Batch size bucketing (#5)

This commit is contained in:
Karol Damaszke 2023-12-22 21:53:01 +01:00 committed by GitHub
parent e3dcd7f2c2
commit 1be2d9a8ec
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 277 additions and 478 deletions

View File

@ -74,6 +74,7 @@ Environment Variables Added:
| PROF_STEP | interger | 5 | Control profile step | add -e in docker run command | | PROF_STEP | interger | 5 | Control profile step | add -e in docker run command |
| PROF_PATH | string | /root/text-generation-inference | Define profile folder | add -e in docker run command | | PROF_PATH | string | /root/text-generation-inference | Define profile folder | add -e in docker run command |
| LIMIT_HPU_GRAPH | True/False | False | Skip HPU graph usage for prefill to save memory | add -e in docker run command | | LIMIT_HPU_GRAPH | True/False | False | Skip HPU graph usage for prefill to save memory | add -e in docker run command |
| BATCH_BUCKET_SIZE | integer | 8 | Batch size will be rounded to the nearest multiple of this number. This limits the number of cached graphs | add -e in docker run command |
</div> </div>

View File

@ -1,5 +1,6 @@
import os import os
import tempfile import tempfile
import itertools
from text_generation_server.utils.tokens import batch_top_tokens from text_generation_server.utils.tokens import batch_top_tokens
import torch import torch
@ -34,11 +35,98 @@ from loguru import logger
tracer = trace.get_tracer(__name__) tracer = trace.get_tracer(__name__)
BATCH_BUCKET_SIZE = int(os.environ.get('BATCH_BUCKET_SIZE', 8))
TRACE_FILENAME = os.environ.get('TRACE_FILENAME')
def trace(txt):
if TRACE_FILENAME is not None:
print(txt, flush=True, file=open(TRACE_FILENAME, 'a'))
def round_up(number, k):
return (number + k - 1) // k * k
def batch_alloc(new_bs, tensor):
return tensor.new_empty((new_bs,) + tensor.shape[1:])
def to_tensors(indices, device):
def convert(idx):
return torch.tensor(idx, device=device)
return [[(convert(dst), convert(src)) for dst, src in batch_ind] for batch_ind in indices]
def move_data(dst_tensor, chunk_size, indices, src_tensors):
batch_dim = 0
bs = dst_tensor.size(batch_dim)
assert bs % chunk_size == 0, 'Batch dim must be divisible by chunk size!'
result = dst_tensor
if chunk_size > 1:
dst_tensor = dst_tensor.view(bs // chunk_size, chunk_size, *dst_tensor.shape[1:])
htorch.core.mark_step()
for ind, src_t in zip(indices, src_tensors):
if chunk_size > 1:
src_t = src_t.view(bs // chunk_size, chunk_size, *src_t.shape[1:])
for dst_idx, src_idx in ind:
src_data = torch.index_select(src_t, batch_dim, src_idx)
dst_tensor.index_copy_(batch_dim, dst_idx, src_data)
htorch.core.mark_step()
return result
def shift(tensor, dim, offset):
shape = tensor.shape
elements = shape[dim]
if offset == 0 or abs(offset) > elements:
return tensor
htorch.core.mark_step()
indices = torch.arange(0, elements, dtype=torch.int32, device=tensor.device)
offset = torch.tensor(offset, dtype=torch.int32, device=tensor.device)
indices = torch.clamp(indices - offset, 0, elements - 1)
target_shape = [1,] * len(tensor.shape)
target_shape[dim] = elements
indices = indices.view(target_shape).expand(shape)
result = torch.gather(tensor, dim, indices)
htorch.core.mark_step()
return result
def shift_all(srcs, dim, offsets):
return [shift(src, dim, offset) for src, offset in zip(srcs, offsets)]
@dataclass
class CausalLMRequest:
idx: int
data: generate_pb2.Request
input_length: int
prefix_offset: int
read_offset: int
stopping_criteria: StoppingCriteria
all_input_ids: torch.Tensor
@classmethod
def from_pb(cls, idx: int, data: generate_pb2.Request, tokenizer: PreTrainedTokenizerBase):
return cls(
idx=idx,
data=data,
input_length=None,
prefix_offset=None,
read_offset=None,
stopping_criteria=StoppingCriteria.from_pb(data.stopping_parameters, tokenizer),
all_input_ids=None,)
def update_idx(self, new_idx):
prev = self.idx
self.idx = new_idx
return (new_idx, prev)
@dataclass @dataclass
class CausalLMBatch(Batch): class CausalLMBatch(Batch):
batch_id: int batch_id: int
requests: List[generate_pb2.Request] requests: List[CausalLMRequest]
requests_idx_mapping: Dict[int, int]
