mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-05-24 12:32:11 +00:00
Enable Llama4 for Gaudi backend (#3223)
Signed-off-by: yuanwu <yuan.wu@intel.com>
This commit is contained in:
parent
7e531f413d
commit
18cbecfb38
@ -16,9 +16,6 @@ import enum
|
|||||||
|
|
||||||
from text_generation_server.utils.speculate import get_speculate, set_speculate
|
from text_generation_server.utils.speculate import get_speculate, set_speculate
|
||||||
from text_generation_server.models.model import Model
|
from text_generation_server.models.model import Model
|
||||||
from text_generation_server.models.causal_lm import CausalLM
|
|
||||||
from text_generation_server.models.bloom import BLOOM
|
|
||||||
from text_generation_server.models.starcoder import StarCoder
|
|
||||||
from text_generation_server.models.custom_modeling.flash_phi_moe_modeling import (
|
from text_generation_server.models.custom_modeling.flash_phi_moe_modeling import (
|
||||||
PhiMoEConfig,
|
PhiMoEConfig,
|
||||||
)
|
)
|
||||||
@ -32,7 +29,6 @@ from text_generation_server.utils.adapter import (
|
|||||||
from text_generation_server.adapters.lora import LoraWeights
|
from text_generation_server.adapters.lora import LoraWeights
|
||||||
|
|
||||||
from text_generation_server.utils.log import log_master
|
from text_generation_server.utils.log import log_master
|
||||||
from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi
|
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
"Model",
|
"Model",
|
||||||
@ -42,6 +38,7 @@ __all__ = [
|
|||||||
]
|
]
|
||||||
from text_generation_server.models.globals import ATTENTION
|
from text_generation_server.models.globals import ATTENTION
|
||||||
|
|
||||||
|
VLM_BATCH_TYPES = set()
|
||||||
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models."
|
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models."
|
||||||
|
|
||||||
FLASH_ATTENTION = False
|
FLASH_ATTENTION = False
|
||||||
@ -63,6 +60,9 @@ try:
|
|||||||
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
|
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
|
||||||
FlashLlamaForCausalLM,
|
FlashLlamaForCausalLM,
|
||||||
)
|
)
|
||||||
|
from text_generation_server.models.custom_modeling.flash_llama4_modeling import (
|
||||||
|
Llama4ForConditionalGeneration,
|
||||||
|
)
|
||||||
from text_generation_server.models.custom_modeling.flash_cohere_modeling import (
|
from text_generation_server.models.custom_modeling.flash_cohere_modeling import (
|
||||||
FlashCohereForCausalLM,
|
FlashCohereForCausalLM,
|
||||||
)
|
)
|
||||||
@ -140,10 +140,24 @@ except ImportError as e:
|
|||||||
log_master(logger.warning, f"Could not import Flash Attention enabled models: {e}")
|
log_master(logger.warning, f"Could not import Flash Attention enabled models: {e}")
|
||||||
SUPPORTS_WINDOWING = False
|
SUPPORTS_WINDOWING = False
|
||||||
FLASH_ATTENTION = False
|
FLASH_ATTENTION = False
|
||||||
|
VLM_BATCH_TYPES = set()
|
||||||
|
|
||||||
if FLASH_ATTENTION:
|
if FLASH_ATTENTION:
|
||||||
__all__.append(FlashCausalLM)
|
__all__.append(FlashCausalLM)
|
||||||
|
|
||||||
|
