This commit is contained in:
OlivierDehaene 2024-06-05 15:28:10 +02:00
parent dfca1dfc5e
commit 18e77a5cc7
11 changed files with 112 additions and 66 deletions

View File

@ -17,6 +17,8 @@ service TextGenerationService {
rpc Prefill (PrefillRequest) returns (PrefillResponse); rpc Prefill (PrefillRequest) returns (PrefillResponse);
/// Decode token for a list of prefilled batches /// Decode token for a list of prefilled batches
rpc Decode (DecodeRequest) returns (DecodeResponse); rpc Decode (DecodeRequest) returns (DecodeResponse);
/// Update batch
rpc Update(UpdateRequest) returns (UpdateResponse);
/// Health check /// Health check
rpc Health (HealthRequest) returns (HealthResponse); rpc Health (HealthRequest) returns (HealthResponse);
} }
@ -198,6 +200,8 @@ message Generation {
optional GeneratedText generated_text = 4; optional GeneratedText generated_text = 4;
/// Top tokens /// Top tokens
repeated Tokens top_tokens = 5; repeated Tokens top_tokens = 5;
/// Current length of the request: prompt tokens + number of generated tokens until this point
uint32 current_length = 6;
} }
message FilterBatchRequest { message FilterBatchRequest {
@ -251,6 +255,26 @@ message DecodeResponse {
optional uint64 concat_ns = 6; optional uint64 concat_ns = 6;
} }
message ExtendedRequest {
/// Request ID
uint64 request_id = 1;
/// Paged attention blocks to add
repeated uint32 blocks = 2;
/// Paged attention slots to add
repeated uint32 slots = 3;
}
message UpdateRequest {
/// Batch ID
uint64 batch_id = 1;
/// Requests to update
repeated ExtendedRequest extend_requests = 2;
/// Requests to terminate
repeated uint64 terminated_request_ids = 3;
}
message UpdateResponse {}
message WarmupRequest { message WarmupRequest {
/// Batch to warmup on /// Batch to warmup on
Batch batch = 1; Batch batch = 1;

View File

@ -33,6 +33,8 @@ pub(crate) struct Entry {
pub batch_time: Option<Instant>, pub batch_time: Option<Instant>,
/// Block Allocation /// Block Allocation
pub block_allocation: Option<BlockAllocation>, pub block_allocation: Option<BlockAllocation>,
/// Current length (in tokens) of the request (prompt tokens + generated_tokens)
pub current_length: u32
} }
/// Request Queue /// Request Queue
@ -498,6 +500,7 @@ mod tests {
queue_time: Instant::now(), queue_time: Instant::now(),
batch_time: None, batch_time: None,
block_allocation: None, block_allocation: None,
current_length: 0,
}; };
(entry, receiver_tx) (entry, receiver_tx)
} }

