feat: experimental python packaging and interface

This commit is contained in:
drbh 2024-05-16 19:47:12 +00:00
parent 612bc483b6
commit 0e5220d704
14 changed files with 3465 additions and 2080 deletions

102
Cargo.lock generated
View File

@ -1783,6 +1783,15 @@ version = "2.7.2"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6c8640c5d730cb13ebd907d8d04b52f55ac9a2eec55b440c8892f40d56c76c1d" checksum = "6c8640c5d730cb13ebd907d8d04b52f55ac9a2eec55b440c8892f40d56c76c1d"
[[package]]
name = "memoffset"
version = "0.9.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "488016bfae457b036d996092f6cb448677611ce4449e970ceaf42695203f218a"
dependencies = [
"autocfg",
]
[[package]] [[package]]
name = "metrics" name = "metrics"
version = "0.21.1" version = "0.21.1"
@ -2665,6 +2674,82 @@ dependencies = [
"prost 0.12.6", "prost 0.12.6",
] ]
[[package]]
name = "pyo3"
version = "0.20.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "53bdbb96d49157e65d45cc287af5f32ffadd5f4761438b527b055fb0d4bb8233"
dependencies = [
"cfg-if",
"indoc",
"libc",
"memoffset",
"parking_lot",
"portable-atomic",
"pyo3-build-config",
"pyo3-ffi",
"pyo3-macros",
"unindent",
]
[[package]]
name = "pyo3-asyncio"
version = "0.20.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6ea6b68e93db3622f3bb3bf363246cf948ed5375afe7abff98ccbdd50b184995"
dependencies = [
"futures",
"once_cell",
"pin-project-lite",
"pyo3",
"tokio",
]
[[package]]
name = "pyo3-build-config"
version = "0.20.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "deaa5745de3f5231ce10517a1f5dd97d53e5a2fd77aa6b5842292085831d48d7"
dependencies = [
"once_cell",
"target-lexicon",
]
[[package]]
name = "pyo3-ffi"
version = "0.20.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "62b42531d03e08d4ef1f6e85a2ed422eb678b8cd62b762e53891c05faf0d4afa"
dependencies = [
"libc",
"pyo3-build-config",
]
[[package]]
name = "pyo3-macros"
version = "0.20.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7305c720fa01b8055ec95e484a6eca7a83c841267f0dd5280f0c8b8551d2c158"
dependencies = [
"proc-macro2",
"pyo3-macros-backend",
"quote",
"syn 2.0.60",
]
[[package]]
name = "pyo3-macros-backend"
version = "0.20.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7c7e9b68bb9c3149c5b0cade5d07f953d6d125eb4337723c4ccdb665f1f96185"
dependencies = [
"heck 0.4.1",
"proc-macro2",
"pyo3-build-config",
"quote",
"syn 2.0.60",
]
[[package]] [[package]]
name = "qoi" name = "qoi"
version = "0.4.1" version = "0.4.1"
@ -3627,6 +3712,17 @@ dependencies = [
"vergen", "vergen",
] ]
[[package]]
name = "tgi"
version = "0.1.0"
dependencies = [
"pyo3",
"pyo3-asyncio",
"text-generation-launcher",
"text-generation-router",
"tokio",
]
[[package]] [[package]]
name = "thiserror" name = "thiserror"
version = "1.0.61" version = "1.0.61"
@ -4186,6 +4282,12 @@ version = "0.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "39ec24b3121d976906ece63c9daad25b85969647682eee313cb5779fdd69e14e" checksum = "39ec24b3121d976906ece63c9daad25b85969647682eee313cb5779fdd69e14e"
[[package]]
name = "unindent"
version = "0.2.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c7de7d73e1754487cb58364ee906a499937a0dfabd86bcb980fa99ec8c8fa2ce"
[[package]] [[package]]
name = "untrusted" name = "untrusted"
version = "0.7.1" version = "0.7.1"

View File

@ -4,7 +4,8 @@ members = [
"router", "router",
"router/client", "router/client",
"router/grpc-metadata", "router/grpc-metadata",
"launcher" "launcher",
"tgi"
] ]
resolver = "2" resolver = "2"

2026
launcher/src/lib.rs Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -6,15 +6,491 @@ mod queue;
pub mod server; pub mod server;
mod validation; mod validation;
use axum::http::HeaderValue;