# Decoder values # Decoder values
input_ids: torch.Tensor input_ids: torch.Tensor
@ -46,38 +134,126 @@ class CausalLMBatch(Batch):
position_ids: torch.Tensor position_ids: torch.Tensor
past_key_values: Optional[List[Tuple]] past_key_values: Optional[List[Tuple]]
# All tokens
all_input_ids: List[torch.Tensor]
# Lengths of all generations present in the batch
input_lengths: List[int]
prefix_offsets: List[int]
read_offsets: List[int]
# Generation helpers # Generation helpers
next_token_chooser: HeterogeneousNextTokenChooser next_token_chooser: HeterogeneousNextTokenChooser
stopping_criterias: List[StoppingCriteria]
top_n_tokens: List[int] top_n_tokens: List[int]
top_n_tokens_tensor: torch.Tensor top_n_tokens_tensor: torch.Tensor
# Metadata used for padding
max_input_length: int
padding_right_offset: int
# Maximum number of tokens this batch will grow to # Maximum number of tokens this batch will grow to
max_tokens: int max_tokens: int
# Past metadata input_length: int
keys_head_dim_last: bool = True right_padding: int
def to_pb(self) -> generate_pb2.CachedBatch: def to_pb(self) -> generate_pb2.CachedBatch:
return generate_pb2.CachedBatch( return generate_pb2.CachedBatch(
id=self.batch_id, id=self.batch_id,
request_ids=[r.id for r in self.requests], request_ids=[r.data.id for r in self.requests],
size=len(self), size=len(self),
max_tokens=self.max_tokens, max_tokens=self.max_tokens,
) )
@classmethod
def recombine(cls, batches: List["CausalLMBatch"], req_ids: List[List[int]], is_optimized_for_gaudi: bool = False) -> "CausalLMBatch":
new_bs = round_up(sum([len(reqs) for reqs in req_ids]), BATCH_BUCKET_SIZE)
batch_id = batches[0].batch_id
device = batches[0].input_ids.device
# TODO: for now use consecutive indices. This could be optimized to reuse existing batch memory and only overwrite
# indices that are no longer used instead of allocating new memory
free_indices = itertools.count(0)
to_tensors = lambda ind: (torch.tensor(ind[0], device=device), torch.tensor(ind[1], device=device))
requests = [[req for req in batch.requests if req.data.id in ids] for batch, ids in zip(batches, req_ids)]
indices = [[to_tensors(req.update_idx(next(free_indices))) for req in batch_reqs] for batch_reqs in requests]
requests = list(itertools.chain(*requests))
# TODO: Add support for changing max seq len, i.e. due to output length bucketing
# FIXME: max_seq_len for non optimized code
max_input_length = max(req.input_length for req in requests)
offsets = [(max_input_length - b.input_length) for b in batches]
trace(f'RECOMBINE: bs:{new_bs} requests: {len(requests)} offsets: {offsets}')
max_seq_len = batches[0].attention_mask.size(1)
input_length = max(r.input_length for r in requests)
right_padding = max_seq_len - input_length
max_tokens = len(requests) * max_seq_len
chunk_size = batches[0].past_key_values[0][0].size(0) // batches[0].input_ids.size(0)
num_layers = len(batches[0].past_key_values)
past_key_values_type = type(batches[0].past_key_values)
seq_dim = 1
if batches[0].past_key_values[0][0].size(-1) != batches[0].past_key_values[0][1].size(-1):
# Case for Bloom
key_dim = -1
else:
key_dim = -2
value_dim = -2
for b in batches:
b.past_key_values = list(b.past_key_values)
src = [b.input_ids for b in batches]
for b in batches:
del b.input_ids
src = shift_all(src, seq_dim, offsets)
input_ids = batch_alloc(new_bs, src[0])
input_ids = move_data(input_ids, 1, indices, src)
src = [b.attention_mask for b in batches]
for b in batches:
del b.attention_mask
src = shift_all(src, seq_dim, offsets)
attention_mask = batch_alloc(new_bs, src[0])
attention_mask = move_data(attention_mask, 1, indices, src)
src = [b.position_ids for b in batches]
for b in batches:
del b.position_ids
src = shift_all(src, seq_dim, offsets)
position_ids = batch_alloc(new_bs, src[0])
position_ids = move_data(position_ids, 1, indices, src)
past_key_values = []
for layer_num in range(num_layers):
src = [b.past_key_values[layer_num][0] for b in batches]
src = shift_all(src, key_dim, offsets)
updated_key = batch_alloc(new_bs * chunk_size, src[0])
updated_key = move_data(updated_key, chunk_size, indices, src)
src = [b.past_key_values[layer_num][1] for b in batches]