from text_generation_server.models.flash_vlm_causal_lm import (
|
||||||
|
FlashVlmCausalLMBatch,
|
||||||
|
)
|
||||||
|
|
||||||
|
VLM_BATCH_TYPES = {
|
||||||
|
PaliGemmaBatch,
|
||||||
|
FlashVlmCausalLMBatch,
|
||||||
|
FlashMllamaCausalLMBatch,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
__all__.append(VLM_BATCH_TYPES)
|
||||||
|
|
||||||
|
|
||||||
class ModelType(enum.Enum):
|
class ModelType(enum.Enum):
|
||||||
DEEPSEEK_V2 = {
|
DEEPSEEK_V2 = {
|
||||||
@ -179,6 +193,11 @@ class ModelType(enum.Enum):
|
|||||||
"name": "Llama",
|
"name": "Llama",
|
||||||
"url": "https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f",
|
"url": "https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f",
|
||||||
}
|
}
|
||||||
|
LLAMA4 = {
|
||||||
|
"type": "llama4",
|
||||||
|
"name": "Llama4",
|
||||||
|
"url": "https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f",
|
||||||
|
}
|
||||||
PHI3 = {
|
PHI3 = {
|
||||||
"type": "phi3",
|
"type": "phi3",
|
||||||
"name": "Phi 3",
|
"name": "Phi 3",
|
||||||
@ -589,6 +608,19 @@ def get_model(
|
|||||||
trust_remote_code=trust_remote_code,
|
trust_remote_code=trust_remote_code,
|
||||||
lora_adapter_ids=lora_adapter_ids,
|
lora_adapter_ids=lora_adapter_ids,
|
||||||
)
|
)
|
||||||
|
elif model_type == LLAMA4:
|
||||||
|
print(f"Llama4 model detected: {model_id}")
|
||||||
|
return FlashVlmCausalLM(
|
||||||
|
model_id=model_id,
|
||||||
|
model_class=Llama4ForConditionalGeneration,
|
||||||
|
revision=revision,
|
||||||
|
quantize=quantize,
|
||||||
|
speculator=speculator,
|
||||||
|
dtype=dtype,
|
||||||
|
default_dtype=torch.bfloat16,
|
||||||
|
trust_remote_code=trust_remote_code,
|
||||||
|
lora_adapter_ids=lora_adapter_ids,
|
||||||
|
)
|
||||||
elif model_type == BAICHUAN:
|
elif model_type == BAICHUAN:
|
||||||
return FlashCausalLM(
|
return FlashCausalLM(
|
||||||
model_id=model_id,
|
model_id=model_id,
|
||||||
@ -823,6 +855,7 @@ def get_model(
|
|||||||
trust_remote_code=trust_remote_code,
|
trust_remote_code=trust_remote_code,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
from text_generation_server.models.causal_lm import CausalLM
|
||||||
from text_generation_server.models.vlm_causal_lm import VlmCausalLM
|
from text_generation_server.models.vlm_causal_lm import VlmCausalLM
|
||||||
from text_generation_server.models.custom_modeling.mllama import (
|
from text_generation_server.models.custom_modeling.mllama import (
|
||||||
MllamaForConditionalGeneration,
|
MllamaForConditionalGeneration,
|
||||||
@ -830,13 +863,24 @@ def get_model(
|
|||||||
from text_generation_server.models.custom_modeling.llava_next import (
|
from text_generation_server.models.custom_modeling.llava_next import (
|
||||||
LlavaNextForConditionalGeneration,
|
LlavaNextForConditionalGeneration,
|
||||||
)
|
)
|
||||||
|
from text_generation_server.models.vlm_causal_lm import (
|
||||||
|
VlmCausalLMBatch,
|
||||||
|
)
|
||||||
|
|
||||||
|
VLM_BATCH_TYPES.add(VlmCausalLMBatch)
|
||||||
|
|
||||||
|
from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi
|
||||||
|
|
||||||