View File

@ -88,6 +88,7 @@ impl Scheduler for SchedulerV3 {
queue_time: Instant::now(), queue_time: Instant::now(),
batch_time: None, batch_time: None,
block_allocation: None, block_allocation: None,
current_length: input_length,
}); });
// Notify the background task that we have a new entry in the queue that needs // Notify the background task that we have a new entry in the queue that needs
@ -287,6 +288,8 @@ async fn decode(
// Send generated tokens and filter stopped entries // Send generated tokens and filter stopped entries
filter_send_generations(generations, entries); filter_send_generations(generations, entries);
filter_update_allocations(client, entries).await;
// Filter next batch and remove requests that were stopped // Filter next batch and remove requests that were stopped
let next_batch = filter_batch(client, next_batch, entries).await; let next_batch = filter_batch(client, next_batch, entries).await;
@ -355,8 +358,9 @@ fn filter_send_generations(generations: Vec<Generation>, entries: &mut IntMap<u6
// Get entry // Get entry
// We can `expect` here as the request id should always be in the entries // We can `expect` here as the request id should always be in the entries
let entry = entries let entry = entries
.get(&id) .get_mut(&id)
.expect("ID not found in entries. This is a bug."); .expect("ID not found in entries. This is a bug.");
entry.current_length = generation.current_length;
// Create and enter a span to link this function back to the entry // Create and enter a span to link this function back to the entry
let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered(); let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered();
@ -374,6 +378,35 @@ fn filter_send_generations(generations: Vec<Generation>, entries: &mut IntMap<u6
}); });
} }
/// Check if block allocations need to be extended
/// If we don't have enough blocks, request will be filtered with an OutOfPages finish reason
#[instrument(skip_all)]
async fn filter_update_allocations(client: &mut ShardedClient, entries: &mut IntMap<u64, Entry>) {
// let mut extend_entries = Vec::with_capacity(entries.len());
// let mut finish_entries = Vec::with_capacity(entries.len());
// for (request_id, entry) in entries.into_iter() {
// tracing::info!("Allocation {}; Current Length: {}", entry.block_allocation.as_ref().unwrap().allocated_tokens, entry.current_length);
//
// if let Some(block_allocation) = &mut entry.block_allocation {
// tracing::info!("Allocation {:?}", block_allocation);
//
// if entry.current_length > block_allocation.allocated_tokens {
// // We need to add new blocks to this entry
// let remaining_tokens = block_allocation.total_tokens - entry.current_length;
// match block_allocation.extend(remaining_tokens).await {
// true => {
//
// },
// false => {
//
// }
// }
// }
// }
// }
}
/// Send responses through the `entry` response channel /// Send responses through the `entry` response channel
fn send_responses( fn send_responses(
generation: Generation, generation: Generation,

View File

@ -1085,6 +1085,8 @@ pub(crate) enum FinishReason {
EndOfSequenceToken, EndOfSequenceToken,
#[schema(rename = "stop_sequence")] #[schema(rename = "stop_sequence")]
StopSequence, StopSequence,
#[schema(rename = "out_of_pages")]
OutOfPages
} }
impl std::fmt::Display for FinishReason { impl std::fmt::Display for FinishReason {
@ -1093,6 +1095,7 @@ impl std::fmt::Display for FinishReason {
FinishReason::Length => write!(f, "length"), FinishReason::Length => write!(f, "length"),
FinishReason::EndOfSequenceToken => write!(f, "eos_token"), FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
FinishReason::StopSequence => write!(f, "stop_sequence"), FinishReason::StopSequence => write!(f, "stop_sequence"),
FinishReason::OutOfPages => write!(f, "out_of_pages"),
} }
} }
} }

View File

@ -746,6 +746,7 @@ class CausalLM(Model):
), ),
generated_text, generated_text,
top_tokens, top_tokens,
new_input_length
) )
generations.append(generation) generations.append(generation)