use config::Config;
use hf_hub::api::tokio::{Api, ApiBuilder, ApiRepo};
use hf_hub::{Cache, Repo, RepoType};
use infer::{Infer, InferError, InferStreamResponse}; use infer::{Infer, InferError, InferStreamResponse};
use opentelemetry::sdk::propagation::TraceContextPropagator;
use opentelemetry::sdk::trace;
use opentelemetry::sdk::trace::Sampler;
use opentelemetry::sdk::Resource;
use opentelemetry::{global, KeyValue};
use opentelemetry_otlp::WithExportConfig;
use queue::{Entry, Queue}; use queue::{Entry, Queue};
use serde::{Deserialize, Serialize}; use serde::{Deserialize, Serialize};
use std::fs::File;
use std::io::BufReader;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use std::path::{Path, PathBuf};
use text_generation_client::{ClientError, ShardedClient};
use thiserror::Error;
use tokenizers::Tokenizer;
use tokio::sync::OwnedSemaphorePermit; use tokio::sync::OwnedSemaphorePermit;
use tokio_stream::wrappers::UnboundedReceiverStream; use tokio_stream::wrappers::UnboundedReceiverStream;
use tracing::warn; use tracing::warn;
use utoipa::ToSchema; use utoipa::ToSchema;
use validation::Validation; use validation::Validation;
/// Init logging using env variables LOG_LEVEL and LOG_FORMAT:
/// - otlp_endpoint is an optional URL to an Open Telemetry collector
/// - LOG_LEVEL may be TRACE, DEBUG, INFO, WARN or ERROR (default to INFO)
/// - LOG_FORMAT may be TEXT or JSON (default to TEXT)
/// - LOG_COLORIZE may be "false" or "true" (default to "true" or ansi supported platforms)
fn init_logging(otlp_endpoint: Option<String>, json_output: bool) {
let mut layers = Vec::new();
// STDOUT/STDERR layer
let ansi = std::env::var("LOG_COLORIZE") != Ok("1".to_string());
let fmt_layer = tracing_subscriber::fmt::layer()
.with_file(true)
.with_ansi(ansi)
.with_line_number(true);
let fmt_layer = match json_output {
true => fmt_layer.json().flatten_event(true).boxed(),
false => fmt_layer.boxed(),
};
layers.push(fmt_layer);
// OpenTelemetry tracing layer
if let Some(otlp_endpoint) = otlp_endpoint {
global::set_text_map_propagator(TraceContextPropagator::new());
let tracer = opentelemetry_otlp::new_pipeline()
.tracing()
.with_exporter(
opentelemetry_otlp::new_exporter()
.tonic()
.with_endpoint(otlp_endpoint),
)
.with_trace_config(
trace::config()
.with_resource(Resource::new(vec![KeyValue::new(
"service.name",
"text-generation-inference.router",
)]))
.with_sampler(Sampler::AlwaysOn),
)
.install_batch(opentelemetry::runtime::Tokio);
if let Ok(tracer) = tracer {
layers.push(tracing_opentelemetry::layer().with_tracer(tracer).boxed());
init_tracing_opentelemetry::init_propagator().unwrap();
};
}
// Filter events with LOG_LEVEL
let env_filter =
EnvFilter::try_from_env("LOG_LEVEL").unwrap_or_else(|_| EnvFilter::new("info"));
tracing_subscriber::registry()
.with(env_filter)
.with(layers)
.init();
}
/// get model info from the Huggingface Hub
pub async fn get_model_info(api: &ApiRepo) -> Option<HubModelInfo> {
let response = api.info_request().send().await.ok()?;
if response.status().is_success() {
let hub_model_info: HubModelInfo =
serde_json::from_str(&response.text().await.ok()?).ok()?;
if let Some(sha) = &hub_model_info.sha {
tracing::info!(
"Serving revision {sha} of model {}",
hub_model_info.model_id
);
}
Some(hub_model_info)
} else {
None
}
}
/// get base tokenizer
pub async fn get_base_tokenizer(api: &Api, api_repo: &ApiRepo) -> Option<PathBuf> {
let config_filename = api_repo.get("config.json").await.ok()?;
// Open the file in read-only mode with buffer.
let file = File::open(config_filename).ok()?;
let reader = BufReader::new(file);
// Read the JSON contents of the file as an instance of `User`.
