_hidden_states = hidden_states[:] + if len(indices) > 0: + assert max(indices) < hidden_states.shape[0] + hidden_states = hidden_states[indices] + residual = hidden_states + hidden_states = self.input_layernorm(hidden_states) + + hidden_states = self.cross_attn( + hidden_states=hidden_states, + # attention_mask=cross_attention_mask, + cross_attention_states=cross_attention_states, + ) + hidden_states = residual + self.cross_attn_attn_gate.tanh() * hidden_states + + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + self.cross_attn_mlp_gate.tanh() * hidden_states + + out_hidden_states[indices] = hidden_states + hidden_states = out_hidden_states + + return hidden_states, None + + +# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->MllamaText +class MllamaTextRMSNorm(nn.Module): + def __init__(self, weight, eps): + super().__init__() + self.weight = weight + self.variance_epsilon = eps + + @classmethod + def load(cls, *, prefix, weights, eps): + weight = nn.Parameter( + weights.get_tensor(f"{prefix}.weight"), requires_grad=False + ) + return cls(weight=weight, eps=eps) + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + def extra_repr(self): + return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" + + +class MllamaForConditionalGeneration(nn.Module): + def __init__(self, prefix, config, weights): + super().__init__() + config.vision_config.quantize = None + config.vision_config.speculator = config.speculator + config.text_config.quantize = config.quantize + config.text_config.speculator = config.speculator + config.text_config._attn_implementation = "sdpa" + self.hidden_size = config.text_config.hidden_size + self.vision_model = MllamaVisionModel( + prefix="vision_model", config=config.vision_config, weights=weights + ) + self.multi_modal_projector = FastLinear.load( + prefix="multi_modal_projector", config=config, weights=weights, bias=True + ) + self.text_model = FlashLlamaForCausalLM( + prefix="language_model", config=config.text_config, weights=weights + ) + self.config = config + self.dtype = weights.dtype + self.device = weights.device + + def vision_forward(self, pixel_values, aspect_ratio_ids, aspect_ratio_mask): + if aspect_ratio_ids is None: + raise ValueError( + "`aspect_ratio_ids` must be provided if `pixel_values` is provided" + ) + # logger.info(f"PIxel values {pixel_values.shape}") + batch_size = pixel_values.shape[0] + vision_states = self.vision_model( + pixel_values, aspect_ratio_ids, aspect_ratio_mask + ) + cross_attention_states = self.multi_modal_projector(vision_states).reshape( + -1, vision_states.shape[-2], self.hidden_size + ) + _, _, h = cross_attention_states.shape + cross_attention_states = cross_attention_states.view(batch_size, -1, h) + # logger.info(f"cross {cross_attention_states.shape}") + return cross_attention_states + + def forward( + self, + input_ids: torch.Tensor, + position_ids: torch.Tensor, + cu_seqlen_prefill: Optional[torch.Tensor], + kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], + block_tables: torch.Tensor, + slots: torch.Tensor, + seqlen: Seqlen, + max_s: int, + prefill_cache_indices: Optional[torch.Tensor], + lm_head_indices: Optional[torch.Tensor], + adapter_data: Optional[torch.Tensor] = None, + # XXX: Putting these as optional so that the cuda warmup calls can go through. + cross_attention_states: Optional[torch.Tensor] = None, + image_indices=None, + ): + if cross_attention_states is not None: + seqlen_q = len(image_indices) + n_images = cross_attention_states.shape[0] + seqlen_k = cross_attention_states.shape[1] + device = cross_attention_states.device + if cu_seqlen_prefill is not None: + offset = 0 + cu_q = [] + indices = [] + for index in image_indices: + cu_q.append(offset) + length = seqlen.input_lengths[index].item() + assert index < seqlen.cu_seqlen_q.shape[0] + input_ids_offset = seqlen.cu_seqlen_q[index] + indices.extend(range(input_ids_offset, input_ids_offset + length)) + offset += length + cu_q.append(offset) + cu_seqlen_q = torch.Tensor(cu_q).to(device=device, dtype=torch.int32) + + assert max(indices) < input_ids.shape[0] + + cu_seqlen_k = ( + torch.arange( + n_images + 1, + device=device, + dtype=torch.int32, + ) + * seqlen_k + ) + max_q = cu_seqlen_q[-1].item() + max_k = seqlen_k + else: + cu_seqlen_q = torch.arange( + seqlen_q + 1, device=device, dtype=torch.int32 + ) + seqlen_k = cross_attention_states.shape[1] + n_images = cross_attention_states.shape[0] + cu_seqlen_k = ( + torch.arange( + n_images + 1, + device=device, + dtype=torch.int32, + ) + * seqlen_k + ) + max_q = seqlen_q + max_k = seqlen_k + indices = image_indices[:] + + cross_attention_states = ( + cross_attention_states, + cu_seqlen_q, + cu_seqlen_k, + max_q, + max_k, + indices, + ) + + outputs = self.text_model( + input_ids=input_ids, + position_ids=position_ids, + cu_seqlen_prefill=cu_seqlen_prefill, + kv_cache=kv_cache, + block_tables=block_tables, + slots=slots, + seqlen=seqlen, + max_s=max_s, + prefill_cache_indices=prefill_cache_indices, + lm_head_indices=lm_head_indices, + adapter_data=adapter_data, + cross_attention_states=cross_attention_states, + ) + + return outputs diff --git a/server/text_generation_server/models/idefics.py b/server/text_generation_server/models/idefics.py deleted file mode 100644 index 9058cb96..00000000 --- a/server/text_generation_server/models/idefics.py +++ /dev/null @@ -1,105 +0,0 @@ -import torch -import torch.distributed - -from typing import Optional - - -from text_generation_server.models.custom_modeling.idefics_config import IdeficsConfig -from text_generation_server.models.custom_modeling.idefics_processing import ( - IdeficsProcessor, -) -from transformers import LlamaTokenizerFast -from text_generation_server.models.custom_modeling.idefics_modeling import ( - IdeficsForVisionText2Text, -) -from text_generation_server.models.idefics_causal_lm import IdeficsCausalLM -from text_generation_server.utils import ( - initialize_torch_distributed, - weight_files, - Weights, -) -from text_generation_server.utils.quantization import get_loader - -from text_generation_server.utils.import_utils import SYSTEM - - -class IDEFICSSharded(IdeficsCausalLM): - def __init__( - self, - model_id: str, - revision: Optional[str] = None, - quantize: Optional[str] = None, - speculator: Optional[str] = None, - dtype: Optional[torch.dtype] = None, - trust_remote_code: bool = False, - ): - self.quantize = quantize - self.process_group, rank, world_size = initialize_torch_distributed() - if torch.cuda.is_available(): - device = torch.device(f"cuda:{rank}") - # 9b seems to work correctly enough in float16, but 80b seems - # to be really saturating for f16. - dtype = torch.float16 if dtype is None else dtype - elif SYSTEM == "ipex": - if hasattr(torch, "xpu") and torch.xpu.is_available(): - device = torch.device(f"xpu:{rank}") - dtype = torch.float16 if dtype is None else dtype - else: - device = torch.device("cpu") - # Float16 doesn't exist on target. - dtype = torch.bfloat16 if dtype is None else dtype - else: - device = torch.device("cpu") - dtype = torch.float32 if dtype is None else dtype - self.device, self.dtype = device, dtype - - config = IdeficsConfig.from_pretrained( - model_id, - revision=revision, - trust_remote_code=trust_remote_code, - ) - config.quantize = quantize - config.speculator = speculator - config.vision_config.quantize = quantize - - tokenizer = LlamaTokenizerFast.from_pretrained( - model_id, - revision=revision, - padding_side="left", - truncation_side="left", - trust_remote_code=trust_remote_code, - ) - self.processor = IdeficsProcessor.from_pretrained( - model_id, - revision=revision, - padding_side="left", - truncation_side="left", - trust_remote_code=trust_remote_code, - ) - - weights_loader = get_loader( - quantize=quantize, model_id=model_id, revision=revision - ) - torch.distributed.barrier(group=self.process_group) - filenames = weight_files(model_id, revision=revision, extension=".safetensors") - weights = Weights( - filenames, - device=device, - dtype=dtype, - process_group=self.process_group, - weights_loader=weights_loader, - ) - - model = IdeficsForVisionText2Text(config, weights) - - torch.distributed.barrier(group=self.process_group) - super(IdeficsCausalLM, self).__init__( - model_id=model_id, - model=model, - tokenizer=tokenizer, - requires_padding=True, - dtype=dtype, - device=device, - rank=rank, - world_size=world_size, - ) diff --git a/server/text_generation_server/models/idefics_causal_lm.py b/server/text_generation_server/models/idefics_causal_lm.py index c5480952..9a7a6fe1 100644 --- a/server/text_generation_server/models/idefics_causal_lm.py +++ b/server/text_generation_server/models/idefics_causal_lm.py @@ -6,6 +6,7 @@ import time from dataclasses import dataclass from opentelemetry import trace from transformers import ( + AutoConfig, AutoProcessor, AutoTokenizer, PreTrainedTokenizerBase, @@ -22,6 +23,18 @@ from text_generation_server.models.types import ( ) from text_generation_server.pb import generate_pb2 from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling +import torch.distributed +from text_generation_server.models.custom_modeling.idefics_modeling import ( + IdeficsForVisionText2Text, +) +from text_generation_server.utils import ( + initialize_torch_distributed, + weight_files, + Weights, +) +from text_generation_server.utils.quantization import get_loader + +from text_generation_server.utils.import_utils import SYSTEM tracer = trace.get_tracer(__name__) @@ -577,23 +590,38 @@ class IdeficsCausalLM(Model): model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, + speculator: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.quantize = quantize - from text_generation_server.models.custom_modeling.idefics_modeling import ( - IdeficsForVisionText2Text, - ) - + self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): - device = torch.device("cuda") - dtype = torch.bfloat16 if dtype is None else dtype + device = torch.device(f"cuda:{rank}") + # 9b seems to work correctly enough in float16, but 80b seems + # to be really saturating for f16. + dtype = torch.float16 if dtype is None else dtype + elif SYSTEM == "ipex": + if hasattr(torch, "xpu") and torch.xpu.is_available(): + device = torch.device(f"xpu:{rank}") + dtype = torch.float16 if dtype is None else dtype + else: + device = torch.device("cpu") + # Float16 doesn't exist on target. + dtype = torch.bfloat16 if dtype is None else dtype else: - if quantize: - raise ValueError("quantization is not available on CPU") - device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype + self.device, self.dtype = device, dtype + + config = AutoConfig.from_pretrained( + model_id, + revision=revision, + trust_remote_code=trust_remote_code, + ) + config.quantize = quantize + config.speculator = speculator + config.vision_config.quantize = quantize tokenizer = AutoTokenizer.from_pretrained( model_id, @@ -609,38 +637,34 @@ class IdeficsCausalLM(Model): truncation_side="left", trust_remote_code=trust_remote_code, ) - model = IdeficsForVisionText2Text.from_pretrained( - model_id, - revision=revision, - torch_dtype=dtype, - device_map=( - "auto" - if torch.cuda.is_available() and torch.cuda.device_count() > 1 - else None - ), - load_in_8bit=quantize == "bitsandbytes", - trust_remote_code=trust_remote_code, + + weights_loader = get_loader( + quantize=quantize, model_id=model_id, revision=revision + ) + torch.distributed.barrier(group=self.process_group) + filenames = weight_files(model_id, revision=revision, extension=".safetensors") + weights = Weights( + filenames, + device=device, + dtype=dtype, + process_group=self.process_group, + weights_loader=weights_loader, ) - if torch.cuda.is_available() and torch.cuda.device_count() == 1: - model = model.cuda() - if tokenizer.pad_token_id is None: - if model.config.pad_token_id is not None: - tokenizer.pad_token_id = model.config.pad_token_id - elif model.config.eos_token_id is not None: - tokenizer.pad_token_id = model.config.eos_token_id - elif tokenizer.eos_token_id is not None: - tokenizer.pad_token_id = tokenizer.eos_token_id - else: - tokenizer.add_special_tokens({"pad_token": ""}) + model = IdeficsForVisionText2Text(config, weights) - super(IdeficsCausalLM, self).__init__( + self.config = config + + torch.distributed.barrier(group=self.process_group) + super().