adapt_transformers_to_gaudi()
|
adapt_transformers_to_gaudi()
|
||||||
if SDP_ON_BF16 == 1:
|
if SDP_ON_BF16 == 1:
|
||||||
torch._C._set_math_sdp_allow_fp16_bf16_reduction(True)
|
torch._C._set_math_sdp_allow_fp16_bf16_reduction(True)
|
||||||
if model_type == "gpt_bigcode":
|
if model_type == "gpt_bigcode":
|
||||||
|
from text_generation_server.models.starcoder import StarCoder
|
||||||
|
|
||||||
return StarCoder(model_id=model_id, revision=revision, dtype=dtype)
|
return StarCoder(model_id=model_id, revision=revision, dtype=dtype)
|
||||||
if model_type == "bloom":
|
if model_type == "bloom":
|
||||||
|
from text_generation_server.models.bloom import BLOOM
|
||||||
|
|
||||||
return BLOOM(
|
return BLOOM(
|
||||||
model_id=model_id,
|
model_id=model_id,
|
||||||
revision=revision,
|
revision=revision,
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -37,6 +37,33 @@ IDEFICS3_FAKE_IMAGE_TOKEN = "<fake_token_around_image>"
|
|||||||
IDEFICS3_GLOBAL_IMG_TOKEN = "<global-img>"
|
IDEFICS3_GLOBAL_IMG_TOKEN = "<global-img>"
|
||||||
|
|
||||||
|
|
||||||
|
def prompt_split_image_llama4(aspect_ratio, num_patches_per_chunk):
|
||||||
|
"""
|
||||||
|
Create a structured string representation of image tokens
|
||||||
|
|
||||||
|
Args:
|
||||||
|
num_patches: Number of patches in the image
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
String with appropriate image tokens
|
||||||
|
"""
|
||||||
|
img_string = "<|image_start|>"
|
||||||
|
ratio_h, ratio_w = aspect_ratio
|
||||||
|
if ratio_h * ratio_w > 1:
|
||||||
|
for yy in range(ratio_h):
|
||||||
|
for xx in range(ratio_w):
|
||||||
|
img_string += "<|patch|>" * num_patches_per_chunk
|
||||||
|
if xx < ratio_w - 1:
|
||||||
|
img_string += "<|tile_x_separator|>"
|
||||||
|
|
||||||
|
img_string += "<|tile_y_separator|>"
|
||||||
|
img_string += "<|image|>"
|
||||||
|
img_string += "<|patch|>" * num_patches_per_chunk
|
||||||
|
img_string += "<|image_end|>"
|
||||||
|
|
||||||
|
return img_string
|
||||||
|
|
||||||
|
|
||||||
# copied from: https://github.com/huggingface/transformers/blob/02ed609285c2448b3b54c31e362f2c389fa952ab/src/transformers/models/idefics3/processing_idefics3.py#L44-L60
|
# copied from: https://github.com/huggingface/transformers/blob/02ed609285c2448b3b54c31e362f2c389fa952ab/src/transformers/models/idefics3/processing_idefics3.py#L44-L60
|
||||||
def _prompt_split_image(
|
def _prompt_split_image(
|
||||||
*,
|
*,
|
||||||
@ -142,6 +169,23 @@ def image_text_replacement(processor, image_input, config, image_id: int) -> str
|
|||||||
num_pads = 256
|
num_pads = 256
|
||||||
padding = "<image_soft_token>" * num_pads
|
padding = "<image_soft_token>" * num_pads
|
||||||
return f"\n\n<start_of_image>{padding}<end_of_image>\n\n"
|
return f"\n\n<start_of_image>{padding}<end_of_image>\n\n"
|
||||||
|
elif config.model_type == "llama4":
|
||||||
|
patch_size = config.vision_config.patch_size
|
||||||
|
pixel_shuffle_ratio = config.vision_config.pixel_shuffle_ratio
|
||||||
|
downsample_ratio = int(round(1.0 / (pixel_shuffle_ratio**2)))
|
||||||
|
aspect_ratios = image_input["aspect_ratios"][image_id]