let config: serde_json::Value = serde_json::from_reader(reader).ok()?;
if let Some(serde_json::Value::String(base_model_id)) = config.get("base_model_name_or_path") {
let api_base_repo = api.repo(Repo::with_revision(
base_model_id.to_string(),
RepoType::Model,
"main".to_string(),
));
api_base_repo.get("tokenizer.json").await.ok()
} else {
None
}
}
/// get tokenizer_config from the Huggingface Hub
pub async fn get_tokenizer_config(api_repo: &ApiRepo) -> Option<HubTokenizerConfig> {
let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok()?;
// Open the file in read-only mode with buffer.
let file = File::open(tokenizer_config_filename).ok()?;
let reader = BufReader::new(file);
// Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
let tokenizer_config: HubTokenizerConfig = serde_json::from_reader(reader)
.map_err(|e| {
tracing::warn!("Unable to parse tokenizer config: {}", e);
e
})
.ok()?;
Some(tokenizer_config)
}
#[derive(Debug, Error)]
pub enum RouterError {
#[error("Argument validation error: {0}")]
ArgumentValidation(String),
#[error("Unable to connect to the Python model shards: {0}")]
Connection(ClientError),
#[error("Unable to clear the Python model shards cache: {0}")]
Cache(ClientError),
#[error("Unable to get the Python model shards info: {0}")]
Info(ClientError),
#[error("Unable to warmup the Python model shards: {0}")]
Warmup(ClientError),
#[error("Tokio runtime failed to start: {0}")]
Tokio(#[from] std::io::Error),
#[error("Axum webserver failed: {0}")]
Axum(#[from] axum::BoxError),
}
#[allow(clippy::too_many_arguments)]
pub async fn internal_main(
max_concurrent_requests: usize,
max_best_of: usize,
max_stop_sequences: usize,
max_top_n_tokens: u32,
max_input_tokens: usize,
max_total_tokens: usize,
waiting_served_ratio: f32,
max_batch_prefill_tokens: u32,
max_batch_total_tokens: Option<u32>,
max_waiting_tokens: usize,
max_batch_size: Option<usize>,
hostname: String,
port: u16,
master_shard_uds_path: String,
tokenizer_name: String,
tokenizer_config_path: Option<String>,
revision: Option<String>,
validation_workers: usize,
json_output: bool,
otlp_endpoint: Option<String>,
cors_allow_origin: Option<Vec<String>>,
ngrok: bool,
ngrok_authtoken: Option<String>,
ngrok_edge: Option<String>,
messages_api_enabled: bool,
disable_grammar_support: bool,
max_client_batch_size: usize,
) -> Result<(), RouterError> {
// Launch Tokio runtime
if otlp_endpoint.is_some() {
// Initialize if OpenTelemetry is enabled
init_logging(otlp_endpoint, json_output);
}
// Validate args
if max_input_tokens >= max_total_tokens {
return Err(RouterError::ArgumentValidation(
"`max_input_tokens` must be < `max_total_tokens`".to_string(),
));
}
if max_input_tokens as u32 > max_batch_prefill_tokens {
return Err(RouterError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {max_batch_prefill_tokens} and {max_input_tokens}")));
}
if validation_workers == 0 {
return Err(RouterError::ArgumentValidation(
"`validation_workers` must be > 0".to_string(),
));
}
if let Some(ref max_batch_total_tokens) = max_batch_total_tokens {
if max_batch_prefill_tokens > *max_batch_total_tokens {
return Err(RouterError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {max_batch_prefill_tokens} and {max_batch_total_tokens}")));
}
if max_total_tokens as u32 > *max_batch_total_tokens {
return Err(RouterError::ArgumentValidation(format!("`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {max_total_tokens} and {max_batch_total_tokens}")));
}
}
// CORS allowed origins
// map to go inside the option and then map to parse from String to HeaderValue
// Finally, convert to AllowOrigin
let cors_allow_origin: Option<AllowOrigin> = cors_allow_origin.map(|cors_allow_origin| {
AllowOrigin::list(
cors_allow_origin
.iter()
.map(|origin| origin.parse::<HeaderValue>().unwrap()),
)
});
// Parse Huggingface hub token
let authorization_token = std::env::var("HUGGING_FACE_HUB_TOKEN").ok();
// Tokenizer instance
// This will only be used to validate payloads
let local_path = Path::new(&tokenizer_name);
// Shared API builder initialization
let api_builder = || {
let mut builder = ApiBuilder::new()
.with_progress(false)
.with_token(authorization_token);
if let Ok(cache_dir) = std::env::var("HUGGINGFACE_HUB_CACHE") {