View File

@ -79,8 +79,6 @@ class FlashCausalLMBatch(Batch):
# Paged Attention values # Paged Attention values
# Set when creating the batch # Set when creating the batch
# CPU tensor of length b indicating the start of each sequence in slots
start_slots: torch.Tensor
# tensor of indices of the currently used slots, length = \sum_{i=0}^{b} s_i in prefill, length = b in decode # tensor of indices of the currently used slots, length = \sum_{i=0}^{b} s_i in prefill, length = b in decode
slot_indices: torch.Tensor slot_indices: torch.Tensor
@ -88,8 +86,10 @@ class FlashCausalLMBatch(Batch):
block_tables: List[List[int]] block_tables: List[List[int]]
# tensor of size [b, max_total_seqlen // block_size] holding the paged attention block tables for all sequences # tensor of size [b, max_total_seqlen // block_size] holding the paged attention block tables for all sequences
block_tables_tensor: torch.Tensor block_tables_tensor: torch.Tensor
# list of length b of list of length s_i
slots: List[List[int]]
# tensor of length \sum_{i=0}^{b} max_s_i holding the paged attention slots for all sequences # tensor of length \sum_{i=0}^{b} max_s_i holding the paged attention slots for all sequences
slots: torch.Tensor slots_tensor: torch.Tensor
max_seqlen: int max_seqlen: int
@ -154,7 +154,6 @@ class FlashCausalLMBatch(Batch):
sliding_window = get_sliding_windows() sliding_window = get_sliding_windows()
position_ids = [] position_ids = []
cu_seqlen_prefill = [0] cu_seqlen_prefill = [0]
start_slots = []
slot_indices = [] slot_indices = []
prefill_cache_indices = [] prefill_cache_indices = []
@ -176,7 +175,6 @@ class FlashCausalLMBatch(Batch):
# Cumulative length # Cumulative length
cumulative_length = 0 cumulative_length = 0
cumulative_max_length = 0
prefill_out_cumulative_length = 0 prefill_out_cumulative_length = 0
num_blocks = 0 num_blocks = 0
@ -186,6 +184,7 @@ class FlashCausalLMBatch(Batch):
block_tables = [] block_tables = []
slots = [] slots = []
flat_slots = []
# Parse batch # Parse batch
for i, (r, tokenized_input) in enumerate( for i, (r, tokenized_input) in enumerate(
@ -204,6 +203,9 @@ class FlashCausalLMBatch(Batch):
input_length = len(tokenized_input) input_length = len(tokenized_input)
input_lengths.append(input_length) input_lengths.append(input_length)
speculative_length = get_speculate()
speculative_length = 0 if speculative_length is None else speculative_length
prefix_offsets.append(input_length - 5) prefix_offsets.append(input_length - 5)
read_offsets.append(input_length) read_offsets.append(input_length)
@ -226,13 +228,10 @@ class FlashCausalLMBatch(Batch):
top_n_tokens.append(r.top_n_tokens) top_n_tokens.append(r.top_n_tokens)
# Paged attention # Paged attention
# Remove one as the first token des not have a past
speculative_length = get_speculate()
speculative_length = 0 if speculative_length is None else speculative_length
total_tokens = input_length + max_new_tokens - 1 + speculative_length
# blocks and slots can be empty (for example in warmup) # blocks and slots can be empty (for example in warmup)
if not r.blocks: if not r.blocks:
# Remove one as the first token des not have a past
total_tokens = input_length + max_new_tokens - 1 + speculative_length
needed_blocks = math.ceil(total_tokens / BLOCK_SIZE) needed_blocks = math.ceil(total_tokens / BLOCK_SIZE)
request_blocks = [ request_blocks = [
b for b in range(num_blocks, num_blocks + needed_blocks) b for b in range(num_blocks, num_blocks + needed_blocks)
@ -247,15 +246,15 @@ class FlashCausalLMBatch(Batch):
request_slots = r.slots request_slots = r.slots
block_tables.append(request_blocks) block_tables.append(request_blocks)
slots.extend(request_slots[:total_tokens])
num_blocks += len(request_blocks) num_blocks += len(request_blocks)
start_slots.append(cumulative_max_length)
request_slot_indices = torch.arange( request_slot_indices = torch.arange(
cumulative_max_length, len(flat_slots),
cumulative_max_length + input_length, len(flat_slots) + input_length,
dtype=torch.int64, dtype=torch.int64,
) )
slots.append(request_slots)
flat_slots.extend(request_slots)
