mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-09 19:34:53 +00:00
pre-compute
This commit is contained in:
parent
cdc70f4c23
commit
19a04f22dd
@ -194,9 +194,9 @@ def _prepare_rotary(
|
||||
|
||||
rotary_dim = cos.shape[-1]
|
||||
q1 = qkv[:, 0, :, :rotary_dim]
|
||||
q2 = qkv[:, 0, :, rotary_dim : 2 * rotary_dim]
|
||||
q2 = qkv[:, 0, :, rotary_dim: 2 * rotary_dim]
|
||||
k1 = qkv[:, 1, :, :rotary_dim]
|
||||
k2 = qkv[:, 1, :, rotary_dim : 2 * rotary_dim]
|
||||
k2 = qkv[:, 1, :, rotary_dim: 2 * rotary_dim]
|
||||
|
||||
return q1, q2, k1, k2, cos.unsqueeze(1), sin.unsqueeze(1)
|
||||
|
||||
@ -247,7 +247,7 @@ class FlashNeoxAttention(torch.nn.Module):
|
||||
self.swap_dims = True
|
||||
|
||||
def forward(
|
||||
self, hidden_states, position_ids, cu_seqlens, max_s, layer_past, prefill
|
||||
self, hidden_states, position_ids, cu_seqlens, max_s, layer_past, layer_past_present_indices, cu_seqlens_q
|
||||
):
|
||||
if not self.swap_dims:
|
||||
self._swap_dims()
|
||||
@ -256,7 +256,7 @@ class FlashNeoxAttention(torch.nn.Module):
|
||||
qkv = qkv.view(-1, 3, self.num_heads, self.head_size)
|
||||
qkv_rot = self.rotary_emb(qkv, position_ids, max_s)
|
||||
|
||||
if prefill:
|
||||
if layer_past_present_indices is None:
|
||||
layer_past[...] = qkv_rot[:, 1:]
|
||||
|
||||
attn_output = torch.empty_like(qkv[:, 0])
|
||||
@ -279,7 +279,7 @@ class FlashNeoxAttention(torch.nn.Module):
|
||||
)
|
||||
else:
|
||||
query = qkv_rot[:, 0]
|
||||
layer_past[cu_seqlens[1:] - 1] = qkv_rot[:, 1:]
|
||||
layer_past[layer_past_present_indices] = qkv_rot[:, 1:]
|
||||
|
||||
attn_output = torch.empty_like(query)
|
||||
flash_attn_cuda.fwd(
|
||||
@ -287,9 +287,9 @@ class FlashNeoxAttention(torch.nn.Module):
|
||||
layer_past[:, 0],
|
||||
layer_past[:, 1],
|
||||
attn_output,
|
||||
torch.arange(len(cu_seqlens), dtype=torch.int32).to(query.device),
|
||||
cu_seqlens_q,
|
||||
cu_seqlens,
|
||||
torch.tensor(1, dtype=torch.int32).to(query.device),
|
||||
1,
|
||||
max_s,
|
||||
0.0,
|
||||
self.softmax_scale,
|
||||
@ -376,7 +376,8 @@ class FlashNeoXLayer(nn.Module):
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
layer_past,
|
||||
prefill,
|
||||
layer_past_present_indices,
|
||||
cu_seqlens_q,
|
||||
):
|
||||
if self.use_parallel_residual:
|
||||
ln1_hidden_states, *rest = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
@ -398,7 +399,7 @@ class FlashNeoXLayer(nn.Module):
|
||||
)
|
||||
|
||||
attn_output = self.attention(
|
||||
ln1_hidden_states, position_ids, cu_seqlens, max_s, layer_past, prefill
|
||||
ln1_hidden_states, position_ids, cu_seqlens, max_s, layer_past, layer_past_present_indices, cu_seqlens_q
|
||||
)
|
||||
|
||||
ln2_hidden_states, *rest = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
@ -441,7 +442,7 @@ class FlashNeoXLayer(nn.Module):
|
||||
)
|
||||
|
||||
hidden_states = self.attention(
|
||||
hidden_states, position_ids, cu_seqlens, max_s, layer_past, prefill
|
||||
hidden_states, position_ids, cu_seqlens, max_s, layer_past, layer_past_present_indices, cu_seqlens_q
|
||||
)
|
||||
|
||||
hidden_states, residual, *rest = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
@ -528,7 +529,6 @@ class FlashGPTNeoXModel(FlashGPTNeoXPreTrainedModel):
|
||||
):
|
||||
hidden_states = self.embed_in(input_ids)
|
||||
|
||||
prefill = False
|
||||
if past_key_values is None:
|
||||
past_key_values = hidden_states.new_empty(
|
||||
(
|
||||
@ -539,7 +539,11 @@ class FlashGPTNeoXModel(FlashGPTNeoXPreTrainedModel):
|
||||
self.head_size,
|
||||
)
|
||||
)
|
||||
prefill = True
|
||||
layer_past_present_indices = None
|
||||
cu_seqlens_q = None
|
||||
else:
|
||||
layer_past_present_indices = cu_seqlens[1:] - 1
|
||||
cu_seqlens_q = torch.arange(len(cu_seqlens), dtype=torch.int32, device=hidden_states.device)
|
||||
|
||||
residual = None
|
||||
for i, layer in enumerate(self.layers):
|
||||
@ -550,7 +554,8 @@ class FlashGPTNeoXModel(FlashGPTNeoXPreTrainedModel):
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
past_key_values[i],
|
||||
prefill,
|
||||
layer_past_present_indices,
|
||||
cu_seqlens_q
|
||||
)
|
||||
|
||||
hidden_states = self.final_layer_norm(hidden_states)
|
||||
|
Loading…
Reference in New Issue
Block a user