|
||||||
|
image_height, image_width = image_input["pixel_values"][image_id].shape[-2:]
|
||||||
|
|
||||||
|
num_patches_per_chunk = int(
|
||||||
|
(image_height // patch_size)
|
||||||
|
* (image_width // patch_size)
|
||||||
|
// downsample_ratio
|
||||||
|
)
|
||||||
|
tokens_for_this_image = prompt_split_image_llama4(
|
||||||
|
aspect_ratios, num_patches_per_chunk
|
||||||
|
)
|
||||||
|
|
||||||
|
return tokens_for_this_image
|
||||||
else:
|
else:
|
||||||
raise RuntimeError(f"Unknown config {config.model_type} for multimodal")
|
raise RuntimeError(f"Unknown config {config.model_type} for multimodal")
|
||||||
|
|
||||||
@ -260,6 +304,8 @@ class FlashVlmCausalLMBatch(FlashCausalLMBatch):
|
|||||||
images.append(image)
|
images.append(image)
|
||||||
elif config.model_type == "gemma3":
|
elif config.model_type == "gemma3":
|
||||||
images.append(image)
|
images.append(image)
|
||||||
|
elif config.model_type == "llama4":
|
||||||
|
images.append(image)
|
||||||
else:
|
else:
|
||||||
images.append([image])
|
images.append([image])
|
||||||
else:
|
else:
|
||||||
|
@ -23,26 +23,8 @@ from text_generation_server.models.globals import set_adapter_to_index
|
|||||||
from text_generation_server.utils.adapter import AdapterInfo
|
from text_generation_server.utils.adapter import AdapterInfo
|
||||||
from text_generation_server.utils.tokens import make_tokenizer_optional
|
from text_generation_server.utils.tokens import make_tokenizer_optional
|
||||||
from text_generation_server.utils.prefill_chunking import set_max_prefill_tokens
|
from text_generation_server.utils.prefill_chunking import set_max_prefill_tokens
|
||||||
|
from text_generation_server.models import VLM_BATCH_TYPES
|
||||||
|
|
||||||
try:
|
|
||||||
from text_generation_server.models.pali_gemma import PaliGemmaBatch
|
|
||||||
from text_generation_server.models.mllama_causal_lm import FlashMllamaCausalLMBatch
|
|
||||||
from text_generation_server.models.vlm_causal_lm import (
|
|
||||||
VlmCausalLMBatch,
|
|
||||||
)
|
|
||||||
from text_generation_server.models.flash_vlm_causal_lm import (
|
|
||||||
FlashVlmCausalLMBatch,
|
|
||||||
)
|
|
||||||
|
|
||||||
VLM_BATCH_TYPES = {
|
|
||||||
PaliGemmaBatch,
|
|
||||||
VlmCausalLMBatch,
|
|
||||||
FlashVlmCausalLMBatch,
|
|
||||||
FlashMllamaCausalLMBatch,
|
|
||||||
}
|
|
||||||
except (ImportError, NotImplementedError):
|
|
||||||
# These imports can fail on CPU/Non flash.
|
|
||||||
VLM_BATCH_TYPES = set()
|
|
||||||
from text_generation_server.utils.version import (
|
from text_generation_server.utils.version import (
|
||||||
is_driver_compatible,
|
is_driver_compatible,
|
||||||
MIN_TGI_GAUDI_SYNAPSE_VERSION,
|
MIN_TGI_GAUDI_SYNAPSE_VERSION,
|
||||||
|
@ -1,5 +1,30 @@
|
|||||||
from optimum.habana.utils import get_driver_version
|
|
||||||
from packaging.version import Version
|
from packaging.version import Version
|
||||||
|
from packaging import version
|
||||||
|
import subprocess
|
||||||
|
|
||||||
|
|
||||||
|
def get_driver_version():
|
||||||
|
"""
|
||||||
|
Returns the driver version.