slot_indices.append(request_slot_indices) slot_indices.append(request_slot_indices)
# Create tensor to slice into the kv tensor in prefill # Create tensor to slice into the kv tensor in prefill
@ -289,7 +288,6 @@ class FlashCausalLMBatch(Batch):
# Update # Update
cumulative_length += input_length cumulative_length += input_length
cumulative_max_length += total_tokens
max_seqlen = max(max_seqlen, input_length) max_seqlen = max(max_seqlen, input_length)
max_blocks = max(max_blocks, len(request_blocks)) max_blocks = max(max_blocks, len(request_blocks))
max_length = max( max_length = max(
@ -299,7 +297,6 @@ class FlashCausalLMBatch(Batch):
next_token_chooser = HeterogeneousNextTokenChooser.from_pb( next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
next_token_chooser_parameters, dtype, device, tokenizer next_token_chooser_parameters, dtype, device, tokenizer
) )
start_slots = torch.tensor(start_slots, dtype=torch.int64)
# Padded all_input_ids_tensor # Padded all_input_ids_tensor
all_input_ids_tensor = np.zeros( all_input_ids_tensor = np.zeros(
@ -356,7 +353,7 @@ class FlashCausalLMBatch(Batch):
top_n_tokens, device=device, dtype=torch.int64 top_n_tokens, device=device, dtype=torch.int64
) )
slots = torch.tensor(slots, dtype=torch.int64, device=device) slots_tensor = torch.tensor(flat_slots, dtype=torch.int64, device=device)
block_tables_tensor = torch.zeros( block_tables_tensor = torch.zeros(
(len(block_tables), max_blocks), dtype=torch.int32, device="cpu" (len(block_tables), max_blocks), dtype=torch.int32, device="cpu"
) )
@ -372,11 +369,11 @@ class FlashCausalLMBatch(Batch):
position_ids=position_ids, position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill, cu_seqlen_prefill=cu_seqlen_prefill,
prefill_cache_indices=prefill_cache_indices, prefill_cache_indices=prefill_cache_indices,
start_slots=start_slots,
slot_indices=slot_indices, slot_indices=slot_indices,
block_tables=block_tables, block_tables=block_tables,
block_tables_tensor=block_tables_tensor, block_tables_tensor=block_tables_tensor,
slots=slots, slots=slots,
slots_tensor=slots_tensor,
max_seqlen=max_seqlen, max_seqlen=max_seqlen,
prefill_head_indices=prefill_head_indices, prefill_head_indices=prefill_head_indices,
prefill_next_token_indices=prefill_next_token_indices, prefill_next_token_indices=prefill_next_token_indices,
@ -423,18 +420,13 @@ class FlashCausalLMBatch(Batch):
# Used to index into tensors # Used to index into tensors
indices = [] indices = []
# slots to keep after filtering slot_indices = []
slot_filtering_indices = torch.zeros(
self.slots.shape[0], dtype=torch.bool, device=device
)
# Create on CPU to only move to GPU once instead of at every copy
slot_indices = torch.empty(len(request_ids), dtype=torch.int64)
max_seqlen = 0 max_seqlen = 0
requests = [] requests = []
start_slots = []
block_tables = [] block_tables = []
slots = []
flat_slots = []
all_input_ids = [] all_input_ids = []
input_lengths = [] input_lengths = []
@ -446,8 +438,6 @@ class FlashCausalLMBatch(Batch):
num_blocks = 0 num_blocks = 0
max_blocks = 0 max_blocks = 0
# Cumulative length
cumulative_max_length = 0
for i, request_id in enumerate(request_ids): for i, request_id in enumerate(request_ids):
idx = self.requests_idx_mapping[request_id] idx = self.requests_idx_mapping[request_id]
@ -471,27 +461,17 @@ class FlashCausalLMBatch(Batch):
top_n_tokens.append(self.top_n_tokens[idx]) top_n_tokens.append(self.top_n_tokens[idx])
remaining_tokens = (
stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
)
request_block_table = self.block_tables[idx] request_block_table = self.block_tables[idx]
num_blocks += len(request_block_table) num_blocks += len(request_block_table)
block_tables.append(request_block_table) block_tables.append(request_block_table)
start_slots.append(cumulative_max_length)
# Copy to tensor (CPU) # List of slots allocated for this request
slot_indices[i] = cumulative_max_length + request_input_length - 1 request_slots = self.slots[idx]
slots.append(request_slots)
# Set slice # Index
slot_filtering_indices[ slot_indices.append(len(flat_slots) + request_input_length - 1)