src = shift_all(src, value_dim, offsets)
updated_value = batch_alloc(new_bs * chunk_size, src[0])
updated_value = move_data(updated_value, chunk_size, indices, src)
past_key_values.append((updated_key, updated_value))
for b in batches:
b.past_key_values[layer_num] = None
past_key_values = past_key_values_type(past_key_values)
top_n_tokens = [r.data.top_n_tokens for r in requests]
top_n_tokens_tensor = torch.tensor(top_n_tokens, device=device, dtype=torch.int64)
next_token_chooser = HeterogeneousNextTokenChooser.from_pb([r.data.parameters for r in requests], batches[0].next_token_chooser.device, batches[0].next_token_chooser.dtype)
htorch.core.mark_step()
return cls(
batch_id=batch_id,
requests=requests,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
next_token_chooser=next_token_chooser,
top_n_tokens=top_n_tokens,
top_n_tokens_tensor=top_n_tokens_tensor,
max_tokens=max_tokens,
input_length=input_length,
right_padding=right_padding
)
@classmethod @classmethod
def from_pb( def from_pb(
cls, cls,
@ -87,19 +263,16 @@ class CausalLMBatch(Batch):
device: torch.device, device: torch.device,
is_optimized_for_gaudi: bool = False, is_optimized_for_gaudi: bool = False,
) -> "CausalLMBatch": ) -> "CausalLMBatch":
inputs = [] trace(f'NEW BATCH: ({len(pb.requests)}){[req.id for req in pb.requests]}')
next_token_chooser_parameters = [] requests = [CausalLMRequest.from_pb(idx, req, tokenizer) for idx, req in enumerate(pb.requests)]
stopping_criterias = []
top_n_tokens = []
prefix_offsets = []
read_offsets = []
requests_idx_mapping = {}
input_lengths = []
# Parse batch max_input_length = max(r.data.truncate for r in requests)
max_truncation = 0 max_new_tokens = max(r.stopping_criteria.max_new_tokens for r in requests)
padding_right_offset = 0
max_decode_tokens = 0 # TODO: Add support for sparse batches
top_n_tokens = [r.top_n_tokens for r in pb.requests]
top_n_tokens_tensor = torch.tensor(top_n_tokens, device=device, dtype=torch.int64)
next_token_chooser = HeterogeneousNextTokenChooser.from_pb([r.parameters for r in pb.requests], dtype, device)
# TODO: this should be set to rust side `max_total_tokens`, # TODO: this should be set to rust side `max_total_tokens`,
# (see https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs#L177) # (see https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs#L177)
@ -110,442 +283,81 @@ class CausalLMBatch(Batch):
max_total_tokens = int(os.getenv("MAX_TOTAL_TOKENS", "0")) max_total_tokens = int(os.getenv("MAX_TOTAL_TOKENS", "0"))
logger.info("MAX_TOTAL_TOKENS = {}".format(max_total_tokens)) logger.info("MAX_TOTAL_TOKENS = {}".format(max_total_tokens))
for i, r in enumerate(pb.requests): # TODO: by tokenizing all inputs at once we loose information on actual input lengths
requests_idx_mapping[r.id] = i # this means that we cannot shift inputs to the left after a long input sequence
inputs.append(r.inputs) # was filtered out
next_token_chooser_parameters.append(r.parameters) new_bs = round_up(len(requests), BATCH_BUCKET_SIZE)
stopping_criteria = StoppingCriteria.from_pb(r.stopping_parameters, tokenizer) dummy_inputs = ["?"] * (new_bs - len(requests))
stopping_criterias.append(stopping_criteria)
top_n_tokens.append(r.top_n_tokens)
max_truncation = max(max_truncation, r.truncate)
max_decode_tokens += stopping_criteria.max_new_tokens
padding_right_offset = max(padding_right_offset, stopping_criteria.max_new_tokens)
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
next_token_chooser_parameters, dtype, device
)
tokenized_inputs = tokenizer( tokenized_inputs = tokenizer(
inputs, [r.data.inputs for r in requests] + dummy_inputs,
return_tensors="pt", return_tensors="pt",
padding="max_length", padding="max_length",
return_token_type_ids=False, return_token_type_ids=False,
truncation=True, truncation=True,
max_length=max_truncation, max_length=max_input_length,
) )
for _ in pb.requests:
input_len = tokenized_inputs["input_ids"].shape[1] input_len = tokenized_inputs["input_ids"].shape[1]
input_lengths.append(input_len) extra_padding = 0
prefix_offsets.append(input_len - 5) if is_optimized_for_gaudi and max_total_tokens > 0:
read_offsets.append(input_len) extra_padding = max(extra_padding, max_total_tokens - max_input_length - max_new_tokens)
max_input_length = max(input_lengths) for r in requests:
if max_total_tokens == 0: r.input_length = input_len
max_total_tokens = max_input_length r.prefix_offset = input_len - 5
max_tokens = len(inputs) * max_input_length + max_decode_tokens r.read_offset = input_len
if is_optimized_for_gaudi and max_total_tokens > max_input_length:
# pad to max_total_tokens in case max_new_token changes per request and triggers new hpu graph generation #max_tokens = new_bs * max_total_tokens
padding_right_offset = max_total_tokens - max_input_length max_tokens = len(requests) * max_total_tokens
input_ids = tokenized_inputs["input_ids"] input_ids = tokenized_inputs["input_ids"]
attention_mask = tokenized_inputs["attention_mask"] attention_mask = tokenized_inputs["attention_mask"]
# only move model inputs to device
attention_mask = attention_mask.to(device)
if is_optimized_for_gaudi: if is_optimized_for_gaudi:
input_ids_cpu = torch.nn.functional.pad( input_ids = torch.nn.functional.pad(
input_ids, (0, padding_right_offset), value=tokenizer.pad_token_id input_ids, (0, max_new_tokens + extra_padding), value=tokenizer.pad_token_id
) )
input_ids = input_ids_cpu.to(device) attention_mask = torch.nn.functional.pad(
attention_mask = torch.nn.functional.pad(attention_mask, (0, padding_right_offset), value=0) attention_mask, (0, max_new_tokens + extra_padding), value=0)
all_input_ids = input_ids_cpu.T.split(1, dim=1) all_input_ids = input_ids.T.split(1, dim=1)
else: else:
all_input_ids = input_ids.clone().T.split(1, dim=1) all_input_ids = input_ids.clone().T.split(1, dim=1)
input_ids = input_ids.to(device)
for r in requests:
r.all_input_ids = all_input_ids[r.idx]
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
position_ids = attention_mask.long().cumsum(-1) - 1 position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1) position_ids.masked_fill_(attention_mask == 0, 1)
htorch.core.mark_step()
top_n_tokens_tensor = torch.tensor(top_n_tokens, device=device, dtype=torch.int64) htorch.core.mark_step()
return cls( return cls(
batch_id=pb.id, batch_id=pb.id,
requests=pb.requests, requests=requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids, input_ids=input_ids,
attention_mask=attention_mask, attention_mask=attention_mask,
position_ids=position_ids, position_ids=position_ids,
past_key_values=None, past_key_values=None,
all_input_ids=list(all_input_ids),
input_lengths=input_lengths,
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
next_token_chooser=next_token_chooser, next_token_chooser=next_token_chooser,
stopping_criterias=stopping_criterias,
top_n_tokens=top_n_tokens, top_n_tokens=top_n_tokens,
top_n_tokens_tensor=top_n_tokens_tensor, top_n_tokens_tensor=top_n_tokens_tensor,
max_input_length=max_input_length,
padding_right_offset=padding_right_offset,
max_tokens=max_tokens, max_tokens=max_tokens,
input_length=max_input_length,
right_padding=max_new_tokens + extra_padding if is_optimized_for_gaudi else 0
) )
@tracer.start_as_current_span("filter") @tracer.start_as_current_span("filter")
def filter(self, request_ids: List[int], is_optimized_for_gaudi: bool = False) -> Optional["CausalLMBatch"]: def filter(self, request_ids: List[int], is_optimized_for_gaudi: bool = False) -> Optional["CausalLMBatch"]:
if len(request_ids) == 0: trace("FILTER")
raise ValueError("Batch must have at least one request") return self.__class__.recombine([self], [request_ids], is_optimized_for_gaudi)
if len(request_ids) == len(self):
return self
keep_indices = []
# New values after filtering
requests_idx_mapping = {}
requests = []
input_lengths = []
prefix_offsets = []
read_offsets = []
all_input_ids = []
max_input_length = 0
stopping_criterias = []
top_n_tokens = []
total_remaining_decode_tokens = 0
new_padding_right_offset = 0
for i, request_id in enumerate(request_ids):
idx = self.requests_idx_mapping[request_id]
requests_idx_mapping[request_id] = i
keep_indices.append(idx)
requests.append(self.requests[idx])
prefix_offsets.append(self.prefix_offsets[idx])
read_offsets.append(self.read_offsets[idx])