|
||||||
|
"""
|
||||||
|
# Enable console printing for `hl-smi` check
|
||||||
|
output = subprocess.run(
|
||||||
|
"hl-smi",
|
||||||
|
shell=True,
|
||||||
|
text=True,
|
||||||
|
stdout=subprocess.PIPE,
|
||||||
|
stderr=subprocess.PIPE,
|
||||||
|
env={"ENABLE_CONSOLE": "true"},
|
||||||
|
)
|
||||||
|
if output.returncode == 0 and output.stdout:
|
||||||
|
return version.parse(
|
||||||
|
output.stdout.split("\n")[2]
|
||||||
|
.replace(" ", "")
|
||||||
|
.split(":")[1][:-1]
|
||||||
|
.split("-")[0]
|
||||||
|
)
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
MIN_TGI_GAUDI_SYNAPSE_VERSION = Version("1.19.0")
|
MIN_TGI_GAUDI_SYNAPSE_VERSION = Version("1.19.0")
|
||||||
|
|
||||||
|
@ -303,7 +303,7 @@ class Weights:
|
|||||||
world_size = self.process_group.size()
|
world_size = self.process_group.size()
|
||||||
rank = self.process_group.rank()
|
rank = self.process_group.rank()
|
||||||
|
|
||||||
tensors = []
|
tensors_slices = []
|
||||||
block_offset = 0
|
block_offset = 0
|
||||||
for block_size in block_sizes:
|
for block_size in block_sizes:
|
||||||
assert (
|
assert (
|
||||||
@ -312,15 +312,18 @@ class Weights:
|
|||||||
shard_block_size = block_size // world_size
|
shard_block_size = block_size // world_size
|
||||||
start = rank * shard_block_size
|
start = rank * shard_block_size
|
||||||
stop = (rank + 1) * shard_block_size
|
stop = (rank + 1) * shard_block_size
|
||||||
if dim == 0:
|
tensors_slices += range(block_offset + start, block_offset + stop)
|
||||||
tensor = slice_[block_offset + start : block_offset + stop]
|
|
||||||
elif dim == 1:
|
|
||||||
tensor = slice_[:, block_offset + start : block_offset + stop]
|
|
||||||
else:
|
|
||||||
raise NotImplementedError("Currently only dim=0 or dim=1 is supported")
|
|
||||||
tensors.append(tensor)
|
|
||||||
block_offset += block_size
|
block_offset += block_size
|
||||||
tensor = torch.cat(tensors, dim=dim)
|
|
||||||
|
if dim == 0:
|
||||||
|
tensor = slice_[tensors_slices, ...]
|
||||||
|
elif dim == 1 or dim == -2:
|
||||||
|
tensor = slice_[:, tensors_slices, ...]
|
||||||
|
elif dim == 2 or dim == -1:
|
||||||
|
tensor = slice_[..., tensors_slices]
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported dim {dim}, only dim 0, 1 or 2 are supported")
|
||||||
|
|
||||||
tensor = tensor.to(device=self.device)
|
tensor = tensor.to(device=self.device)
|
||||||
|
|
||||||
# Avoid casting quantizer dtypes.
|
# Avoid casting quantizer dtypes.
|
||||||
|
@ -7,5 +7,13 @@ if [[ "$*" == *"--sharded true"* ]]; then
|
|||||||
echo 'setting PT_HPU_ENABLE_LAZY_COLLECTIVES=1 for sharding'
|
echo 'setting PT_HPU_ENABLE_LAZY_COLLECTIVES=1 for sharding'
|
||||||
export PT_HPU_ENABLE_LAZY_COLLECTIVES=1
|
export PT_HPU_ENABLE_LAZY_COLLECTIVES=1
|
||||||
fi
|
fi
|
||||||
|
# Check if ATTENTION environment variable is set to paged
|
||||||
|
if [[ "$ATTENTION" == "paged" ]]; then
|
||||||
|
# Check if Llama-4 is in the command line arguments
|
||||||
|
if [[ "$*" == *"Llama-4"* ]]; then
|
||||||
|
echo 'ATTENTION=paged and Llama-4 detected'
|
||||||
|
pip install git+https://github.com/huggingface/transformers.git@29338949
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
text-generation-launcher $@
|
text-generation-launcher $@
|
||||||
|
Loading…
Reference in New Issue
Block a user