builder = builder.with_cache_dir(cache_dir.into());
}
builder
};
// Decide if we need to use the API based on the revision and local path
let use_api = revision.is_some() || !local_path.exists() || !local_path.is_dir();
// Initialize API if needed
#[derive(Clone)]
enum Type {
Api(Api),
Cache(Cache),
None,
}
let api = if use_api {
if std::env::var("HF_HUB_OFFLINE") == Ok("1".to_string()) {
let cache = Cache::default();
tracing::warn!("Offline mode active using cache defaults");
Type::Cache(cache)
} else {
tracing::info!("Using the Hugging Face API");
match api_builder().build() {
Ok(api) => Type::Api(api),
Err(_) => {
tracing::warn!("Unable to build the Hugging Face API");
Type::None
}
}
}
} else {
Type::None
};
// Load tokenizer and model info
let (tokenizer_filename, config_filename, tokenizer_config_filename, model_info) = match api {
Type::None => (
Some(local_path.join("tokenizer.json")),
Some(local_path.join("config.json")),
Some(local_path.join("tokenizer_config.json")),
None,
),
Type::Api(api) => {
let api_repo = api.repo(Repo::with_revision(
tokenizer_name.to_string(),
RepoType::Model,
revision.clone().unwrap_or_else(|| "main".to_string()),
));
let tokenizer_filename = match api_repo.get("tokenizer.json").await {
Ok(tokenizer_filename) => Some(tokenizer_filename),
Err(_) => get_base_tokenizer(&api, &api_repo).await,
};
let config_filename = api_repo.get("config.json").await.ok();
let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok();
let model_info = if let Some(model_info) = get_model_info(&api_repo).await {
Some(model_info)
} else {
tracing::warn!("Could not retrieve model info from the Hugging Face hub.");
None
};
(
tokenizer_filename,
config_filename,
tokenizer_config_filename,
model_info,
)
}
Type::Cache(cache) => {
let repo = cache.repo(Repo::with_revision(
tokenizer_name.to_string(),
RepoType::Model,
revision.clone().unwrap_or_else(|| "main".to_string()),
));
(
repo.get("tokenizer.json"),
repo.get("config.json"),
repo.get("tokenizer_config.json"),
None,
)
}
};
let tokenizer: Option<Tokenizer> =
tokenizer_filename.and_then(|filename| Tokenizer::from_file(filename).ok());
let config: Option<Config> = config_filename.and_then(|filename| {
std::fs::read_to_string(filename)
.ok()
.as_ref()
.and_then(|c| {
let config: Result<Config, _> = serde_json::from_str(c);
if let Err(err) = &config {
tracing::warn!("Could not parse config {err:?}");
}
config.ok()
})
});
let model_info = model_info.unwrap_or_else(|| HubModelInfo {
model_id: tokenizer_name.to_string(),
sha: None,
pipeline_tag: None,
});
// Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
let tokenizer_config: Option<HubTokenizerConfig> = if let Some(filename) = tokenizer_config_path
{
HubTokenizerConfig::from_file(filename)
} else {
tokenizer_config_filename.and_then(HubTokenizerConfig::from_file)
};
let tokenizer_config = tokenizer_config.unwrap_or_else(|| {
tracing::warn!("Could not find tokenizer config locally and no API specified");
HubTokenizerConfig::default()
});
tracing::info!("Using config {config:?}");
if tokenizer.is_none() {
tracing::warn!("Could not find a fast tokenizer implementation for {tokenizer_name}");
tracing::warn!("Rust input length validation and truncation is disabled");
}
// if pipeline-tag == text-generation we default to return_full_text = true
let compat_return_full_text = match &model_info.pipeline_tag {
None => {
tracing::warn!("no pipeline tag found for model {tokenizer_name}");
true
}
Some(pipeline_tag) => pipeline_tag.as_str() == "text-generation",
};
// Instantiate sharded client from the master unix socket
let mut sharded_client = ShardedClient::connect_uds(master_shard_uds_path)
.await
.map_err(RouterError::Connection)?;
// Clear the cache; useful if the webserver rebooted
sharded_client
.clear_cache(None)
.await
.map_err(RouterError::Cache)?;
// Get info from the shard
let shard_info = sharded_client.info().await.map_err(RouterError::Info)?;
// Warmup model
tracing::info!("Warming up model");
let max_supported_batch_total_tokens = match sharded_client
.warmup(
max_input_tokens as u32,
max_batch_prefill_tokens,
max_total_tokens as u32,
max_batch_size,
)
.await
.map_err(RouterError::Warmup)?