__init__( model_id=model_id, model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, + rank=rank, + world_size=world_size, ) @property diff --git a/server/text_generation_server/models/mllama_causal_lm.py b/server/text_generation_server/models/mllama_causal_lm.py new file mode 100644 index 00000000..9e19e171 --- /dev/null +++ b/server/text_generation_server/models/mllama_causal_lm.py @@ -0,0 +1,357 @@ +from io import BytesIO +from PIL import Image +import torch +from typing import Iterable, Optional, Tuple, List, Dict +from text_generation_server.pb.generate_pb2 import Request + +from dataclasses import dataclass +from opentelemetry import trace +from transformers import ( + PreTrainedTokenizerBase, +) +from text_generation_server.models.vlm_causal_lm import VlmCausalLMBatch, VlmCausalLM +from text_generation_server.pb import generate_pb2 +from text_generation_server.models.flash_causal_lm import ( + block_tables_to_ragged, +) +from text_generation_server.models.globals import PREFIX_CACHING, ATTENTION +from text_generation_server.layers.attention import Seqlen + + +tracer = trace.get_tracer(__name__) + + +@dataclass +class MllamaCausalLMBatch(VlmCausalLMBatch): + image_indices: List[int] = 42 + aspect_ratio_ids: Optional[torch.Tensor] = None + aspect_ratio_mask: Optional[torch.Tensor] = None + cross_attention_states: Optional[torch.Tensor] = None + + @classmethod + @tracer.start_as_current_span("concatenate") + def concatenate(cls, batches): + batch = super().concatenate(batches) + batch.pixel_values = None + batch.pixel_attention_mask = None + + offset = 0 + image_indices = [] + attention_states = [] + for b in batches: + if b.cross_attention_states is not None: + attention_states.append(b.cross_attention_states) + image_indices.extend([i + offset for i in b.image_indices]) + offset += len(b.image_indices) + if len(attention_states) > 0: + assert len(image_indices) > 0 + batch.cross_attention_states = torch.cat(attention_states, dim=0) + batch.image_indices = image_indices + else: + batch.cross_attention_states = None + batch.image_indices = [] + return batch + + @tracer.start_as_current_span("filter") + def filter(self, request_ids: List[int]): + assert self.image_indices is not None + batch = super().filter(request_ids) + assert self.image_indices is not None + indices = [] + for i, request_id in enumerate(request_ids): + idx = self.requests_idx_mapping[request_id] + indices.append(idx) + + offset = 0 + new_image_indices = [] + prev_i = None + for i in self.image_indices: + if i in indices: + new_image_indices.append(offset) + if i != prev_i: + offset += 1 + prev_i = i + + batch.image_indices = new_image_indices + if len(new_image_indices) > 0: + assert max(new_image_indices) < self.cross_attention_states.shape[0] + assert offset <= self.cross_attention_states.shape[0] + batch.cross_attention_states = self.cross_attention_states[ + new_image_indices + ] + else: + batch.cross_attention_states = None + return batch + + @classmethod + def batch_tokenized_inputs( + cls, requests: Iterable[Request], tokenizer, processor, config + ): + image_inputs = [] + texts = [] + image_indices = [] + batch_tokenized_inputs = [] + + for i, r in enumerate(requests): + # Each input is encoded into a list, where each element of this input list is either a string or a URL + curr_text = "" + curr_image = None + curr_i = None + for chunk in r.input_chunks.chunks: + chunk_type = chunk.WhichOneof("chunk") + if chunk_type == "text": + curr_text += chunk.text + elif chunk_type == "image": + image = Image.open(BytesIO(chunk.image.data)) + # TODO unsure about BOS + curr_text += "<|image|>" + image_input = processor.image_processor(image, return_tensors="pt") + curr_image = image_input + curr_i = i + # image_inputs.append(image_input) + # image_indices.append(i) + else: + raise RuntimeError(f"Invalid chunk type {chunk_type}") + texts.append(curr_text) + if curr_image is not None: + image_inputs.append(curr_image) + image_indices.append(curr_i) + + input_ids = tokenizer( + curr_text, + truncation=True, + max_length=r.truncate, + add_special_tokens=r.add_special_tokens, + )["input_ids"] + batch_tokenized_inputs.append(input_ids) + if image_inputs: + image_input = image_inputs[0] + new_image_inputs = { + "pixel_values": torch.cat( + [img["pixel_values"] for img in image_inputs], dim=0 + ), + } + if "aspect_ratio_ids" in image_input: + new_image_inputs["aspect_ratio_ids"] = torch.cat( + [img["aspect_ratio_ids"] for img in image_inputs], dim=0 + ) + if "aspect_ratio_mask" in image_input: + new_image_inputs["aspect_ratio_mask"] = torch.cat( + [img["aspect_ratio_mask"] for img in image_inputs], dim=0 + ) + image_inputs = new_image_inputs + image_inputs["image_indices"] = image_indices + else: + image_inputs = None + + if image_inputs is not None: + assert len(image_indices) == image_inputs["pixel_values"].shape[0] + + return batch_tokenized_inputs, image_inputs + + @classmethod + def from_pb_processor( + cls, + pb: generate_pb2.Batch, + tokenizer: PreTrainedTokenizerBase, + processor, + config, + dtype: torch.dtype, + device: torch.device, + ) -> "VlmCausalLMBatch": + batch_tokenized_inputs, image_inputs = cls.batch_tokenized_inputs( + pb.requests, tokenizer, processor, config + ) + batch = cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device) + # XXX: <|image|> token is actually out of bounds and bugs out the logit processors. + batch.all_input_ids_tensor = batch.all_input_ids_tensor.clamp( + max=config.text_config.vocab_size - 1 + ) + batch.input_ids = batch.input_ids.clamp(max=config.text_config.vocab_size - 1) + + if image_inputs is not None: + batch.pixel_values = image_inputs["pixel_values"].to( + device=device, dtype=dtype + ) + batch.aspect_ratio_ids = image_inputs["aspect_ratio_ids"].to(device=device) + batch.aspect_ratio_mask = image_inputs["aspect_ratio_mask"].to( + device=device + ) + batch.image_indices = image_inputs["image_indices"] + else: + batch.pixel_values = None + batch.aspect_ratio_ids = None + batch.aspect_ratio_mask = None + batch.image_indices = [] + assert batch.image_indices is not None + return batch + + +class MllamaCausalLM(VlmCausalLM): + def forward( + self, + batch: VlmCausalLMBatch, + adapter_data: Optional[Dict[str, torch.Tensor]] = None, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + # Model Forward + if batch.speculative_ids is not None: + input_ids = batch.input_ids + position_ids = batch.position_ids + cu_seqlen_prefill = batch.cu_seqlen_prefill + kv_cache = self.kv_cache + block_tables = batch.block_tables_tensor + slots = batch.slots[batch.slot_indices] + input_lengths = batch.input_lengths_tensor + max_s = batch.max_seqlen + lm_head_indices = batch.prefill_head_indices + + speculative_ids = batch.speculative_ids + + B, speculative_length = speculative_ids.shape + new_length = speculative_length + 1 + new_input_ids = torch.cat( + [input_ids.unsqueeze(-1), speculative_ids], dim=1 + ).reshape(-1) + arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0) + arange_int = arange.to(dtype=torch.int32) + new_position_ids = ( + position_ids.unsqueeze(-1).expand(B, new_length) + arange + ).view(-1) + slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1) + input_lengths = ( + input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int + ).view(-1) + prefix_lens_tensor = ( + batch.prefix_lens_tensor.unsqueeze(-1).expand(B, new_length) + ).reshape(-1) + + # Add Copy the block tables for all members + block_tables = ( + block_tables.unsqueeze(1) + .expand(B, new_length, -1) + .reshape(B * new_length, -1) + .contiguous() + ) + max_s = max_s + speculative_length + + input_ids = new_input_ids + position_ids = new_position_ids + else: + input_ids = batch.input_ids + position_ids = batch.position_ids + cu_seqlen_prefill = batch.cu_seqlen_prefill + kv_cache = self.kv_cache + block_tables = batch.block_tables_tensor + slots = batch.slots[batch.slot_indices] + input_lengths = batch.input_lengths_tensor + prefix_lens_tensor = batch.prefix_lens_tensor + max_s = batch.max_seqlen + lm_head_indices = batch.prefill_head_indices + + if cu_seqlen_prefill is None and self.max_past() is not None: + # In decode, not prefill, we're actually overwriting the KV-cache + # in a circular buffer mode. + # This makes sure the max_s for the decode pass is correct. + max_s = min(self.max_past(), max_s) + + bs = input_ids.shape[0] + # Try to find an associated cuda graph + bs = input_ids.shape[0] + sorted_padded_bs = sorted([k for k in self.cuda_graphs.keys() if k >= bs]) + if sorted_padded_bs: + # Get associated cuda graph + cuda_graph = self.cuda_graphs[sorted_padded_bs[0]] + else: + cuda_graph = None + if ( + cu_seqlen_prefill is not None + or cuda_graph is None + # Only run cuda graphs when there's no images. + or batch.cross_attention_states is not None + ): + input_lengths = input_lengths + prefix_lens_tensor + if PREFIX_CACHING: + block_tables = block_tables_to_ragged( + block_tables=block_tables, + input_lengths=batch.input_lengths, + prefix_lens=batch.prefix_lens, + ) + with self._forward_context( + block_tables=block_tables, + cu_seqlen_prefill=cu_seqlen_prefill, + input_lengths_tensor=input_lengths, + prefix_lens_tensor=prefix_lens_tensor, + ): + max_k = (input_lengths + prefix_lens_tensor).max().item() + seqlen = Seqlen( + input_lengths=input_lengths, + prefix_lengths=prefix_lens_tensor, + cu_seqlen_q=cu_seqlen_prefill, + max_q=max_s, + max_k=max_k, + ) + + if batch.pixel_values is not None: + cross_attention_states = self.model.vision_forward( + pixel_values=batch.pixel_values, + aspect_ratio_ids=batch.aspect_ratio_ids, + aspect_ratio_mask=batch.aspect_ratio_mask, + ) + batch.cross_attention_states = cross_attention_states + + cross_attention_states = batch.cross_attention_states + + logits, speculative_logits = self.model.forward( + input_ids=input_ids, + position_ids=position_ids, + cu_seqlen_prefill=cu_seqlen_prefill, + kv_cache=kv_cache, + block_tables=block_tables, + slots=slots, + seqlen=seqlen, + max_s=max_s, + prefill_cache_indices=batch.prefill_cache_indices, + lm_head_indices=lm_head_indices, + cross_attention_states=cross_attention_states, + adapter_data=adapter_data, + image_indices=batch.image_indices[:], + ) + if batch.prefill_cache_indices is not None: + batch.prefill_cache_indices = None + if batch.pixel_values is not None: + batch.pixel_values = None + return logits, speculative_logits + + # Copy inputs to the static inputs of the cuda graph + # Static inputs are potentially padded + cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids + cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids + if ATTENTION == "flashinfer": + block_tables = block_tables_to_ragged( + block_tables=block_tables, + input_lengths=batch.input_lengths, + prefix_lens=batch.prefix_lens, + ) + cuda_graph["block_tables"][: block_tables.shape[0]] = block_tables + else: + cuda_graph["block_tables"][ + : block_tables.shape[0], : block_tables.shape[1] + ] = block_tables + cuda_graph["slots"].fill_(0) + cuda_graph["slots"][: slots.shape[0]] = slots + cuda_graph["input_lengths"].zero_() + cuda_graph["input_lengths"][: input_lengths.shape[0]] = ( + input_lengths + prefix_lens_tensor + ) + + # Replay the graph + cuda_graph["graph"].replay() + + # Slice output to the correct shape + speculative_logits = ( + cuda_graph["speculative_logits"][:bs] + if cuda_graph["speculative_logits"] is not None + else None + ) + logits = cuda_graph["logits"][:bs] + return logits, speculative_logits diff --git a/server/text_generation_server/server.py b/server/text_generation_server/server.py index 22871ec5..e7dfd8e4 100644 --- a/server/text_generation_server/server.py +++ b/server/text_generation_server/server.py @@ -22,8 +22,14 @@ try: VlmCausalLMBatch, ) from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch + from text_generation_server.models.mllama_causal_lm import MllamaCausalLMBatch - VLM_BATCH_TYPES = {PaliGemmaBatch, VlmCausalLMBatch, IdeficsCausalLMBatch} + VLM_BATCH_TYPES = { + PaliGemmaBatch, + VlmCausalLMBatch, + IdeficsCausalLMBatch, + MllamaCausalLMBatch, + } except (ImportError, NotImplementedError): # These imports can fail on CPU/Non flash. VLM_BATCH_TYPES = set() From 0204946d26d4790c230c4aa4b35e261fd598fd5f Mon Sep 17 00:00:00 2001 From: Nicolas Patry Date: Wed, 2 Oct 2024 16:32:36 +0200 Subject: [PATCH 27/33] Max token capacity metric (#2595) * adding max_token_capacity_metric * added tgi to name of metric * Adding max capacity metric. * Add description for the metrics --------- Co-authored-by: Edwinhr716 --- backends/v3/src/lib.rs | 1 + router/src/server.rs | 5 +++++ 2 files changed, 6 insertions(+) diff --git a/backends/v3/src/lib.rs b/backends/v3/src/lib.rs index 77a9a11a..af66b21e 100644 --- a/backends/v3/src/lib.rs +++ b/backends/v3/src/lib.rs @@ -100,6 +100,7 @@ pub async fn connect_backend( .map_err(V3Error::Warmup)?, )?; tracing::info!