all_input_ids.append(self.all_input_ids[idx])
request_input_length = self.input_lengths[idx]
input_lengths.append(request_input_length)
max_input_length = max(max_input_length, request_input_length)
stopping_criteria = self.stopping_criterias[idx]
stopping_criterias.append(stopping_criteria)
top_n_tokens.append(self.top_n_tokens[idx])
remaining_decode_tokens = stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
total_remaining_decode_tokens += remaining_decode_tokens
new_padding_right_offset = max(new_padding_right_offset, remaining_decode_tokens)
# Apply indices to input_ids, attention mask, past key values and other items that need to be cached
input_ids = self.input_ids[keep_indices]
position_ids = self.position_ids[keep_indices]
next_token_chooser = self.next_token_chooser.filter(keep_indices)
if is_optimized_for_gaudi:
self.attention_mask = self.attention_mask[keep_indices]
else:
self.attention_mask = self.attention_mask[
keep_indices,
-(self.padding_right_offset + max_input_length) : (
self.attention_mask.shape[1] - self.padding_right_offset
)
+ new_padding_right_offset,
]
# Ensure that past_key_values tensors can be updated in-place
kv_tuple = False
if type(self.past_key_values[0]) == tuple:
self.past_key_values = [list(layer) for layer in self.past_key_values]
kv_tuple = True
# Update tensors in-place to allow incremental garbage collection
past_kv_length = max_input_length - 1
for layer in self.past_key_values:
past_keys, past_values = layer
past_keys_dims = len(past_keys.shape)
if past_keys_dims == 3:
# Force past to be of dim [self_size, num_heads, ...] for easy indexing
past_keys = past_keys.view(len(self), -1, *past_keys.shape[-2:])
past_values = past_values.view(len(self), -1, *past_values.shape[-2:])
if is_optimized_for_gaudi:
layer[0] = past_keys[keep_indices]
del past_keys
layer[1] = past_values[keep_indices]
del past_values
else:
if self.keys_head_dim_last:
layer[0] = past_keys[keep_indices, :, -past_kv_length:, :]
else:
layer[0] = past_keys[keep_indices, :, :, -past_kv_length:]
del past_keys
layer[1] = past_values[keep_indices, :, -past_kv_length:, :]
del past_values
if past_keys_dims == 3:
layer[0] = layer[0].view(layer[0].shape[0] * layer[0].shape[1], *layer[0].shape[-2:])
layer[1] = layer[1].view(layer[1].shape[0] * layer[1].shape[1], *layer[1].shape[-2:])
top_n_tokens_tensor = self.top_n_tokens_tensor[keep_indices]
max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens
if kv_tuple:
self.past_key_values = tuple([tuple(layer) for layer in self.past_key_values])
self.requests = requests
self.requests_idx_mapping = requests_idx_mapping
self.input_ids = input_ids
self.position_ids = position_ids
self.all_input_ids = all_input_ids
self.input_lengths = input_lengths
self.prefix_offsets = prefix_offsets
self.read_offsets = read_offsets
self.next_token_chooser = next_token_chooser
self.stopping_criterias = stopping_criterias
self.top_n_tokens = top_n_tokens
self.top_n_tokens_tensor = top_n_tokens_tensor
self.max_input_length = max_input_length
self.padding_right_offset = new_padding_right_offset
self.max_tokens = max_tokens
return self
@classmethod @classmethod
@tracer.start_as_current_span("concatenate") @tracer.start_as_current_span("concatenate")
def concatenate(cls, batches: List["CausalLMBatch"], is_optimized_for_gaudi: bool = False) -> "CausalLMBatch": def concatenate(cls, batches: List["CausalLMBatch"], is_optimized_for_gaudi: bool = False) -> "CausalLMBatch":
# Used for padding trace('CONCAT')
total_batch_size = 0 return cls.recombine(batches, [[req.data.id for req in b.requests] for b in batches], is_optimized_for_gaudi)
max_input_length = 0
padding_right_offset = 0
max_total_tokens = 0
for batch in batches:
total_batch_size += len(batch)
max_input_length = max(max_input_length, batch.max_input_length)
padding_right_offset = max(padding_right_offset, batch.padding_right_offset)
max_total_tokens = max(max_total_tokens, batch.max_input_length + batch.padding_right_offset)
if is_optimized_for_gaudi and max_total_tokens > max_input_length:
padding_right_offset = max_total_tokens - max_input_length
# Batch attributes
requests = []