self.start_slots[idx] : self.start_slots[idx] flat_slots.extend(request_slots)
+ request_input_length
+ remaining_tokens
- 1
] = True
cumulative_max_length += request_input_length + remaining_tokens - 1
max_blocks = max(max_blocks, len(request_block_table)) max_blocks = max(max_blocks, len(request_block_table))
@ -501,17 +481,15 @@ class FlashCausalLMBatch(Batch):
all_input_ids_tensor = self.all_input_ids_tensor[indices] all_input_ids_tensor = self.all_input_ids_tensor[indices]
block_tables_tensor = self.block_tables_tensor[indices] block_tables_tensor = self.block_tables_tensor[indices]
input_lengths_tensor = self.input_lengths_tensor[indices] input_lengths_tensor = self.input_lengths_tensor[indices]
slots = self.slots[slot_filtering_indices]
next_token_chooser = self.next_token_chooser.filter(indices) next_token_chooser = self.next_token_chooser.filter(indices)
top_n_tokens_tensor = self.top_n_tokens_tensor[indices] top_n_tokens_tensor = self.top_n_tokens_tensor[indices]
speculative_ids = ( speculative_ids = (
self.speculative_ids[indices] if self.speculative_ids is not None else None self.speculative_ids[indices] if self.speculative_ids is not None else None
) )
start_slots = torch.tensor(start_slots, dtype=torch.int64) # Allocate on GPU
slots_tensor = torch.tensor(flat_slots, dtype=torch.int64, device=device)
# Move to GPU now that we have the whole tensor slot_indices = torch.tensor(slot_indices, dtype=torch.int64, device=device)
slot_indices = slot_indices.to(device)
return type(self)( return type(self)(
batch_id=self.batch_id, batch_id=self.batch_id,
@ -521,11 +499,11 @@ class FlashCausalLMBatch(Batch):
position_ids=position_ids, position_ids=position_ids,
cu_seqlen_prefill=None, cu_seqlen_prefill=None,
prefill_cache_indices=None, prefill_cache_indices=None,
start_slots=start_slots,
slot_indices=slot_indices, slot_indices=slot_indices,
block_tables=block_tables, block_tables=block_tables,
block_tables_tensor=block_tables_tensor, block_tables_tensor=block_tables_tensor,
slots=slots, slots=slots,
slots_tensor=slots_tensor,
max_seqlen=max_seqlen, max_seqlen=max_seqlen,
prefill_head_indices=None, prefill_head_indices=None,
prefill_next_token_indices=None, prefill_next_token_indices=None,
@ -560,13 +538,14 @@ class FlashCausalLMBatch(Batch):
max_seqlen = 0 max_seqlen = 0
for b in batches: for b in batches:
total_batch_size += len(b) total_batch_size += len(b)
total_slots += len(b.slots) total_slots += len(b.slots_tensor)
num_blocks += b.num_blocks num_blocks += b.num_blocks
speculative_length = ( speculative_length = (
b.speculative_ids.shape[1] if b.speculative_ids is not None else 0 b.speculative_ids.shape[1] if b.speculative_ids is not None else 0
) )
max_blocks = max(max_blocks, b.max_blocks) max_blocks = max(max_blocks, b.max_blocks)
max_seqlen = max(max_seqlen, b.max_seqlen) max_seqlen = max(max_seqlen, b.max_seqlen)
# When we filter, we do not recompute this value so we do so here
max_length = max( max_length = max(
max_length, max_length,
max( max(
@ -582,7 +561,7 @@ class FlashCausalLMBatch(Batch):
input_ids = batches[0].input_ids.new_empty(total_batch_size) input_ids = batches[0].input_ids.new_empty(total_batch_size)
position_ids = batches[0].position_ids.new_empty(total_batch_size) position_ids = batches[0].position_ids.new_empty(total_batch_size)
slots = batches[0].slots.new_empty(total_slots) slots_tensor = batches[0].slots_tensor.new_empty(total_slots)
slot_indices = batches[0].slot_indices.new_empty(total_batch_size) slot_indices = batches[0].slot_indices.new_empty(total_batch_size)
input_lengths_tensor = batches[0].input_lengths_tensor.new_empty( input_lengths_tensor = batches[0].input_lengths_tensor.new_empty(
total_batch_size total_batch_size
@ -597,7 +576,7 @@ class FlashCausalLMBatch(Batch):
total_batch_size, total_batch_size,
) )
start_slots = [] slots = []
block_tables = [] block_tables = []
all_input_ids = [] all_input_ids = []
@ -627,7 +606,7 @@ class FlashCausalLMBatch(Batch):
start_index = cumulative_batch_size start_index = cumulative_batch_size