{
// Older models do not support automatic max-batch-total-tokens
None => {
let max_batch_total_tokens = max_batch_total_tokens
.unwrap_or(16000.max((max_total_tokens as u32).max(max_batch_prefill_tokens)));
tracing::warn!("Model does not support automatic max batch total tokens");
max_batch_total_tokens
}
// Flash attention models return their max supported total tokens
Some(max_supported_batch_total_tokens) => {
// Warn if user added his own max-batch-total-tokens as we will ignore it
if max_batch_total_tokens.is_some() {
tracing::warn!(
"`--max-batch-total-tokens` is deprecated for Flash \
Attention models."
);
tracing::warn!(
"Inferred max batch total tokens: {max_supported_batch_total_tokens}"
);
}
if max_total_tokens as u32 > max_supported_batch_total_tokens {
return Err(RouterError::ArgumentValidation(format!("`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {max_total_tokens} and {max_supported_batch_total_tokens}")));
}
max_supported_batch_total_tokens
}
};
tracing::info!("Setting max batch total tokens to {max_supported_batch_total_tokens}");
tracing::info!("Connected");
// Determine the server port based on the feature and environment variable.
let port = if cfg!(feature = "google") {
std::env::var("AIP_HTTP_PORT")
.map(|aip_http_port| aip_http_port.parse::<u16>().unwrap_or(port))
.unwrap_or(port)
} else {
port
};
let addr = match hostname.parse() {
Ok(ip) => SocketAddr::new(ip, port),
Err(_) => {
tracing::warn!("Invalid hostname, defaulting to 0.0.0.0");
SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), port)
}
};
// Run server
server::run(
model_info,
shard_info,
compat_return_full_text,
max_concurrent_requests,
max_best_of,
max_stop_sequences,
max_top_n_tokens,
max_input_tokens,
max_total_tokens,
waiting_served_ratio,
max_batch_prefill_tokens,
max_supported_batch_total_tokens,
max_waiting_tokens,
max_batch_size,
sharded_client,
tokenizer,
config,
validation_workers,
addr,
cors_allow_origin,
ngrok,
ngrok_authtoken,
ngrok_edge,
tokenizer_config,
messages_api_enabled,
disable_grammar_support,
max_client_batch_size,
)
.await?;
Ok(())
}
/// Type alias for generation responses /// Type alias for generation responses
pub(crate) type GenerateStreamResponse = ( pub(crate) type GenerateStreamResponse = (
OwnedSemaphorePermit, OwnedSemaphorePermit,

View File

@ -1,26 +1,5 @@
use axum::http::HeaderValue;
use clap::Parser; use clap::Parser;
use hf_hub::api::tokio::{Api, ApiBuilder, ApiRepo}; use text_generation_router::{internal_main, RouterError};
use hf_hub::{Cache, Repo, RepoType};
use opentelemetry::sdk::propagation::TraceContextPropagator;
use opentelemetry::sdk::trace;
use opentelemetry::sdk::trace::Sampler;
use opentelemetry::sdk::Resource;
use opentelemetry::{global, KeyValue};
use opentelemetry_otlp::WithExportConfig;
use std::fs::File;
use std::io::BufReader;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use std::path::{Path, PathBuf};
use text_generation_client::{ClientError, ShardedClient};
use text_generation_router::config::Config;
use text_generation_router::{server, HubModelInfo, HubProcessorConfig, HubTokenizerConfig};
use thiserror::Error;
use tokenizers::Tokenizer;
use tower_http::cors::AllowOrigin;
use tracing_subscriber::layer::SubscriberExt;
use tracing_subscriber::util::SubscriberInitExt;
use tracing_subscriber::{filter::LevelFilter, EnvFilter, Layer};
/// App Configuration /// App Configuration
#[derive(Parser, Debug)] #[derive(Parser, Debug)]
@ -86,487 +65,36 @@ struct Args {
async fn main() -> Result<(), RouterError> { async fn main() -> Result<(), RouterError> {
// Get args // Get args
let args = Args::parse(); let args = Args::parse();
// Pattern match configuration
let Args {
max_concurrent_requests,
max_best_of,
max_stop_sequences,
max_top_n_tokens,
max_input_tokens,
max_total_tokens,
waiting_served_ratio,
max_batch_prefill_tokens,