("Setting max batch total tokens to {max_batch_total_tokens}"); + metrics::gauge!("tgi_batch_max_total_tokens").set(max_batch_total_tokens); let backend_info = BackendInfo { waiting_served_ratio, diff --git a/router/src/server.rs b/router/src/server.rs index cc896f99..73b54321 100644 --- a/router/src/server.rs +++ b/router/src/server.rs @@ -1937,6 +1937,11 @@ async fn start( metrics::Unit::Count, "Maximum tokens for the current batch" ); + metrics::describe_gauge!( + "tgi_batch_total_tokens", + metrics::Unit::Count, + "Maximum amount of tokens in total." + ); metrics::describe_histogram!( "tgi_request_max_new_tokens", metrics::Unit::Count, From 2335459556d50d5dd5e39dc41e0ee16366d655dc Mon Sep 17 00:00:00 2001 From: drbh Date: Wed, 2 Oct 2024 10:51:04 -0400 Subject: [PATCH 28/33] CI (2592): Allow LoRA adapter revision in server launcher (#2602) allow revision for lora adapters from launcher Co-authored-by: Sida Co-authored-by: teamclouday --- Cargo.lock | 1 + docs/source/conceptual/lora.md | 6 +++++ launcher/Cargo.toml | 1 + launcher/src/main.rs | 40 +++++++++++++++++++++++++++------- 4 files changed, 40 insertions(+), 8 deletions(-) diff --git a/Cargo.lock b/Cargo.lock index fa6afc29..27499cd4 100644 --- a/Cargo.lock +++ b/Cargo.lock @@ -4247,6 +4247,7 @@ dependencies = [ "nix 0.28.0", "once_cell", "pyo3", + "regex", "reqwest", "serde", "serde_json", diff --git a/docs/source/conceptual/lora.md b/docs/source/conceptual/lora.md index 0b7e3616..d1f4ce78 100644 --- a/docs/source/conceptual/lora.md +++ b/docs/source/conceptual/lora.md @@ -36,6 +36,12 @@ To use LoRA in TGI, when starting the server, you can specify the list of LoRA m LORA_ADAPTERS=predibase/customer_support,predibase/dbpedia ``` +To specify model revision, use `adapter_id@revision`, as follows: + +```bash +LORA_ADAPTERS=predibase/customer_support@main,predibase/dbpedia@rev2 +``` + To use a locally stored lora adapter, use `adapter-name=/path/to/adapter`, as seen below. When you want to use this adapter, set `"parameters": {"adapter_id": "adapter-name"}"` ```bash diff --git a/launcher/Cargo.toml b/launcher/Cargo.toml index 033a9a04..fdc3c02c 100644 --- a/launcher/Cargo.toml +++ b/launcher/Cargo.toml @@ -18,6 +18,7 @@ serde_json = "1.0.107" thiserror = "1.0.59" tracing = "0.1.37" tracing-subscriber = { version = "0.3.17", features = ["json", "env-filter"] } +regex = "1.11.0" [dev-dependencies] float_eq = "1.0.1" diff --git a/launcher/src/main.rs b/launcher/src/main.rs index 474a72d3..aba497d6 100644 --- a/launcher/src/main.rs +++ b/launcher/src/main.rs @@ -5,6 +5,7 @@ use hf_hub::{ }; use nix::sys::signal::{self, Signal}; use nix::unistd::Pid; +use regex::Regex; use serde::Deserialize; use std::env; use std::ffi::OsString; @@ -1808,14 +1809,37 @@ fn main() -> Result<(), LauncherError> { if adapter.contains('=') { continue; } - download_convert_model( - adapter, - None, - args.trust_remote_code, - args.huggingface_hub_cache.as_deref(), - args.weights_cache_override.as_deref(), - running.clone(), - )?; + + let adapter = adapter.trim(); + + // check if adapter has more than 1 '@' + if adapter.matches('@').count() > 1 { + return Err(LauncherError::ArgumentValidation(format!( + "Invalid LoRA adapter format: {}", + adapter + ))); + } + + // capture adapter_id, path, revision in format of adapter_id=path@revision + let re = Regex::new(r"^([^=@]+)(?:=([^@]+))?(?:@(.+))?$").unwrap(); + if let Some(caps) = re.captures(adapter) { + let adapter_id = caps.get(1).map_or("", |m| m.as_str()); + let revision = caps.get(3).map(|m| m.as_str()); + + download_convert_model( + adapter_id, + revision, + args.trust_remote_code, + args.huggingface_hub_cache.as_deref(), + args.weights_cache_override.as_deref(), + running.clone(), + )?; + } else { + return Err(LauncherError::ArgumentValidation(format!( + "Invalid LoRA adapter format: {}", + adapter + ))); + } } } From d22b0c1fbef747f3c38f6424a7a6d4c90ed408c3 Mon Sep 17 00:00:00 2001 From: drbh Date: Wed, 2 Oct 2024 11:34:57 -0400 Subject: [PATCH 29/33] Unroll notify error into generate response (#2597) * feat: unroll notify_error if no tool is choosen * fix: expect simple message when no tool is selected * fix: improve test to avoid notify_error * fix: improve docs and indicate change in expected response * fix: adjust linting in test file --- docs/source/basic_tutorials/using_guidance.md | 8 ++-- ...rammar_tools_insufficient_information.json | 32 +++++----------- integration-tests/models/test_tools_llama.py | 9 +---- router/src/server.rs | 38 +++++++++++++------ 4 files changed, 43 insertions(+), 44 deletions(-) diff --git a/docs/source/basic_tutorials/using_guidance.md b/docs/source/basic_tutorials/using_guidance.md index dfa3f0e4..7e33e9a2 100644 --- a/docs/source/basic_tutorials/using_guidance.md +++ b/docs/source/basic_tutorials/using_guidance.md @@ -311,11 +311,13 @@ print(chat.choices[0].message.tool_calls) ``` -### OpenAI integration +### OpenAI Integration -TGI exposes an OpenAI-compatible API, which means you can use OpenAI's client libraries to interact with TGI's Messages API and Tool functions. +Text Generation Inference (TGI) offers seamless integration with OpenAI's client libraries, allowing developers to interact with TGI's Messages API and Tool functions in a familiar way. This compatibility simplifies the implementation of advanced features, such as tools and grammar, within your applications using OpenAI’s client. -However there are some minor differences in the API, for example `tool_choice="auto"` will ALWAYS choose the tool for you. This is different from OpenAI's API where `tool_choice="auto"` will choose a tool if the model thinks it's necessary. +Previously, TGI handled tool selection differently than OpenAI’s API—`tool_choice="auto"` would always pick a tool for you. However, as of the latest version, TGI now mimics OpenAI’s behavior more closely: `tool_choice="auto"` selects a tool only when the model deems it necessary, aligning with how OpenAI's API works. This enhancement ensures a smoother and more predictable integration experience. + +Additionally, error notifications like `notify_error`, which previously indicated that no tool was chosen, are no longer returned. Instead, TGI will proceed with generating a response as if no tool was selected, further improving consistency with OpenAI's API. ```python from openai import OpenAI diff --git a/integration-tests/models/__snapshots__/test_tools_llama/test_flash_llama_grammar_tools_insufficient_information.json b/integration-tests/models/__snapshots__/test_tools_llama/test_flash_llama_grammar_tools_insufficient_information.json index 0cd3c67f..7f7f7884 100644 --- a/integration-tests/models/__snapshots__/test_tools_llama/test_flash_llama_grammar_tools_insufficient_information.json +++ b/integration-tests/models/__snapshots__/test_tools_llama/test_flash_llama_grammar_tools_insufficient_information.json @@ -1,38 +1,26 @@ { "choices": [ { - "finish_reason": "eos_token", + "finish_reason": "stop", "index": 0, "logprobs": null, "message": { - "content": null, + "content": "There is a huge storm in the ocean", "name": null, "role": "assistant", - "tool_calls": [ - { - "function": { - "arguments": { - "error": "Cannot get current weather forecast from specified location and temperature unit. Please try again with different options." - }, - "description": null, - "name": "notify_error" - }, - "id": 0, - "type": "function" - } - ] + "tool_calls": null }, "usage": null } ], - "created": 1712852597, + "created": 1727796440, "id": "", - "model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0", - "object": "text_completion", - "system_fingerprint": "1.4.5-native", + "model": "meta-llama/Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.3.1-dev0-native", "usage": { - "completion_tokens": 39, - "prompt_tokens": 496, - "total_tokens": 535 + "completion_tokens": 25, + "prompt_tokens": 600, + "total_tokens": 625 } } diff --git a/integration-tests/models/test_tools_llama.py b/integration-tests/models/test_tools_llama.py index c337afa1..3c222b72 100644 --- a/integration-tests/models/test_tools_llama.py +++ b/integration-tests/models/test_tools_llama.py @@ -225,10 +225,6 @@ async def test_flash_llama_grammar_tools_insufficient_information( tools=tools, tool_choice="auto", messages=[ - { - "role": "system", - "content": "STRICTLY ONLY RESPOND IF THE USER ASKS A WEATHER RELATED QUESTION", - }, { "role": "user", "content": "Tell me a story about 3 sea creatures", @@ -237,8 +233,5 @@ async def test_flash_llama_grammar_tools_insufficient_information( stream=False, ) - assert responses.choices[0].message.content is None - assert ( - responses.choices[0].message.tool_calls[0]["function"]["name"] == "notify_error" - ) + assert responses.choices[0].message.content == "There is a huge storm in the ocean" assert responses == response_snapshot diff --git a/router/src/server.rs b/router/src/server.rs index 73b54321..fb06b245 100644 --- a/router/src/server.rs +++ b/router/src/server.rs @@ -1246,17 +1246,33 @@ async fn chat_completions( if let Value::Object(ref mut props) = arguments { props.remove("_name"); } - - let tool_calls = vec![ToolCall { - id: "0".to_string(), - r#type: "function".to_string(), - function: FunctionDefinition { - description: None, - name, - arguments, - }, - }]; - (Some(tool_calls), None) + match name.as_str() { + "notify_error" => { + // parse the error message + let error_message = arguments + .get("error") + .and_then(Value::as_str) + .ok_or_else(|| { + InferError::ToolError( + "No error message found in generated text".to_string(), + ) + })? + .to_string(); + (None, Some(error_message)) + } + _ => { + let tool_calls = vec![ToolCall { + id: "0".to_string(), + r#type: "function".to_string(), + function: FunctionDefinition { + description: None, + name, + arguments, + }, + }]; + (Some(tool_calls), None) + } + } } else { (None, Some(generation.generated_text)) }; From f6e2f05b16c1d13f0e017450cad975244099de80 Mon Sep 17 00:00:00 2001 From: Nicolas Patry Date: Thu, 3 Oct 2024 14:43:49 +0200 Subject: [PATCH 30/33] New release 2.3.1 (#2604) * New release 2.3.1 * Update doc number --- Cargo.toml | 2 +- README.md | 2 +- docs/openapi.json | 2 +- docs/source/installation_amd.md | 2 +- docs/source/installation_intel.md | 4 ++-- docs/source/installation_nvidia.md | 2 +- docs/source/quicktour.md | 2 +- 7 files changed, 8 insertions(+), 8 deletions(-) diff --git a/Cargo.toml b/Cargo.toml index a783fadb..ad2caeb8 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -20,7 +20,7 @@ default-members = [ resolver = "2" [workspace.package] -version = "2.3.1-dev0" +version = "2.3.2-dev0" edition = "2021" authors = ["Olivier Dehaene"] homepage = "https://github.com/huggingface/text-generation-inference" diff --git a/README.md b/README.md index 156fa5cc..df6912bf 100644 --- a/README.md +++ b/README.md @@ -83,7 +83,7 @@ model=HuggingFaceH4/zephyr-7b-beta volume=$PWD/data docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \ - ghcr.io/huggingface/text-generation-inference:2.3.0 --model-id $model + ghcr.io/huggingface/text-generation-inference:2.3.1 --model-id $model ``` And then you can make requests like diff --git a/docs/openapi.json b/docs/openapi.json index 0b5b3ae3..67394a14 100644 --- a/docs/openapi.json +++ b/docs/openapi.json @@ -10,7 +10,7 @@ "name": "Apache 2.0", "url": "https://www.apache.org/licenses/LICENSE-2.0" }, - "version": "2.3.1-dev0" + "version": "2.3.2-dev0" }, "paths": { "/": { diff --git a/docs/source/installation_amd.md b/docs/source/installation_amd.md index 6806bac9..86d092eb 100644 --- a/docs/source/installation_amd.md +++ b/docs/source/installation_amd.md @@ -11,7 +11,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading docker run --rm -it --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \ --device=/dev/kfd --device=/dev/dri --group-add video \ --ipc=host --shm-size 256g --net host -v $volume:/data \ - ghcr.io/huggingface/text-generation-inference:2.3.0-rocm \ + ghcr.io/huggingface/text-generation-inference:2.3.1-rocm \ --model-id $model ``` diff --git a/docs/source/installation_intel.md b/docs/source/installation_intel.md index fcbe550f..1435b331 100644 --- a/docs/source/installation_intel.md +++ b/docs/source/installation_intel.md @@ -12,7 +12,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading docker run --rm --privileged --cap-add=sys_nice \ --device=/dev/dri \ --ipc=host --shm-size 1g --net host -v $volume:/data \ - ghcr.io/huggingface/text-generation-inference:2.3.0-intel-xpu \ + ghcr.io/huggingface/text-generation-inference:2.3.1-intel-xpu \ --model-id $model --cuda-graphs 0 ``` @@ -29,7 +29,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading docker run --rm --privileged --cap-add=sys_nice \ --device=/dev/dri \ --ipc=host --shm-size 1g --net host -v $volume:/data \ - ghcr.io/huggingface/text-generation-inference:2.3.0-intel-cpu \ + ghcr.io/huggingface/text-generation-inference:2.3.1-intel-cpu \ --model-id $model --cuda-graphs 0 ``` diff --git a/docs/source/installation_nvidia.md b/docs/source/installation_nvidia.md index 8aa7a85a..634380fc 100644 --- a/docs/source/installation_nvidia.md +++ b/docs/source/installation_nvidia.md @@ -11,7 +11,7 @@ model=teknium/OpenHermes-2.5-Mistral-7B volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run --gpus all --shm-size 64g -p 8080:80 -v $volume:/data \ - ghcr.io/huggingface/text-generation-inference:2.3.0 \ + ghcr.io/huggingface/text-generation-inference:2.3.1 \ --model-id $model ``` diff --git a/docs/source/quicktour.md b/docs/source/quicktour.md index 33832964..655e6f9e 100644 --- a/docs/source/quicktour.md +++ b/docs/source/quicktour.md @@ -11,7 +11,7 @@ model=teknium/OpenHermes-2.5-Mistral-7B volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \ - ghcr.io/huggingface/text-generation-inference:2.3.0 \ + ghcr.io/huggingface/text-generation-inference:2.3.1 \ --model-id $model ``` From 3011639ff7a6db7e6aaa5506ff516b9df8bc443e Mon Sep 17 00:00:00 2001 From: drbh Date: Thu, 3 Oct 2024 17:56:40 -0400 Subject: [PATCH 31/33] Revert "Unroll notify error into generate response" (#2605) Revert "Unroll notify error into generate response (#2597)" This reverts commit d22b0c1fbef747f3c38f6424a7a6d4c90ed408c3. --- docs/source/basic_tutorials/using_guidance.md | 8 ++-- ...rammar_tools_insufficient_information.json | 32 +++++++++++----- integration-tests/models/test_tools_llama.py | 9 ++++- router/src/server.rs | 38 ++++++------------- 4 files changed, 44 insertions(+), 43 deletions(-) diff --git a/docs/source/basic_tutorials/using_guidance.md b/docs/source/basic_tutorials/using_guidance.md index 7e33e9a2..dfa3f0e4 100644 --- a/docs/source/basic_tutorials/using_guidance.md +++ b/docs/source/basic_tutorials/using_guidance.md @@ -311,13 +311,11 @@ print(chat.choices[0].message.tool_calls) ``` -### OpenAI Integration +### OpenAI integration -Text Generation Inference (TGI) offers seamless integration with OpenAI's client libraries, allowing developers to interact with TGI's Messages API and Tool functions in a familiar way. This compatibility simplifies the implementation of advanced features, such as tools and grammar, within your applications using OpenAI’s client. +TGI exposes an OpenAI-compatible API, which means you can use OpenAI's client libraries to interact with TGI's Messages API and Tool functions. -Previously, TGI handled tool selection differently than OpenAI’s API—`tool_choice="auto"` would always pick a tool for you. However, as of the latest version, TGI now mimics OpenAI’s behavior more closely: `tool_choice="auto"` selects a tool only when the model deems it necessary, aligning with how OpenAI's API works. This enhancement ensures a smoother and more predictable integration experience. - -Additionally, error notifications like `notify_error`, which previously indicated that no tool was chosen, are no longer returned. Instead, TGI will proceed with generating a response as if no tool was selected, further improving consistency with OpenAI's API. +However there are some minor differences in the API, for example `tool_choice="auto"` will ALWAYS choose the tool for you. This is different from OpenAI's API where `tool_choice="auto"` will choose a tool if the model thinks it's necessary. ```python from openai import OpenAI diff --git a/integration-tests/models/__snapshots__/test_tools_llama/test_flash_llama_grammar_tools_insufficient_information.json b/integration-tests/models/__snapshots__/test_tools_llama/test_flash_llama_grammar_tools_insufficient_information.json index 7f7f7884..0cd3c67f 100644 --- a/integration-tests/models/__snapshots__/test_tools_llama/test_flash_llama_grammar_tools_insufficient_information.json +++ b/integration-tests/models/__snapshots__/test_tools_llama/test_flash_llama_grammar_tools_insufficient_information.json @@ -1,26 +1,38 @@ { "choices": [ { - "finish_reason": "stop", + "finish_reason": "eos_token", "index": 0, "logprobs": null, "message": { - "content": "There is a huge storm in the ocean", + "content": null, "name": null, "role": "assistant", - "tool_calls": null + "tool_calls": [ + { + "function": { + "arguments": { + "error": "Cannot get current weather forecast from specified location and temperature unit. Please try again with different options." + }, + "description": null, + "name": "notify_error" + }, + "id": 0, + "type": "function" + } + ] }, "usage": null } ], - "created": 1727796440, + "created": 1712852597, "id": "", - "model": "meta-llama/Llama-3.1-8B-Instruct", - "object": "chat.completion", - "system_fingerprint": "2.3.1-dev0-native", + "model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0", + "object": "text_completion", + "system_fingerprint": "1.4.5-native", "usage": { - "completion_tokens": 25, - "prompt_tokens": 600, - "total_tokens": 625 + "completion_tokens": 39, + "prompt_tokens": 496, + "total_tokens": 535 } } diff --git a/integration-tests/models/test_tools_llama.py b/integration-tests/models/test_tools_llama.py index 3c222b72..c337afa1 100644 --- a/integration-tests/models/test_tools_llama.py +++ b/integration-tests/models/test_tools_llama.py @@ -225,6 +225,10 @@ async def test_flash_llama_grammar_tools_insufficient_information( tools=tools, tool_choice="auto", messages=[ + { + "role": "system", + "content": "STRICTLY ONLY RESPOND IF THE USER ASKS A WEATHER RELATED QUESTION", + }, { "role": "user", "content": "Tell me a story about 3 sea creatures", @@ -233,5 +237,8 @@ async def test_flash_llama_grammar_tools_insufficient_information( stream=False, ) - assert responses.choices[0].message.content == "There is a huge storm in the ocean" + assert responses.choices[0].message.content is None + assert ( + responses.choices[0].message.tool_calls[0]["function"]["name"] == "notify_error" + ) assert responses == response_snapshot diff --git a/router/src/server.rs b/router/src/server.rs index fb06b245..73b54321 100644 --- a/router/src/server.rs +++ b/router/src/server.rs @@ -1246,33 +1246,17 @@ async fn chat_completions( if let Value::Object(ref mut props) = arguments { props.remove("_name"); } - match name.as_str() { - "notify_error" => { - // parse the error message - let error_message = arguments - .get("error") - .and_then(Value::as_str) - .ok_or_else(|| { - InferError::ToolError( - "No error message found in generated text".to_string(), - ) - })? - .to_string(); - (None, Some(error_message)) - } - _ => { - let tool_calls = vec![ToolCall { - id: "0".to_string(), - r#type: "function".to_string(), - function: FunctionDefinition { - description: None, - name, - arguments, - }, - }]; - (Some(tool_calls), None) - } - } + + let tool_calls = vec![ToolCall { + id: "0".to_string(), + r#type: "function".to_string(), + function: FunctionDefinition { + description: None, + name, + arguments, + }, + }]; + (Some(tool_calls), None) } else { (None, Some(generation.generated_text)) }; From 68103079f485b5197066abd4f5e1e5d9a9c09160 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Fri, 4 Oct 2024 16:52:42 +0200 Subject: [PATCH 32/33] nix: example of local package overrides during development (#2607) --- flake.lock | 6 +++--- flake.nix | 1 + nix/overlay.nix | 41 +++++++++++++++++++++++++++++++++++++++++ 3 files changed, 45 insertions(+), 3 deletions(-) create mode 100644 nix/overlay.nix diff --git a/flake.lock b/flake.lock index 30b11d5b..04d386b3 100644 --- a/flake.lock +++ b/flake.lock @@ -978,11 +978,11 @@ "nixpkgs": "nixpkgs_6" }, "locked": { - "lastModified": 1727859277, - "narHash": "sha256-AsrPuQqhg8x5RRR3aX0vvDDRQb+HREq2wGxXOpZnWus=", + "lastModified": 1728029332, + "narHash": "sha256-j0RX3a67lvi2PC5w6J5DHTxM+l96J/OV5sAf34IUfUo=", "owner": "huggingface", "repo": "text-generation-inference-nix", - "rev": "14196ab62f31d005f46207f7a251f82a81d0a09f", + "rev": "98049f853346ca780b81fee730715c90d33ac2b4", "type": "github" }, "original": { diff --git a/flake.nix b/flake.nix index 22fa8cfc..edef442f 100644 --- a/flake.nix +++ b/flake.nix @@ -37,6 +37,7 @@ overlays = [ rust-overlay.overlays.default tgi-nix.overlays.default + (import nix/overlay.nix) ]; }; crateOverrides = import ./nix/crate-overrides.nix { inherit pkgs nix-filter; }; diff --git a/nix/overlay.nix b/nix/overlay.nix new file mode 100644 index 00000000..f7b9b8c2 --- /dev/null +++ b/nix/overlay.nix @@ -0,0 +1,41 @@ +final: prev: { + # You can use this overlay to temporarily override packages for + # development. For permanent overrides, it's better to do this in + # our package flake: + # + # https://github.com/huggingface/text-generation-inference-nix + # + # Note that overriding packages that are in the transitive closure + # of many other packages (e.g. transformers) will require a large + # rebuild. + + pythonPackagesExtensions = prev.pythonPackagesExtensions ++ [ + ( + python-self: python-super: with python-self; { + # Python package override example: + # transformers = python-super.transformers.overrideAttrs ( + # _: _: { + # src = final.fetchFromGitHub { + # owner = "huggingface"; + # repo = "transformers"; + # rev = "2bd4d5897dc73e8b172832070a6f9e567a0df017"; + # hash = "sha256-JOIpKH9ssDEfI2Tf15e0iPKtThJwQ9GxMvRAnm+M2Pg="; + # }; + # } + # ); + } + ) + ]; + + # Non-python package override example: + # + # ripgrep = prev.ripgrep.overrideAttrs ( + # _: _: { + # src = final.fetchFromGitHub { + # owner = "BurntSushi"; + # repo = "ripgrep"; + # rev = "79cbe89deb1151e703f4d91b19af9cdcc128b765"; + # hash = "sha256-JPTM2KNmGMb+/jOfK3X7OM1wnN+3TU35SJOIcqmp3mg="; + # }; + # }); +} From 2358c2bb54cf60a1596267192451a46a24f03e06 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Fri, 4 Oct 2024 17:51:48 +0200 Subject: [PATCH 33/33] Add basic FP8 KV cache support (#2603) * Add basic FP8 KV cache support This change adds rudimentary FP8 KV cache support. The support is enabled by passing `--kv-cache-dtype fp8_e5m2` to the launcher. Doing so uses this type for the KV cache. However support is still limited: * Only the `fp8_e5m2` type is supported. * The KV cache layout is the same as `float16`/`bfloat16` (HND). * The FP8 KV cache is only supported for FlashInfer. * Loading of scales is not yet supported. * Fix Cargo.toml --- Cargo.lock | 14 +- docs/source/reference/launcher.md | 9 + integration-tests/conftest.py | 9 +- .../test_flash_llama_fp8_kv_cache.json | 104 +++++ ...t_flash_llama_fp8_kv_cache_all_params.json | 57 +++ .../test_flash_llama_fp8_kv_cache_load.json | 418 ++++++++++++++++++ .../models/test_flash_llama_fp8_kv_cache.py | 77 ++++ launcher/src/main.rs | 30 ++ server/text_generation_server/cli.py | 7 + .../layers/attention/__init__.py | 18 +- .../layers/attention/cuda.py | 8 + .../layers/attention/ipex.py | 9 + .../layers/attention/kv_cache.py | 121 +++++ .../layers/attention/rocm.py | 8 + .../text_generation_server/models/__init__.py | 31 ++ .../custom_modeling/flash_cohere_modeling.py | 11 +- .../custom_modeling/flash_dbrx_modeling.py | 11 +- .../flash_deepseek_v2_modeling.py | 11 +- .../custom_modeling/flash_gemma2_modeling.py | 11 +- .../custom_modeling/flash_gemma_modeling.py | 11 +- .../custom_modeling/flash_gpt2_modeling.py | 11 +- .../custom_modeling/flash_gptj_modeling.py | 11 +- .../custom_modeling/flash_llama_modeling.py | 15 +- .../custom_modeling/flash_mistral_modeling.py | 13 +- .../custom_modeling/flash_mixtral_modeling.py | 13 +- .../custom_modeling/flash_neox_modeling.py | 11 +- .../custom_modeling/flash_phi_modeling.py | 11 +- .../custom_modeling/flash_qwen2_modeling.py | 13 +- .../custom_modeling/flash_rw_modeling.py | 27 +- .../flash_santacoder_modeling.py | 13 +- .../flash_starcoder2_modeling.py | 13 +- .../models/flash_causal_lm.py | 77 +--- server/text_generation_server/server.py | 4 + 33 files changed, 1015 insertions(+), 192 deletions(-) create mode 100644 integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache.json create mode 100644 integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache_all_params.json create mode 100644 integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache_load.json create mode 100644 integration-tests/models/test_flash_llama_fp8_kv_cache.py create mode 100644 server/text_generation_server/layers/attention/kv_cache.py diff --git a/Cargo.lock b/Cargo.lock index 27499cd4..5e85e384 100644 --- a/Cargo.lock +++ b/Cargo.lock @@ -4177,7 +4177,7 @@ dependencies = [ [[package]] name = "text-generation-backends-trtllm" -version = "2.3.1-dev0" +version = "2.3.2-dev0" dependencies = [ "async-stream", "async-trait", @@ -4200,7 +4200,7 @@ dependencies = [ [[package]] name = "text-generation-benchmark" -version = "2.3.1-dev0" +version = "2.3.2-dev0" dependencies = [ "average", "clap 4.5.18", @@ -4220,7 +4220,7 @@ dependencies = [ [[package]] name = "text-generation-client" -version = "2.3.1-dev0" +version = "2.3.2-dev0" dependencies = [ "async-trait", "base64 0.22.1", @@ -4238,7 +4238,7 @@ dependencies = [ [[package]] name = "text-generation-launcher" -version = "2.3.1-dev0" +version = "2.3.2-dev0" dependencies = [ "clap 4.5.18", "ctrlc", @@ -4259,7 +4259,7 @@ dependencies = [ [[package]] name = "text-generation-router" -version = "2.3.1-dev0" +version = "2.3.2-dev0" dependencies = [ "async-stream", "async-trait", @@ -4308,7 +4308,7 @@ dependencies = [ [[package]] name = "text-generation-router-v2" -version = "2.3.1-dev0" +version = "2.3.2-dev0" dependencies = [ "async-stream", "async-trait", @@ -4357,7 +4357,7 @@ dependencies = [ [[package]] name = "text-generation-router-v3" -version = "2.3.1-dev0" +version = "2.3.2-dev0" dependencies = [ "async-stream", "async-trait", diff --git a/docs/source/reference/launcher.md b/docs/source/reference/launcher.md index c8d2a4c6..b1abd1ee 100644 --- a/docs/source/reference/launcher.md +++ b/docs/source/reference/launcher.md @@ -89,6 +89,15 @@ Options: [env: DTYPE=] [possible values: float16, bfloat16] +``` +## KV_CACHE_DTYPE +```shell + --kv-cache-dtype + Specify the dtype for the key-value cache. When this option is not provided, the dtype of the model is used (typically `float16` or `bfloat16`). Currently the only supported value is `fp8_e5m2` on CUDA + + [env: KV_CACHE_DTYPE=] + [possible values: fp8_e5m2] + ``` ## TRUST_REMOTE_CODE ```shell diff --git a/integration-tests/conftest.py b/integration-tests/conftest.py index eb55ebb9..4c8c929f 100644 --- a/integration-tests/conftest.py +++ b/integration-tests/conftest.py @@ -336,6 +336,7 @@ def launcher(event_loop): use_flash_attention: bool = True, disable_grammar_support: bool = False, dtype: Optional[str] = None, + kv_cache_dtype: Optional[str] = None, revision: Optional[str] = None, max_input_length: Optional[int] = None, max_batch_prefill_tokens: Optional[int] = None, @@ -375,6 +376,9 @@ def launcher(event_loop): if dtype is not None: args.append("--dtype") args.append(dtype) + if kv_cache_dtype is not None: + args.append("--kv-cache-dtype") + args.append(kv_cache_dtype) if revision is not None: args.append("--revision") args.append(revision) @@ -434,6 +438,7 @@ def launcher(event_loop): use_flash_attention: bool = True, disable_grammar_support: bool = False, dtype: Optional[str] = None, + kv_cache_dtype: Optional[str] = None, revision: Optional[str] = None, max_input_length: Optional[int] = None, max_batch_prefill_tokens: Optional[int] = None, @@ -456,6 +461,9 @@ def launcher(event_loop): if dtype is not None: args.append("--dtype") args.append(dtype) + if kv_cache_dtype is not None: + args.append("--kv-cache-dtype") + args.append(kv_cache_dtype) if revision is not None: args.append("--revision") args.append(revision) @@ -589,7 +597,6 @@ def generate_multi(): max_new_tokens: int, seed: Optional[int] = None, ) -> List[Response]: - import numpy as np arange = np.arange(len(prompts)) diff --git a/integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache.json b/integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache.json new file mode 100644 index 00000000..c55dd593 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache.json @@ -0,0 +1,104 @@ +{ + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 128000, + "logprob": null, + "text": "<|begin_of_text|>" + }, + { + "id": 3923, + "logprob": -5.6328125, + "text": "What" + }, + { + "id": 374, + "logprob": -1.2265625, + "text": " is" + }, + { + "id": 5655, + "logprob": -9.1015625, + "text": " deep" + }, + { + "id": 6975, + "logprob": -1.8085938, + "text": " learning" + }, + { + "id": 30, + "logprob": -1.0439453, + "text": "?" + } + ], + "seed": null, + "tokens": [ + { + "id": 18682, + "logprob": -2.1992188, + "special": false, + "text": " Deep" + }, + { + "id": 6975, + "logprob": -0.079956055, + "special": false, + "text": " learning" + }, + { + "id": 374, + "logprob": -0.2763672, + "special": false, + "text": " is" + }, + { + "id": 264, + "logprob": -0.37548828, + "special": false, + "text": " a" + }, + { + "id": 27084, + "logprob": -1.4628906, + "special": false, + "text": " subset" + }, + { + "id": 315, + "logprob": -0.02885437, + "special": false, + "text": " of" + }, + { + "id": 5780, + "logprob": -0.2565918, + "special": false, + "text": " machine" + }, + { + "id": 6975, + "logprob": -0.0063438416, + "special": false, + "text": " learning" + }, + { + "id": 430, + "logprob": -1.3056641, + "special": false, + "text": " that" + }, + { + "id": 374, + "logprob": -1.6035156, + "special": false, + "text": " is" + } + ], + "top_tokens": null + }, + "generated_text": " Deep learning is a subset of machine learning that is" +} diff --git a/integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache_all_params.json b/integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache_all_params.json new file mode 100644 index 00000000..d06d6e56 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache_all_params.json @@ -0,0 +1,57 @@ +{ + "details": { + "best_of_sequences": null, + "finish_reason": "eos_token", + "generated_tokens": 3, + "prefill": [ + { + "id": 128000, + "logprob": null, + "text": "<|begin_of_text|>" + }, + { + "id": 374, + "logprob": -22.96875, + "text": " is" + }, + { + "id": 5655, + "logprob": -10.71875, + "text": " deep" + }, + { + "id": 6975, + "logprob": -2.6992188, + "text": " learning" + }, + { + "id": 30, + "logprob": -4.8398438, + "text": "?" + } + ], + "seed": 0, + "tokens": [ + { + "id": 720, + "logprob": -0.4411621, + "special": false, + "text": " \n" + }, + { + "id": 220, + "logprob": -0.35864258, + "special": false, + "text": " " + }, + { + "id": 128001, + "logprob": 0.0, + "special": true, + "text": "<|end_of_text|>" + } + ], + "top_tokens": null + }, + "generated_text": "What is deep learning? \n " +} diff --git a/integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache_load.json b/integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache_load.json new file mode 100644 index 00000000..46670819 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache_load.json @@ -0,0 +1,418 @@ +[ + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 128000, + "logprob": null, + "text": "<|begin_of_text|>" + }, + { + "id": 3923, + "logprob": -5.6328125, + "text": "What" + }, + { + "id": 374, + "logprob": -1.2265625, + "text": " is" + }, + { + "id": 5655, + "logprob": -9.1015625, + "text": " deep" + }, + { + "id": 6975, + "logprob": -1.8085938, + "text": " learning" + }, + { + "id": 30, + "logprob": -1.0439453, + "text": "?" + } + ], + "seed": null, + "tokens": [ + { + "id": 18682, + "logprob": -2.1992188, + "special": false, + "text": " Deep" + }, + { + "id": 6975, + "logprob": -0.07897949, + "special": false, + "text": " learning" + }, + { + "id": 374, + "logprob": -0.27734375, + "special": false, + "text": " is" + }, + { + "id": 264, + "logprob": -0.37402344, + "special": false, + "text": " a" + }, + { + "id": 27084, + "logprob": -1.4511719, + "special": false, + "text": " subset" + }, + { + "id": 315, + "logprob": -0.02909851, + "special": false, + "text": " of" + }, + { + "id": 5780, + "logprob": -0.25854492, + "special": false, + "text": " machine" + }, + { + "id": 6975, + "logprob": -0.0061798096, + "special": false, + "text": " learning" + }, + { + "id": 430, + "logprob": -1.3046875, + "special": false, + "text": " that" + }, + { + "id": 374, + "logprob": -1.5537109, + "special": false, + "text": " is" + } + ], + "top_tokens": null + }, + "generated_text": " Deep learning is a subset of machine learning that is" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 128000, + "logprob": null, + "text": "<|begin_of_text|>" + }, + { + "id": 3923, + "logprob": -5.6328125, + "text": "What" + }, + { + "id": 374, + "logprob": -1.2265625, + "text": " is" + }, + { + "id": 5655, + "logprob": -9.1015625, + "text": " deep" + }, + { + "id": 6975, + "logprob": -1.8085938, + "text": " learning" + }, + { + "id": 30, + "logprob": -1.0439453, + "text": "?" + } + ], + "seed": null, + "tokens": [ + { + "id": 18682, + "logprob": -2.1992188, + "special": false, + "text": " Deep" + }, + { + "id": 6975, + "logprob": -0.07897949, + "special": false, + "text": " learning" + }, + { + "id": 374, + "logprob": -0.27734375, + "special": false, + "text": " is" + }, + { + "id": 264, + "logprob": -0.37402344, + "special": false, + "text": " a" + }, + { + "id": 27084, + "logprob": -1.4511719, + "special": false, + "text": " subset" + }, + { + "id": 315, + "logprob": -0.02909851, + "special": false, + "text": " of" + }, + { + "id": 5780, + "logprob": -0.25854492, + "special": false, + "text": " machine" + }, + { + "id": 6975, + "logprob": -0.0061798096, + "special": false, + "text": " learning" + }, + { + "id": 430, + "logprob": -1.3046875, + "special": false, + "text": " that" + }, + { + "id": 374, + "logprob": -1.5537109, + "special": false, + "text": " is" + } + ], + "top_tokens": null + }, + "generated_text": " Deep learning is a subset of machine learning that is" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 128000, + "logprob": null, + "text": "<|begin_of_text|>" + }, + { + "id": 3923, + "logprob": -5.6328125, + "text": "What" + }, + { + "id": 374, + "logprob": -1.2265625, + "text": " is" + }, + { + "id": 5655, + "logprob": -9.1015625, + "text": " deep" + }, + { + "id": 6975, + "logprob": -1.8085938, + "text": " learning" + }, + { + "id": 30, + "logprob": -1.0439453, + "text": "?" + } + ], + "seed": null, + "tokens": [ + { + "id": 18682, + "logprob": -2.1992188, + "special": false, + "text": " Deep" + }, + { + "id": 6975, + "logprob": -0.07897949, + "special": false, + "text": " learning" + }, + { + "id": 374, + "logprob": -0.27734375, + "special": false, + "text": " is" + }, + { + "id": 264, + "logprob": -0.37402344, + "special": false, + "text": " a" + }, + { + "id": 27084, + "logprob": -1.4511719, + "special": false, + "text": " subset" + }, + { + "id": 315, + "logprob": -0.02909851, + "special": false, + "text": " of" + }, + { + "id": 5780, + "logprob": -0.25854492, + "special": false, + "text": " machine" + }, + { + "id": 6975, + "logprob": -0.0061798096, + "special": false, + "text": " learning" + }, + { + "id": 430, + "logprob": -1.3046875, + "special": false, + "text": " that" + }, + { + "id": 374, + "logprob": -1.5537109, + "special": false, + "text": " is" + } + ], + "top_tokens": null + }, + "generated_text": " Deep learning is a subset of machine learning that is" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 128000, + "logprob": null, + "text": "<|begin_of_text|>" + }, + { + "id": 3923, + "logprob": -5.6328125, + "text": "What" + }, + { + "id": 374, + "logprob": -1.2265625, + "text": " is" + }, + { + "id": 