requests_idx_mapping = {}
input_lengths = []
prefix_offsets = []
read_offsets = []
all_input_ids = []
next_token_chooser_parameters = []
stopping_criterias = []
top_n_tokens = []
max_tokens = 0
# Batch tensors
input_ids = None
attention_mask = None
position_ids = None
past_key_values = []
top_n_tokens_tensor = None
# Used for slicing correctly inside the tensors
# Equivalent to a cumsum on batch sizes
start_index = 0
for i, batch in enumerate(batches):
requests.extend(batch.requests)
input_lengths.extend(batch.input_lengths)
prefix_offsets.extend(batch.prefix_offsets)
read_offsets.extend(batch.read_offsets)
all_input_ids.extend(batch.all_input_ids)
next_token_chooser_parameters.extend([r.parameters for r in batch.requests])
stopping_criterias.extend(batch.stopping_criterias)
top_n_tokens.extend(batch.top_n_tokens)
if i == 0:
requests_idx_mapping = batch.requests_idx_mapping
else:
# We need to offset the mapping for each batch by the cumulative batch size
for k, v in batch.requests_idx_mapping.items():
requests_idx_mapping[k] = v + start_index
# Slicing end index for this batch
end_index = start_index + len(batch)
# We only concatenate batches that did at least one step
if batch.past_key_values is None:
raise ValueError("only concatenate prefilled batches")
# Create empty tensor
# input_ids is always of shape [batch_size, 1]
# We do not need to pad it
if input_ids is None:
input_ids = batch.input_ids.new_empty((total_batch_size, max_total_tokens))
# Copy to correct indices
input_ids[start_index:end_index] = batch.input_ids
# Create padded tensor
if attention_mask is None:
attention_mask = batch.attention_mask.new_zeros(
(total_batch_size, max_input_length + padding_right_offset),
)
if top_n_tokens_tensor is None:
top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
total_batch_size,
)
top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor
# We need to slice the attention mask to remove padding from previous steps
# and to remove unused allocated space
left_offset = max_input_length - batch.max_input_length
batch_left_offset = batch.attention_mask.shape[1] - batch.max_input_length - batch.padding_right_offset
attention_mask[start_index:end_index, left_offset:-padding_right_offset] = batch.attention_mask[
:,
batch_left_offset : -batch.padding_right_offset,
]
# Create empty tensor
# position_ids is always of shape [batch_size, 1]
if position_ids is None:
position_ids = batch.position_ids.new_empty((total_batch_size, 1))
position_ids[start_index:end_index] = batch.position_ids
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape
# BLOOM Keys: [batch_size * num_heads, head_dim, seq_length]
# BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
# And ensure that we can update tensors in-place
kv_tuple = False
past_key_values_dims = len(batch.past_key_values[0][0].shape)
if type(batch.past_key_values[0]) == tuple:
batch.past_key_values = [
[t.view(len(batch), -1, *t.shape[-2:]) for t in layer] for layer in batch.past_key_values
]
kv_tuple = True
elif past_key_values_dims == 3:
for layer in batch.past_key_values:
for k, t in enumerate(layer):
layer[k] = t.view(len(batch), -1, *t.shape[-2:])
# Add eventual padding tokens that were added while concatenating
max_tokens += batch.max_tokens + (max_input_length - batch.max_input_length) * len(batch)
start_index = end_index
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
next_token_chooser_parameters,
dtype=batches[0].next_token_chooser.dtype,
device=batches[0].next_token_chooser.device,
)
first_past_kvs = batches[0].past_key_values
_, num_heads, _, head_dim = first_past_kvs[0][1].shape
padded_sequence_length = (
max_input_length + padding_right_offset if is_optimized_for_gaudi else max_input_length - 1
)
padded_past_values_shape = (
total_batch_size,
num_heads,
padded_sequence_length,
head_dim,
)
if batches[0].keys_head_dim_last:
padded_past_keys_shape = padded_past_values_shape
else:
# seq_length is last for BLOOM
padded_past_keys_shape = (
total_batch_size,
num_heads,
head_dim,
padded_sequence_length,
)
# Iterate over attention layers
# Concatenate past key values layer by layer to allow incremental garbage collection
for j in range(len(first_past_kvs)):