end_index = cumulative_batch_size + len(batch) end_index = cumulative_batch_size + len(batch)
slots_start_index = cumulative_slots slots_start_index = cumulative_slots
slots_end_index = cumulative_slots + len(batch.slots) slots_end_index = cumulative_slots + len(batch.slots_tensor)
# Copy tensors (GPU) # Copy tensors (GPU)
input_ids[start_index:end_index] = batch.input_ids input_ids[start_index:end_index] = batch.input_ids
@ -635,7 +614,7 @@ class FlashCausalLMBatch(Batch):
slot_indices[start_index:end_index] = batch.slot_indices + cumulative_slots slot_indices[start_index:end_index] = batch.slot_indices + cumulative_slots
input_lengths_tensor[start_index:end_index] = batch.input_lengths_tensor input_lengths_tensor[start_index:end_index] = batch.input_lengths_tensor
top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor
slots[slots_start_index:slots_end_index] = batch.slots slots_tensor[slots_start_index:slots_end_index] = batch.slots_tensor
all_input_ids_tensor[ all_input_ids_tensor[
start_index:end_index, : batch.all_input_ids_tensor.shape[1] start_index:end_index, : batch.all_input_ids_tensor.shape[1]
@ -645,8 +624,7 @@ class FlashCausalLMBatch(Batch):
start_index:end_index, : batch.block_tables_tensor.shape[1] start_index:end_index, : batch.block_tables_tensor.shape[1]
] = batch.block_tables_tensor[:, :max_blocks] ] = batch.block_tables_tensor[:, :max_blocks]
start_slots.append(batch.start_slots + cumulative_slots) slots.extend(batch.slots)
block_tables.extend(batch.block_tables) block_tables.extend(batch.block_tables)
all_input_ids.extend(batch.all_input_ids) all_input_ids.extend(batch.all_input_ids)
@ -662,9 +640,7 @@ class FlashCausalLMBatch(Batch):
# Update # Update
cumulative_batch_size += len(batch) cumulative_batch_size += len(batch)
cumulative_slots += len(batch.slots) cumulative_slots += len(batch.slots_tensor)
start_slots = torch.concat(start_slots)
next_token_chooser = HeterogeneousNextTokenChooser.from_pb( next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
next_token_chooser_parameters, next_token_chooser_parameters,
@ -688,11 +664,11 @@ class FlashCausalLMBatch(Batch):
position_ids=position_ids, position_ids=position_ids,
cu_seqlen_prefill=None, cu_seqlen_prefill=None,
prefill_cache_indices=None, prefill_cache_indices=None,
start_slots=start_slots,
slot_indices=slot_indices, slot_indices=slot_indices,
block_tables=block_tables, block_tables=block_tables,
block_tables_tensor=block_tables_tensor, block_tables_tensor=block_tables_tensor,
slots=slots, slots=slots,
slots_tensor=slots_tensor,
max_seqlen=max_seqlen, max_seqlen=max_seqlen,
prefill_head_indices=None, prefill_head_indices=None,
prefill_next_token_indices=None, prefill_next_token_indices=None,
@ -993,7 +969,7 @@ class FlashCausalLM(Model):
cu_seqlen_prefill = batch.cu_seqlen_prefill cu_seqlen_prefill = batch.cu_seqlen_prefill
kv_cache = self.kv_cache kv_cache = self.kv_cache
block_tables = batch.block_tables_tensor block_tables = batch.block_tables_tensor
slots = batch.slots[batch.slot_indices] slots = batch.slots_tensor[batch.slot_indices]
input_lengths = batch.input_lengths_tensor input_lengths = batch.input_lengths_tensor
max_s = batch.max_seqlen max_s = batch.max_seqlen
lm_head_indices = batch.prefill_head_indices lm_head_indices = batch.prefill_head_indices
@ -1032,7 +1008,7 @@ class FlashCausalLM(Model):
cu_seqlen_prefill = batch.cu_seqlen_prefill cu_seqlen_prefill = batch.cu_seqlen_prefill
kv_cache = self.kv_cache kv_cache = self.kv_cache
block_tables = batch.block_tables_tensor block_tables = batch.block_tables_tensor
slots = batch.slots[batch.slot_indices] slots = batch.slots_tensor[batch.slot_indices]
input_lengths = batch.input_lengths_tensor input_lengths = batch.input_lengths_tensor
max_s = batch.max_seqlen max_s = batch.max_seqlen
lm_head_indices = batch.prefill_head_indices lm_head_indices = batch.prefill_head_indices
@ -1374,6 +1350,7 @@ class FlashCausalLM(Model):
), ),
generated_text, generated_text,
top_tokens, top_tokens,
input_length + n_accepted_ids
) )
generations.append(generation) generations.append(generation)