5655, + "logprob": -9.1015625, + "text": " deep" + }, + { + "id": 6975, + "logprob": -1.8085938, + "text": " learning" + }, + { + "id": 30, + "logprob": -1.0439453, + "text": "?" + } + ], + "seed": null, + "tokens": [ + { + "id": 18682, + "logprob": -2.1992188, + "special": false, + "text": " Deep" + }, + { + "id": 6975, + "logprob": -0.07897949, + "special": false, + "text": " learning" + }, + { + "id": 374, + "logprob": -0.27734375, + "special": false, + "text": " is" + }, + { + "id": 264, + "logprob": -0.37402344, + "special": false, + "text": " a" + }, + { + "id": 27084, + "logprob": -1.4511719, + "special": false, + "text": " subset" + }, + { + "id": 315, + "logprob": -0.02909851, + "special": false, + "text": " of" + }, + { + "id": 5780, + "logprob": -0.25854492, + "special": false, + "text": " machine" + }, + { + "id": 6975, + "logprob": -0.0061798096, + "special": false, + "text": " learning" + }, + { + "id": 430, + "logprob": -1.3046875, + "special": false, + "text": " that" + }, + { + "id": 374, + "logprob": -1.5537109, + "special": false, + "text": " is" + } + ], + "top_tokens": null + }, + "generated_text": " Deep learning is a subset of machine learning that is" + } +] diff --git a/integration-tests/models/test_flash_llama_fp8_kv_cache.py b/integration-tests/models/test_flash_llama_fp8_kv_cache.py new file mode 100644 index 00000000..05e9f0dd --- /dev/null +++ b/integration-tests/models/test_flash_llama_fp8_kv_cache.py @@ -0,0 +1,77 @@ +import pytest + + +@pytest.fixture(scope="module") +def flash_llama_fp8_kv_cache_handle(launcher): + with launcher( + "meta-llama/Meta-Llama-3-8B", num_shard=2, kv_cache_dtype="fp8_e5m2" + ) as handle: + yield handle + + +@pytest.fixture(scope="module") +async def flash_llama_fp8_kv_cache(flash_llama_fp8_kv_cache_handle): + await flash_llama_fp8_kv_cache_handle.health(300) + return flash_llama_fp8_kv_cache_handle.client + + +@pytest.mark.release +@pytest.mark.asyncio +@pytest.mark.private +async def test_flash_llama_fp8_kv_cache(flash_llama_fp8_kv_cache, response_snapshot): + response = await flash_llama_fp8_kv_cache.generate( + "What is deep learning?", max_new_tokens=10, decoder_input_details=True + ) + + assert ( + response.generated_text + == " Deep learning is a subset of machine learning that is" + ) + assert response.details.generated_tokens == 10 + assert response == response_snapshot + + +@pytest.mark.release +@pytest.mark.asyncio +@pytest.mark.private +async def test_flash_llama_fp8_kv_cache_all_params( + flash_llama_fp8_kv_cache, response_snapshot +): + response = await flash_llama_fp8_kv_cache.generate( + "What is deep learning?", + max_new_tokens=10, + repetition_penalty=1.2, + return_full_text=True, + stop_sequences=["test"], + temperature=0.5, + top_p=0.9, + top_k=10, + truncate=5, + typical_p=0.9, + watermark=True, + decoder_input_details=True, + seed=0, + ) + + assert response == response_snapshot + + +@pytest.mark.release +@pytest.mark.asyncio +@pytest.mark.private +async def test_flash_llama_fp8_kv_cache_load( + flash_llama_fp8_kv_cache, generate_load, response_snapshot +): + responses = await generate_load( + flash_llama_fp8_kv_cache, "What is deep learning?", max_new_tokens=10, n=4 + ) + + assert len(responses) == 4 + assert ( + responses[0].generated_text + == " Deep learning is a subset of machine learning that is" + ) + assert all( + [r.generated_text == responses[0].generated_text for r in responses] + ), f"Different messages : {[r.generated_text for r in responses]}" + assert responses == response_snapshot diff --git a/launcher/src/main.rs b/launcher/src/main.rs index aba497d6..214adcdc 100644 --- a/launcher/src/main.rs +++ b/launcher/src/main.rs @@ -301,6 +301,22 @@ impl std::fmt::Display for Dtype { } } +#[derive(Clone, Copy, Debug, ValueEnum)] +enum KVCacheDtype { + #[clap(name = "fp8_e5m2")] + Fp8e5m2, +} + +impl std::fmt::Display for KVCacheDtype { + fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { + match self { + KVCacheDtype::Fp8e5m2 => { + write!(f, "fp8_e5m2") + } + } + } +} + #[derive(Clone, Copy, Debug, ValueEnum)] enum RopeScaling { Linear, @@ -402,6 +418,12 @@ struct Args { #[clap(long, env, value_enum)] dtype: Option, + /// Specify the dtype for the key-value cache. When this option is not provided, + /// the dtype of the model is used (typically `float16` or `bfloat16`). Currently + /// the only supported value is `fp8_e5m2` on CUDA. + #[clap(long, env, value_enum)] + kv_cache_dtype: Option, + /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is /// encouraged when loading a model with custom code to ensure no malicious code has been /// contributed in a newer revision. @@ -670,6 +692,7 @@ fn shard_manager( quantize: Option, speculate: Option, dtype: Option, + kv_cache_dtype: Option, trust_remote_code: bool, uds_path: String, rank: usize, @@ -743,6 +766,11 @@ fn shard_manager( shard_args.push(dtype.to_string()) } + if let Some(kv_cache_dtype) = kv_cache_dtype { + shard_args.push("--kv-cache-dtype".to_string()); + shard_args.push(kv_cache_dtype.to_string()) + } + // Model optional revision if let Some(revision) = revision { shard_args.push("--revision".to_string()); @@ -1299,6 +1327,7 @@ fn spawn_shards( let otlp_service_name = args.otlp_service_name.clone(); let speculate = args.speculate; let dtype = args.dtype; + let kv_cache_dtype = args.kv_cache_dtype; let trust_remote_code = args.trust_remote_code; let master_port = args.master_port; let disable_custom_kernels = args.disable_custom_kernels; @@ -1317,6 +1346,7 @@ fn spawn_shards( quantize, speculate, dtype, + kv_cache_dtype, trust_remote_code, uds_path, rank, diff --git a/server/text_generation_server/cli.py b/server/text_generation_server/cli.py index 10aa3a3b..db390234 100644 --- a/server/text_generation_server/cli.py +++ b/server/text_generation_server/cli.py @@ -30,6 +30,10 @@ class Dtype(str, Enum): bloat16 = "bfloat16" +class KVCacheDtype(str, Enum): + fp8_e5m2 = "fp8_e5m2" + + @app.command() def serve( model_id: str, @@ -38,6 +42,7 @@ def serve( quantize: Optional[Quantization] = None, speculate: Optional[int] = None, dtype: Optional[Dtype] = None, + kv_cache_dtype: Optional[KVCacheDtype] = None, trust_remote_code: bool = False, uds_path: Path = "/tmp/text-generation-server", logger_level: str = "INFO", @@ -97,6 +102,7 @@ def serve( # Downgrade enum into str for easier management later on quantize = None if quantize is None else quantize.value dtype = None if dtype is None else dtype.value + kv_cache_dtype = None if kv_cache_dtype is None else kv_cache_dtype.value if dtype is not None and quantize not in { None, "bitsandbytes", @@ -114,6 +120,7 @@ def serve( quantize, speculate, dtype, + kv_cache_dtype, trust_remote_code, uds_path, max_input_tokens, diff --git a/server/text_generation_server/layers/attention/__init__.py b/server/text_generation_server/layers/attention/__init__.py index 4f2b9807..cc7f0caa 100644 --- a/server/text_generation_server/layers/attention/__init__.py +++ b/server/text_generation_server/layers/attention/__init__.py @@ -1,37 +1,40 @@ -from text_generation_server.utils.import_utils import SYSTEM import os +from text_generation_server.utils.import_utils import SYSTEM + from .common import Seqlen if os.getenv("USE_FLASH_ATTENTION", "").lower() == "false": raise ImportError("`USE_FLASH_ATTENTION` is false.") if SYSTEM == "cuda": from .cuda import ( + PREFILL_IN_KV_CACHE, + SUPPORTS_WINDOWING, attention, paged_attention, reshape_and_cache, - SUPPORTS_WINDOWING, - PREFILL_IN_KV_CACHE, ) elif SYSTEM == "rocm": from .rocm import ( + PREFILL_IN_KV_CACHE, + SUPPORTS_WINDOWING, attention, paged_attention, reshape_and_cache, - PREFILL_IN_KV_CACHE, - SUPPORTS_WINDOWING, ) elif SYSTEM == "ipex": from .ipex import ( + PREFILL_IN_KV_CACHE, + SUPPORTS_WINDOWING, attention, paged_attention, reshape_and_cache, - PREFILL_IN_KV_CACHE, - SUPPORTS_WINDOWING, ) else: raise ImportError(f"System {SYSTEM} doesn't support flash/paged attention") +# KVCache needs `reshape_and_cache`, so ensure that it is defined already. +from .kv_cache import KVCache __all__ = [ "attention", @@ -39,5 +42,6 @@ __all__ = [ "reshape_and_cache", "PREFILL_IN_KV_CACHE", "SUPPORTS_WINDOWING", + "KVCache", "Seqlen", ] diff --git a/server/text_generation_server/layers/attention/cuda.py b/server/text_generation_server/layers/attention/cuda.py index 51af928d..cd3ea369 100644 --- a/server/text_generation_server/layers/attention/cuda.py +++ b/server/text_generation_server/layers/attention/cuda.py @@ -355,3 +355,11 @@ else: # have a configuration that requires flash-attention v1, which # does not support block tables. PREFILL_IN_KV_CACHE = ATTENTION != "paged" or V2 + +__all__ = [ + "PREFILL_IN_KV_CACHE", + "SUPPORTS_WINDOWING", + "attention", + "paged_attention", + "reshape_and_cache", +] diff --git a/server/text_generation_server/layers/attention/ipex.py b/server/text_generation_server/layers/attention/ipex.py index 657c90af..131c9bb0 100644 --- a/server/text_generation_server/layers/attention/ipex.py +++ b/server/text_generation_server/layers/attention/ipex.py @@ -80,3 +80,12 @@ def paged_attention( None, ) return out + + +__all__ = [ + "PREFILL_IN_KV_CACHE", + "SUPPORTS_WINDOWING", + "attention", + "paged_attention", + "reshape_and_cache", +] diff --git a/server/text_generation_server/layers/attention/kv_cache.py b/server/text_generation_server/layers/attention/kv_cache.py new file mode 100644 index 00000000..80033122 --- /dev/null +++ b/server/text_generation_server/layers/attention/kv_cache.py @@ -0,0 +1,121 @@ +from typing import Tuple + +import torch +from text_generation_server.models.globals import ATTENTION, BLOCK_SIZE +from text_generation_server.utils.import_utils import SYSTEM +from text_generation_server.layers.attention import reshape_and_cache + + +class KVCache: + """ + Key-value cache for attention layers. + """ + + kv_cache: Tuple[torch.Tensor, torch.Tensor] + + def __init__( + self, + *, + num_blocks: int, + num_heads: int, + head_size: int, + dtype: torch.dtype, + device: torch.device, + ): + """Construct the key-value cache for a layer.""" + + if ( + dtype == torch.float8_e5m2 + and ATTENTION != "flashinfer" + and SYSTEM != "cuda" + ): + raise ValueError( + "float8_e5m2 KV cache is currently only supported for flashinfer on CUDA" + ) + + element_size = torch.tensor([], dtype=dtype).element_size() + if SYSTEM == "ipex" and device.type == "xpu": + x = 1 + else: + x = BLOCK_SIZE // element_size + + if ATTENTION in {"flashdecoding", "flashinfer"}: + self.kv_cache = ( + torch.empty( + (num_blocks, BLOCK_SIZE, num_heads, head_size), + dtype=dtype, + device=device, + ), + torch.empty( + (num_blocks, BLOCK_SIZE, num_heads, head_size), + dtype=dtype, + device=device, + ), + ) + elif SYSTEM == "ipex" and device == torch.device("cpu"): + self.kv_cache = ( + torch.empty( + (num_blocks, num_heads, BLOCK_SIZE, head_size), + dtype=dtype, + device=device, + ), + torch.empty( + (num_blocks, num_heads, BLOCK_SIZE, head_size), + dtype=dtype, + device=device, + ), + ) + else: + self.kv_cache = ( + torch.zeros( + (num_blocks, num_heads, head_size // x, BLOCK_SIZE, x), + dtype=dtype, + device=device, + ), + torch.zeros( + (num_blocks, num_heads, head_size, BLOCK_SIZE), + dtype=dtype, + device=device, + ), + ) + + @property + def key(self): + """Get the key cache.""" + + return self.kv_cache[0] + + @property + def value(self): + """Get the value cache.""" + + return self.kv_cache[1] + + def store( + self, + *, + key: torch.Tensor, + value: torch.Tensor, + slots: torch.Tensor, + ): + """Store the key and value at the given slots.""" + + key_cache = self.kv_cache[0] + value_cache = self.kv_cache[1] + + if ATTENTION in {"flashdecoding", "flashinfer"}: + # TODO: add scale + key = key.to(key_cache.dtype) + value = value.to(value_cache.dtype) + if key_cache.dtype == torch.float8_e5m2: + # Torch index_put does not support float8_e5m2 yet, so + # put as raw data instead. + key_cache = key_cache.view(torch.uint8) + value_cache = value_cache.view(torch.uint8) + key = key.view(torch.uint8) + value = value.view(torch.uint8) + shape = key_cache.shape + key_cache.view(-1, shape[-2], shape[-1])[slots] = key + value_cache.view(-1, shape[-2], shape[-1])[slots] = value + else: + reshape_and_cache(key, value, key_cache, value_cache, slots) diff --git a/server/text_generation_server/layers/attention/rocm.py