padded_past_keys = first_past_kvs[j][0].new_zeros(padded_past_keys_shape)
start_index = 0
for batch in batches:
past_keys = batch.past_key_values[j][0]
# Clear reference to the original tensor
batch.past_key_values[j][0] = None
# Slicing end index for this batch
end_index = start_index + len(batch)
# We slice the keys to remove the padding from previous batches
past_seq_len = batch.max_input_length - 1
# recaculate the offset
left_offset = max_input_length - batch.max_input_length
batch_left_offset = batch.attention_mask.shape[1] - batch.max_input_length - batch.padding_right_offset
if batch.keys_head_dim_last:
padded_past_keys[
start_index:end_index, :, left_offset : left_offset + past_seq_len, :
] = past_keys[:, :, batch_left_offset : batch_left_offset + past_seq_len, :]
else:
# BLOOM case
padded_past_keys[
start_index:end_index, :, :, left_offset : left_offset + past_seq_len
] = past_keys[:, :, :, batch_left_offset : batch_left_offset + past_seq_len]
del past_keys
start_index = end_index
padded_past_values = first_past_kvs[j][1].new_zeros(padded_past_values_shape)
start_index = 0
for batch in batches:
past_values = batch.past_key_values[j][1]
# Clear reference to the original tensor
batch.past_key_values[j][1] = None
# Slicing end index for this batch
end_index = start_index + len(batch)
# We slice the past values to remove the padding from previous batches
past_seq_len = batch.max_input_length - 1
# recaculate the offset
left_offset = max_input_length - batch.max_input_length
batch_left_offset = batch.attention_mask.shape[1] - batch.max_input_length - batch.padding_right_offset
padded_past_values[
start_index:end_index, :, left_offset : left_offset + past_seq_len, :
] = past_values[:, :, batch_left_offset : batch_left_offset + past_seq_len, :]
del past_values
# Update values
start_index = end_index
if past_key_values_dims == 3:
padded_past_keys = padded_past_keys.view(
padded_past_keys.shape[0] * padded_past_keys.shape[1], *padded_past_keys.shape[-2:]
)
padded_past_values = padded_past_values.view(
padded_past_values.shape[0] * padded_past_values.shape[1], *padded_past_values.shape[-2:]
)
if kv_tuple:
past_key_values.append((padded_past_keys, padded_past_values))
else:
past_key_values.append([padded_past_keys, padded_past_values])
if kv_tuple:
past_key_values = tuple(past_key_values)
return cls(
batch_id=batches[0].batch_id,
requests=requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
all_input_ids=all_input_ids,
input_lengths=input_lengths,
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
next_token_chooser=next_token_chooser,
stopping_criterias=stopping_criterias,
top_n_tokens=top_n_tokens,
top_n_tokens_tensor=top_n_tokens_tensor,
max_input_length=max_input_length,
padding_right_offset=padding_right_offset,
keys_head_dim_last=batches[0].keys_head_dim_last,
max_tokens=max_tokens,
)
def __len__(self): def __len__(self):
return len(self.requests) return len(self.requests)
@ -719,18 +531,19 @@ class CausalLM(Model):
@tracer.start_as_current_span("generate_token") @tracer.start_as_current_span("generate_token")
def generate_token(self, batch: CausalLMBatch) -> Tuple[List[Generation], Optional[CausalLMBatch]]: def generate_token(self, batch: CausalLMBatch) -> Tuple[List[Generation], Optional[CausalLMBatch]]:
trace(f'GENERATE ({len(batch.requests)}){[r.data.id for r in batch.requests]}, {batch.input_ids.shape}')
self.step = self.step + 1 self.step = self.step + 1
if self.hb_profer_started == True and self.step > self.profiling_warmup_steps + self.profiling_steps: if self.hb_profer_started == True and self.step > self.profiling_warmup_steps + self.profiling_steps:
self.hb_profer.stop() self.hb_profer.stop()
self.hb_profer_started = False self.hb_profer_started = False
if self.is_optimized_for_gaudi: if self.is_optimized_for_gaudi:
token_idx = torch.tensor(batch.attention_mask.shape[-1] - batch.padding_right_offset).to(self.device) token_idx = torch.tensor(batch.attention_mask.shape[-1] - batch.right_padding).to(self.device)
attention_mask = batch.attention_mask attention_mask = batch.attention_mask
else: else:
token_idx = None token_idx = None
# slice the attention mask to the correct shape # slice the attention mask to the correct shape
# TODO fix me!
attention_mask = batch.attention_mask[:, : -batch.padding_right_offset] attention_mask = batch.attention_mask[:, : -batch.padding_right_offset]
prefill = batch.past_key_values is None prefill = batch.past_key_values is None
if batch.past_key_values: if batch.past_key_values:
@ -753,13 +566,13 @@ class CausalLM(Model):
stopped = True stopped = True
# Select next token # Select next token
input_length = batch.input_lengths[0] input_length = batch.input_length
if self.is_optimized_for_gaudi and logits.shape[-2] > 1: if self.is_optimized_for_gaudi and logits.shape[-2] > 1:
next_input_ids, next_token_logprobs, logprobs = batch.next_token_chooser( next_token_ids, next_token_logprobs, logprobs = batch.next_token_chooser(
batch.input_ids[:, :token_idx], logits[:, input_length - 1 : input_length, :].squeeze(-2) batch.input_ids[:, :token_idx], logits[:, input_length - 1 : input_length, :].squeeze(-2)
) )
else: else:
next_input_ids, next_token_logprobs, logprobs = batch.next_token_chooser( next_token_ids, next_token_logprobs, logprobs = batch.next_token_chooser(
batch.input_ids[:, :token_idx], logits.squeeze(-2) batch.input_ids[:, :token_idx], logits.squeeze(-2)
) )
@ -769,46 +582,26 @@ class CausalLM(Model):
logprobs, logprobs,
) )
htorch.core.mark_step()
logits = logits.to("cpu")
next_token_logprobs = next_token_logprobs.tolist() next_token_logprobs = next_token_logprobs.tolist()
next_token_ids = next_input_ids next_token_ids_cpu = next_token_ids.cpu()
htorch.core.mark_step()
for req in batch.requests:
i = req.idx
request = req.data
input_length = req.input_length
prefix_offset = req.prefix_offset
read_offset = req.read_offset
do_sample = batch.next_token_chooser.do_sample[i]
seed = batch.next_token_chooser.seeds[i]
stopping_criteria = req.stopping_criteria
all_input_ids = req.all_input_ids
top_n_tokens = batch.top_n_tokens[i]
next_token_id = next_token_ids_cpu[i]
next_token_logprob = next_token_logprobs[i]
top_token_ids = batch_top_token_ids[i]
top_token_logprobs = batch_top_token_logprobs[i]
# Zipped iterator
iterator = zip(
batch.requests,
batch.input_lengths,
batch.prefix_offsets,
batch.read_offsets,
logits,
batch.next_token_chooser.do_sample,
batch.next_token_chooser.seeds,
batch.stopping_criterias,
batch.all_input_ids,
batch.top_n_tokens,
next_token_ids,
next_token_logprobs,
batch_top_token_ids,
batch_top_token_logprobs,
)
# For each member of the batch
for i, (
request,
input_length,
prefix_offset,
read_offset,
logits,
do_sample,
seed,
stopping_criteria,
all_input_ids,
top_n_tokens,
next_token_id,
next_token_logprob,
top_token_ids,
top_token_logprobs,
) in enumerate(iterator):
# Append next token to all tokens # Append next token to all tokens
if self.is_optimized_for_gaudi: if self.is_optimized_for_gaudi:
all_input_ids[input_length] = next_token_id all_input_ids[input_length] = next_token_id
@ -890,16 +683,17 @@ class CausalLM(Model):
generations.append(generation) generations.append(generation)
batch.all_input_ids[i] = all_input_ids req.all_input_ids = all_input_ids
batch.input_lengths[i] = new_input_length req.input_length = new_input_length
batch.prefix_offsets[i] = prefix_offset req.prefix_offset = prefix_offset
batch.read_offsets[i] = read_offset req.read_offset = read_offset
batch.max_input_length = max(batch.max_input_length, new_input_length) htorch.core.mark_step()
if token_idx is None: if token_idx is None:
batch.input_ids[:, 0] = next_token_ids[:, 0] batch.input_ids[:, 0] = next_token_ids[:, 0]
else: else:
batch.input_ids[:, token_idx] = next_token_ids batch.input_ids.index_copy_(1, token_idx.cpu(), next_token_ids.unsqueeze(1))
# We finished all generations in the batch; there is no next batch # We finished all generations in the batch; there is no next batch
if stopped: if stopped:
if self.hb_profer_started == True: if self.hb_profer_started == True:
@ -915,8 +709,11 @@ class CausalLM(Model):
batch.attention_mask.index_fill_(1, token_idx, 1) batch.attention_mask.index_fill_(1, token_idx, 1)
else: else:
batch.attention_mask[:, -batch.padding_right_offset] = 1 batch.attention_mask[:, -batch.padding_right_offset] = 1
# Decrease right offset
batch.padding_right_offset -= 1 # Adjust lengths
batch.input_length += 1
if batch.right_padding > 0:
batch.right_padding -= 1
# Update position_ids # Update position_ids
if prefill: if prefill:
@ -927,5 +724,6 @@ class CausalLM(Model):
batch.past_key_values = past batch.past_key_values = past
if self.hb_profer_started == True: if self.hb_profer_started == True:
self.hb_profer.step() self.hb_profer.step()
htorch.core.mark_step()
return generations, batch return generations, batch