View File

@ -829,6 +829,7 @@ class IdeficsCausalLM(Model):
), ),
generated_text, generated_text,
top_tokens, top_tokens,
new_input_length
) )
generations.append(generation) generations.append(generation)

View File

@ -775,6 +775,7 @@ class Mamba(Model):
), ),
generated_text, generated_text,
top_tokens, top_tokens,
new_input_length
) )
generations.append(generation) generations.append(generation)

View File

@ -801,6 +801,7 @@ class Seq2SeqLM(Model):
), ),
generated_text, generated_text,
top_tokens, top_tokens,
new_decoder_input_length,
) )
generations.append(generation) generations.append(generation)

View File

@ -84,6 +84,7 @@ class Generation:
generated_text: Optional[GeneratedText] generated_text: Optional[GeneratedText]
# Optional for now, since it's not yet supported for every model. # Optional for now, since it's not yet supported for every model.
top_tokens: Optional[List[Tokens]] top_tokens: Optional[List[Tokens]]
current_length: int
def to_pb(self) -> generate_pb2.Generation: def to_pb(self) -> generate_pb2.Generation:
return generate_pb2.Generation( return generate_pb2.Generation(
@ -100,4 +101,5 @@ class Generation:
if self.top_tokens is not None if self.top_tokens is not None
else None else None
), ),
current_length=self.current_length,
) )

View File

@ -228,7 +228,7 @@ class VlmCausalLM(BaseFlashMistral):
cu_seqlen_prefill = batch.cu_seqlen_prefill cu_seqlen_prefill = batch.cu_seqlen_prefill
kv_cache = self.kv_cache kv_cache = self.kv_cache
block_tables = batch.block_tables_tensor block_tables = batch.block_tables_tensor
slots = batch.slots[batch.slot_indices] slots = batch.slots_tensor[batch.slot_indices]
input_lengths = batch.input_lengths_tensor input_lengths = batch.input_lengths_tensor
max_s = batch.max_seqlen max_s = batch.max_seqlen
lm_head_indices = batch.prefill_head_indices lm_head_indices = batch.prefill_head_indices
@ -267,7 +267,7 @@ class VlmCausalLM(BaseFlashMistral):
cu_seqlen_prefill = batch.cu_seqlen_prefill cu_seqlen_prefill = batch.cu_seqlen_prefill
kv_cache = self.kv_cache kv_cache = self.kv_cache
block_tables = batch.block_tables_tensor block_tables = batch.block_tables_tensor
slots = batch.slots[batch.slot_indices] slots = batch.slots_tensor[batch.slot_indices]
input_lengths = batch.input_lengths_tensor input_lengths = batch.input_lengths_tensor
max_s = batch.max_seqlen max_s = batch.max_seqlen
lm_head_indices = batch.prefill_head_indices lm_head_indices = batch.prefill_head_indices