b/server/text_generation_server/layers/attention/rocm.py index 646a763d..01d4685a 100644 --- a/server/text_generation_server/layers/attention/rocm.py +++ b/server/text_generation_server/layers/attention/rocm.py @@ -306,3 +306,11 @@ elif ENGINE == "triton": else: raise RuntimeError(f"Unknown attention engine {ENGINE}") + +__all__ = [ + "PREFILL_IN_KV_CACHE", + "SUPPORTS_WINDOWING", + "attention", + "paged_attention", + "reshape_and_cache", +] diff --git a/server/text_generation_server/models/__init__.py b/server/text_generation_server/models/__init__.py index 4dabf71d..17eed976 100644 --- a/server/text_generation_server/models/__init__.py +++ b/server/text_generation_server/models/__init__.py @@ -342,6 +342,7 @@ def get_model( quantize: Optional[str], speculate: Optional[int], dtype: Optional[str], + kv_cache_dtype: Optional[str], trust_remote_code: bool, max_input_tokens: int, ) -> Model: @@ -403,6 +404,13 @@ def get_model( else: raise RuntimeError(f"Unknown dtype {dtype}") + if kv_cache_dtype is None: + kv_cache_dtype = dtype + elif kv_cache_dtype == "fp8_e5m2": + kv_cache_dtype = torch.float8_e5m2 + else: + raise RuntimeError(f"Unknown kv_cache_dtype: {kv_cache_dtype}") + if speculate is not None: set_speculate(speculate) else: @@ -563,6 +571,7 @@ def get_model( speculator=speculator, default_dtype=torch.bfloat16, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, config_class=DeepseekV2Config, @@ -617,6 +626,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, aliases={"transformer.wte.weight": ["lm_head.weight"]}, @@ -668,6 +678,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) @@ -703,6 +714,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) @@ -741,6 +753,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, config_class=GPTNeoXConfig, @@ -774,6 +787,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) @@ -797,6 +811,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) @@ -836,6 +851,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) @@ -859,6 +875,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, # Works better for these models default_dtype=torch.bfloat16, trust_remote_code=trust_remote_code, @@ -884,6 +901,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, # Works better for these models default_dtype=torch.bfloat16, trust_remote_code=trust_remote_code, @@ -910,6 +928,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) @@ -934,6 +953,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, # Dbrx works better in bfloat16. default_dtype=torch.bfloat16, trust_remote_code=trust_remote_code, @@ -964,6 +984,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, aliases={ "lm_head.weight": ["transformer.word_embeddings.weight"], "transformer.word_embeddings.weight": ["lm_head.weight"], @@ -982,6 +1003,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, aliases={ "lm_head.weight": ["transformer.word_embeddings.weight"], "transformer.word_embeddings.weight": ["lm_head.weight"], @@ -1009,6 +1031,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) @@ -1033,6 +1056,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) @@ -1057,6 +1081,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) @@ -1083,6 +1108,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) @@ -1162,6 +1188,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, # XXX: Extremely important to cap resolution in order to limit @@ -1179,6 +1206,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, # Works better for these models default_dtype=torch.bfloat16, trust_remote_code=trust_remote_code, @@ -1197,6 +1225,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, ) else: @@ -1269,6 +1298,7 @@ def get_model_with_lora_adapters( quantize: Optional[str], speculate: Optional[int], dtype: Optional[str], + kv_cache_dtype: Optional[str], trust_remote_code: bool, max_input_tokens: int, adapter_to_index: Dict[str, int], @@ -1282,6 +1312,7 @@ def get_model_with_lora_adapters( quantize, speculate, dtype, + kv_cache_dtype, trust_remote_code, max_input_tokens, ) diff --git a/server/text_generation_server/models/custom_modeling/flash_cohere_modeling.py b/server/text_generation_server/models/custom_modeling/flash_cohere_modeling.py index 30656038..d0425fec 100644 --- a/server/text_generation_server/models/custom_modeling/flash_cohere_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_cohere_modeling.py @@ -28,7 +28,6 @@ from typing import Optional, List, Tuple from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.utils.import_utils import SYSTEM @@ -291,15 +290,15 @@ class FlashCohereAttention(torch.nn.Module): self.rotary_emb(query, key, cos, sin) - reshape_and_cache(key, value, kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=key, value=value, slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if PREFILL_IN_KV_CACHE else key, - kv_cache[1] if PREFILL_IN_KV_CACHE else value, + kv_cache.key if PREFILL_IN_KV_CACHE else key, + kv_cache.value if PREFILL_IN_KV_CACHE else value, seqlen, block_tables, self.softmax_scale, @@ -308,8 +307,8 @@ class FlashCohereAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_dbrx_modeling.py b/server/text_generation_server/models/custom_modeling/flash_dbrx_modeling.py index 1137a453..b2b0cecb 100644 --- a/server/text_generation_server/models/custom_modeling/flash_dbrx_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_dbrx_modeling.py @@ -28,7 +28,6 @@ if SYSTEM != "ipex": from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, PREFILL_IN_KV_CACHE, ) @@ -330,15 +329,15 @@ class DbrxAttention(torch.nn.Module): self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin) - reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=kv[:, 0], value=kv[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, 0], - kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv[:, 1], seqlen, block_tables, self.softmax_scale, @@ -347,8 +346,8 @@ class DbrxAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py b/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py index 88c2cf80..af77af8e 100644 --- a/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py @@ -33,7 +33,6 @@ from text_generation_server.layers.attention import ( Seqlen, attention, paged_attention, - reshape_and_cache, ) from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.layernorm import FastRMSNorm @@ -321,15 +320,15 @@ class DeepseekV2Attention(torch.nn.Module): value, (0, self.head_pad_size - self.value_head_size), value=0 ) - reshape_and_cache(key, value, kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=key, value=value, slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if PREFILL_IN_KV_CACHE else key, - kv_cache[1] if PREFILL_IN_KV_CACHE else value, + kv_cache.key if PREFILL_IN_KV_CACHE else key, + kv_cache.value if PREFILL_IN_KV_CACHE else value, seqlen, block_tables, self.softmax_scale, @@ -338,8 +337,8 @@ class DeepseekV2Attention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py b/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py index 7a3d60c9..03b9b2a0 100644 --- a/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py @@ -28,7 +28,6 @@ from typing import Optional, List, Tuple from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -253,15 +252,15 @@ class FlashGemma2Attention(torch.nn.Module): self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin) - reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=kv[:, 0], value=kv[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, 0], - kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv[:, 1], seqlen, block_tables, self.softmax_scale, @@ -273,8 +272,8 @@ class FlashGemma2Attention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_gemma_modeling.py b/server/text_generation_server/models/custom_modeling/flash_gemma_modeling.py index 4c1be6f6..f3c46901 100644 --- a/server/text_generation_server/models/custom_modeling/flash_gemma_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_gemma_modeling.py @@ -28,7 +28,6 @@ from typing import Optional, List, Tuple from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, PREFILL_IN_KV_CACHE, ) @@ -224,15 +223,15 @@ class FlashGemmaAttention(torch.nn.Module): self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin) - reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=kv[:, 0], value=kv[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, 0], - kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv[:, 1], seqlen, block_tables, self.softmax_scale, @@ -242,8 +241,8 @@ class FlashGemmaAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_gpt2_modeling.py b/server/text_generation_server/models/custom_modeling/flash_gpt2_modeling.py index 44c015cf..94a8898d 100644 --- a/server/text_generation_server/models/custom_modeling/flash_gpt2_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_gpt2_modeling.py @@ -28,7 +28,6 @@ from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -224,15 +223,15 @@ class FlashGPT2Attention(torch.nn.Module): key = key.view(-1, self.num_heads, self.head_size) value = value.view(-1, self.num_heads, self.head_size) - reshape_and_cache(key, value, kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=key, value=value, slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if PREFILL_IN_KV_CACHE else key, - kv_cache[1] if PREFILL_IN_KV_CACHE else value, + kv_cache.key if PREFILL_IN_KV_CACHE else key, + kv_cache.value if PREFILL_IN_KV_CACHE else value, seqlen, block_tables, self.softmax_scale, @@ -241,8 +240,8 @@ class FlashGPT2Attention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_gptj_modeling.py b/server/text_generation_server/models/custom_modeling/flash_gptj_modeling.py index aca97004..f0a1270e 100644 --- a/server/text_generation_server/models/custom_modeling/flash_gptj_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_gptj_modeling.py @@ -28,7 +28,6 @@ from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -186,15 +185,15 @@ class FlashGPTJAttention(torch.nn.Module): else: self.rotary_emb(query, key, cos, sin) - reshape_and_cache(key, value, kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=key, value=value, slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if PREFILL_IN_KV_CACHE else key, - kv_cache[1] if PREFILL_IN_KV_CACHE else value, + kv_cache.key if PREFILL_IN_KV_CACHE else key, + kv_cache.value if PREFILL_IN_KV_CACHE else value, seqlen, block_tables, self.softmax_scale, @@ -203,8 +202,8 @@ class FlashGPTJAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py b/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py index c9ec70cc..fbe45d79 100644 --- a/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py @@ -27,13 +27,12 @@ import torch.distributed from torch import nn from transformers.activations import ACT2FN -from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE, KVCache from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -202,7 +201,7 @@ class FlashLlamaAttention(torch.nn.Module): cos, sin, cu_seqlen_prefill, - kv_cache, + kv_cache: KVCache, block_tables, slots, seqlen, @@ -222,15 +221,15 @@ class FlashLlamaAttention(torch.nn.Module): self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin) - reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=kv[:, 0], value=kv[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, 0], - kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv[:, 1], seqlen, block_tables, self.softmax_scale, @@ -239,8 +238,8 @@ class FlashLlamaAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_mistral_modeling.py b/server/text_generation_server/models/custom_modeling/flash_mistral_modeling.py index 341a2352..8974035e 100644 --- a/server/text_generation_server/models/custom_modeling/flash_mistral_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_mistral_modeling.py @@ -30,7 +30,6 @@ from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -210,17 +209,15 @@ class MistralAttention(torch.nn.Module): else: kv_to_cache = kv - reshape_and_cache( - kv_to_cache[:, 0], kv_to_cache[:, 1], kv_cache[0], kv_cache[1], slots - ) + kv_cache.store(key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0], - kv_cache[1] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1], seqlen, block_tables, self.softmax_scale, @@ -230,8 +227,8 @@ class MistralAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_mixtral_modeling.py b/server/text_generation_server/models/custom_modeling/flash_mixtral_modeling.py index 5836d30a..e7bc8320 100644 --- a/server/text_generation_server/models/custom_modeling/flash_mixtral_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_mixtral_modeling.py @@ -37,7 +37,6 @@ from text_generation_server.layers.attention import ( Seqlen, attention, paged_attention, - reshape_and_cache, ) from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.layernorm import FastRMSNorm @@ -258,17 +257,15 @@ class MixtralAttention(torch.nn.Module): else: kv_to_cache = kv - reshape_and_cache( - kv_to_cache[:, 0], kv_to_cache[:, 1], kv_cache[0], kv_cache[1], slots - ) + kv_cache.store(key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0], - kv_cache[1] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1], seqlen, block_tables, self.softmax_scale, @@ -278,8 +275,8 @@ class MixtralAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_neox_modeling.py b/server/text_generation_server/models/custom_modeling/flash_neox_modeling.py index ad4e382f..bcbea442 100644 --- a/server/text_generation_server/models/custom_modeling/flash_neox_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_neox_modeling.py @@ -29,7 +29,6 @@ from typing import Optional, List, Tuple from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -165,15 +164,15 @@ class FlashNeoxAttention(torch.nn.Module): qkv[:, 0] = torch.cat((query_rot, query_pass), dim=-1) qkv[:, 1] = torch.cat((key_rot, key_pass), dim=-1) - reshape_and_cache(qkv[:, 1], qkv[:, 2], kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=qkv[:, 1], value=qkv[:, 2], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( qkv[:, 0], - kv_cache[0] if PREFILL_IN_KV_CACHE else qkv[:, 1], - kv_cache[1] if PREFILL_IN_KV_CACHE else qkv[:, 2], + kv_cache.key if PREFILL_IN_KV_CACHE else qkv[:, 1], + kv_cache.value if PREFILL_IN_KV_CACHE else qkv[:, 2], seqlen, block_tables, self.softmax_scale, @@ -182,8 +181,8 @@ class FlashNeoxAttention(torch.nn.Module): else: attn_output = paged_attention( qkv[:, 0], - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_phi_modeling.py b/server/text_generation_server/models/custom_modeling/flash_phi_modeling.py index 2a0dc606..cb7b6ee2 100644 --- a/server/text_generation_server/models/custom_modeling/flash_phi_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_phi_modeling.py @@ -9,7 +9,6 @@ from typing import Optional, List, Tuple from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -188,14 +187,14 @@ class FlashPhiAttention(torch.nn.Module): ) # Reshape key and value and cache - reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=kv[:, 0], value=kv[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: attn_output = attention( query, - kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, 0], - kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv[:, 1], seqlen, block_tables, self.softmax_scale, @@ -204,8 +203,8 @@ class FlashPhiAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_qwen2_modeling.py b/server/text_generation_server/models/custom_modeling/flash_qwen2_modeling.py index 02c788d3..8185885f 100644 --- a/server/text_generation_server/models/custom_modeling/flash_qwen2_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_qwen2_modeling.py @@ -8,7 +8,6 @@ from typing import Optional, List, Tuple from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -128,17 +127,15 @@ class Qwen2Attention(torch.nn.Module): else: kv_to_cache = kv - reshape_and_cache( - kv_to_cache[:, 0], kv_to_cache[:, 1], kv_cache[0], kv_cache[1], slots - ) + kv_cache.store(key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0], - kv_cache[1] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1], seqlen, block_tables, self.softmax_scale, @@ -148,8 +145,8 @@ class Qwen2Attention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_rw_modeling.py b/server/text_generation_server/models/custom_modeling/flash_rw_modeling.py index 6671d85e..dac8ecf9 100644 --- a/server/text_generation_server/models/custom_modeling/flash_rw_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_rw_modeling.py @@ -18,7 +18,6 @@ from text_generation_server.layers.rotary import PositionRotaryEmbedding from text_generation_server.layers.attention import ( attention, paged_attention, - reshape_and_cache, Seqlen, ) @@ -200,15 +199,15 @@ class FlashRWAttention(torch.nn.Module): # Inplace rotary self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin) - reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=kv[:, 0], value=kv[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, 0], - kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv[:, 1], seqlen, block_tables, self.softmax_scale, @@ -217,8 +216,8 @@ class FlashRWAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, @@ -312,12 +311,8 @@ class FlashRWLargeAttention(torch.nn.Module): # Inplace rotary self.rotary_emb(query, torch.select(kv, dim=2, index=0), cos, sin) - reshape_and_cache( - kv[:, :, 0].contiguous(), - kv[:, :, 1].contiguous(), - kv_cache[0], - kv_cache[1], - slots, + kv_cache.store( + key=kv[:, :, 0].contiguous(), value=kv[:, :, 1].contiguous(), slots=slots ) # Prefill @@ -325,8 +320,8 @@ class FlashRWLargeAttention(torch.nn.Module): # flash attention attn_output = attention( query, - kv_cache[0] if PREFILL_IN_KV_CACHE else kv[:, :, 0].contiguous(), - kv_cache[1] if PREFILL_IN_KV_CACHE else kv[:, :, 1].contiguous(), + kv_cache.key if PREFILL_IN_KV_CACHE else kv[:, :, 0].contiguous(), + kv_cache.value if PREFILL_IN_KV_CACHE else kv[:, :, 1].contiguous(), seqlen, block_tables, self.softmax_scale, @@ -335,8 +330,8 @@ class FlashRWLargeAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_santacoder_modeling.py b/server/text_generation_server/models/custom_modeling/flash_santacoder_modeling.py index 43eb9687..5972d436 100644 --- a/server/text_generation_server/models/custom_modeling/flash_santacoder_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_santacoder_modeling.py @@ -8,7 +8,6 @@ from typing import Optional, List, Tuple from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -284,17 +283,15 @@ class FlashMQAttention(torch.nn.Module): query = query.view(-1, self.num_heads, self.head_size) key_value = key_value.view(-1, 2, 1, self.head_size) - reshape_and_cache( - key_value[:, 0], key_value[:, 1], kv_cache[0], kv_cache[1], slots - ) + kv_cache.store(key=key_value[:, 0], value=key_value[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if PREFILL_IN_KV_CACHE else key_value[:, 0], - kv_cache[1] if PREFILL_IN_KV_CACHE else key_value[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else key_value[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else key_value[:, 1], seqlen, block_tables, self.softmax_scale, @@ -303,8 +300,8 @@ class FlashMQAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_starcoder2_modeling.py b/server/text_generation_server/models/custom_modeling/flash_starcoder2_modeling.py index 4975cf22..037238b8 100644 --- a/server/text_generation_server/models/custom_modeling/flash_starcoder2_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_starcoder2_modeling.py @@ -29,7 +29,6 @@ from typing import Optional, List, Tuple from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -233,17 +232,15 @@ class Starcoder2Attention(torch.nn.Module): else: kv_to_cache = kv - reshape_and_cache( - kv_to_cache[:, 0], kv_to_cache[:, 1], kv_cache[0], kv_cache[1], slots - ) + kv_cache.store(key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0], - kv_cache[1] if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1], seqlen, block_tables, self.softmax_scale, @@ -253,8 +250,8 @@ class Starcoder2Attention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/flash_causal_lm.py b/server/text_generation_server/models/flash_causal_lm.py index bc9d44a0..33fe30a8 100644 --- a/server/text_generation_server/models/flash_causal_lm.py +++ b/server/text_generation_server/models/flash_causal_lm.py @@ -46,7 +46,7 @@ from text_generation_server.models.globals import ( TGI_WIGGLE_ROOM, get_adapter_to_index, ) -from text_generation_server.layers.attention import Seqlen +from text_generation_server.layers.attention import KVCache, Seqlen from text_generation_server.utils import StoppingCriteria, HeterogeneousNextTokenChooser from text_generation_server.utils.dist import MEMORY_FRACTION from text_generation_server.utils.quantization import get_loader @@ -937,6 +937,7 @@ class FlashCausalLM(Model): # Deepseek V2 uses different QK and V dims. head_size: Optional[int] = None, skip_special_tokens: bool = True, + kv_cache_dtype: Optional[torch.dtype] = None, ): self.quantize = quantize self.process_group, rank, world_size = initialize_torch_distributed() @@ -1034,6 +1035,7 @@ class FlashCausalLM(Model): self.cuda_graphs = {} self.kv_cache = [] + self.kv_cache_dtype = dtype if kv_cache_dtype is None else kv_cache_dtype if ATTENTION == "flashinfer": from text_generation_server.layers.attention.flashinfer import ( @@ -1083,61 +1085,16 @@ class FlashCausalLM(Model): ): self.kv_cache = [] empty_cache() - - element_size = torch.tensor([], dtype=dtype).element_size() - if SYSTEM == "ipex" and device.type == "xpu": - x = 1 - else: - x = BLOCK_SIZE // element_size - - if ATTENTION in {"flashdecoding", "flashinfer"}: - self.kv_cache = [ - ( - torch.empty( - (num_blocks, BLOCK_SIZE, num_heads, head_size), - dtype=dtype, - device=device, - ), - torch.empty( - (num_blocks, BLOCK_SIZE, num_heads, head_size), - dtype=dtype, - device=device, - ), - ) - for _ in range(num_layers) - ] - elif SYSTEM == "ipex" and device == torch.device("cpu"): - self.kv_cache = [ - ( - torch.empty( - (num_blocks, num_heads, BLOCK_SIZE, head_size), - dtype=dtype, - device=device, - ), - torch.empty( - (num_blocks, num_heads, BLOCK_SIZE, head_size), - dtype=dtype, - device=device, - ), - ) - for _ in range(num_layers) - ] - else: - self.kv_cache = [ - ( - torch.zeros( - (num_blocks, num_heads, head_size // x, BLOCK_SIZE, x), - dtype=dtype, - device=device, - ), - torch.zeros( - (num_blocks, num_heads, head_size, BLOCK_SIZE), - dtype=dtype, - device=device, - ), - ) - for _ in range(num_layers) - ] + self.kv_cache = [ + KVCache( + num_blocks=num_blocks, + num_heads=num_heads, + head_size=head_size, + dtype=dtype, + device=device, + ) + for _ in range(num_layers) + ] def cuda_graph_warmup(self, bs: int, max_s: int, max_bt: int): input_ids = torch.zeros(bs, dtype=torch.int64, device=self.device) @@ -1258,7 +1215,7 @@ class FlashCausalLM(Model): self.num_layers, self.num_kv_heads, self.head_size, - self.dtype, + self.kv_cache_dtype, self.device, ) max_bt = batch.max_blocks @@ -1277,7 +1234,7 @@ class FlashCausalLM(Model): # Inspired by the original implementation in [vllm](https://github.com/vllm-project/vllm) # Calculate the number of blocks that can be allocated with the free memory - dtype_size = torch.tensor([], dtype=self.dtype).element_size() + dtype_size = torch.tensor([], dtype=self.kv_cache_dtype).element_size() cache_block_size = BLOCK_SIZE * self.num_kv_heads * self.head_size total_cache_size = self.num_layers * cache_block_size * 2 * dtype_size @@ -1291,6 +1248,8 @@ class FlashCausalLM(Model): + batch_num_blocks ) + log_master(logger.info, f"KV-cache blocks: {num_blocks}, size: {BLOCK_SIZE}") + del batch self.init_kv_cache( @@ -1298,7 +1257,7 @@ class FlashCausalLM(Model): self.num_layers, self.num_kv_heads, self.head_size, - self.dtype, + self.kv_cache_dtype, self.device, ) diff --git a/server/text_generation_server/server.py b/server/text_generation_server/server.py index e7dfd8e4..46e342a4 100644 --- a/server/text_generation_server/server.py +++ b/server/text_generation_server/server.py @@ -205,6 +205,7 @@ def serve( quantize: Optional[str], speculate: Optional[int], dtype: Optional[str], + kv_cache_dtype: Optional[str], trust_remote_code: bool, uds_path: Path, max_input_tokens: int, @@ -217,6 +218,7 @@ def serve( quantize: Optional[str] = None, speculate: Optional[int] = None, dtype: Optional[str] = None, + kv_cache_dtype: Optional[str] = None, trust_remote_code: bool = False, ): unix_socket_template = "unix://{}-{}" @@ -240,6 +242,7 @@ def serve( quantize, speculate, dtype, + kv_cache_dtype, trust_remote_code, max_input_tokens, adapter_to_index, @@ -286,6 +289,7 @@ def serve( quantize, speculate, dtype, + kv_cache_dtype, trust_remote_code, ) )