max_batch_total_tokens,
max_waiting_tokens,
max_batch_size,
hostname,
port,
master_shard_uds_path,
tokenizer_name,
tokenizer_config_path,
revision,
validation_workers,
json_output,
otlp_endpoint,
cors_allow_origin,
ngrok,
ngrok_authtoken,
ngrok_edge,
messages_api_enabled,
disable_grammar_support,
max_client_batch_size,
} = args;
// Launch Tokio runtime internal_main(
init_logging(otlp_endpoint, json_output); args.max_concurrent_requests,
args.max_best_of,
// Validate args args.max_stop_sequences,
if max_input_tokens >= max_total_tokens { args.max_top_n_tokens,
return Err(RouterError::ArgumentValidation( args.max_input_tokens,
"`max_input_tokens` must be < `max_total_tokens`".to_string(), args.max_total_tokens,
)); args.waiting_served_ratio,
} args.max_batch_prefill_tokens,
if max_input_tokens as u32 > max_batch_prefill_tokens { args.max_batch_total_tokens,
return Err(RouterError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {max_batch_prefill_tokens} and {max_input_tokens}"))); args.max_waiting_tokens,
} args.max_batch_size,
args.hostname,
if validation_workers == 0 { args.port,
return Err(RouterError::ArgumentValidation( args.master_shard_uds_path,
"`validation_workers` must be > 0".to_string(), args.tokenizer_name,
)); args.tokenizer_config_path,
} args.revision,
args.validation_workers,
if let Some(ref max_batch_total_tokens) = max_batch_total_tokens { args.json_output,
if max_batch_prefill_tokens > *max_batch_total_tokens { args.otlp_endpoint,
return Err(RouterError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {max_batch_prefill_tokens} and {max_batch_total_tokens}"))); args.cors_allow_origin,
} args.ngrok,
if max_total_tokens as u32 > *max_batch_total_tokens { args.ngrok_authtoken,
return Err(RouterError::ArgumentValidation(format!("`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {max_total_tokens} and {max_batch_total_tokens}"))); args.ngrok_edge,
} args.messages_api_enabled,
} args.disable_grammar_support,
args.max_client_batch_size,
// CORS allowed origins
// map to go inside the option and then map to parse from String to HeaderValue
// Finally, convert to AllowOrigin
let cors_allow_origin: Option<AllowOrigin> = cors_allow_origin.map(|cors_allow_origin| {
AllowOrigin::list(
cors_allow_origin
.iter()
.map(|origin| origin.parse::<HeaderValue>().unwrap()),
)
});
// Parse Huggingface hub token
let authorization_token = std::env::var("HUGGING_FACE_HUB_TOKEN").ok();
// Tokenizer instance
// This will only be used to validate payloads
let local_path = Path::new(&tokenizer_name);
// Shared API builder initialization
let api_builder = || {
let mut builder = ApiBuilder::new()
.with_progress(false)
.with_token(authorization_token);
if let Ok(cache_dir) = std::env::var("HUGGINGFACE_HUB_CACHE") {
builder = builder.with_cache_dir(cache_dir.into());
}
builder
};
// Decide if we need to use the API based on the revision and local path
let use_api = revision.is_some() || !local_path.exists() || !local_path.is_dir();
// Initialize API if needed
#[derive(Clone)]
enum Type {
Api(Api),
Cache(Cache),
None,
}
let api = if use_api {
if std::env::var("HF_HUB_OFFLINE") == Ok("1".to_string()) {
let cache = Cache::default();
tracing::warn!("Offline mode active using cache defaults");
Type::Cache(cache)
} else {
tracing::info!("Using the Hugging Face API");
match api_builder().build() {
Ok(api) => Type::Api(api),
Err(_) => {
tracing::warn!("Unable to build the Hugging Face API");
Type::None
}
}
}
} else {
Type::None
};
// Load tokenizer and model info
let (
tokenizer_filename,
config_filename,
tokenizer_config_filename,
processor_config_filename,
model_info,
) = match api {
Type::None => (
Some(local_path.join("tokenizer.json")),
Some(local_path.join("config.json")),
Some(local_path.join("tokenizer_config.json")),
Some(local_path.join("processor_config.json")),
None,
),
Type::Api(api) => {
let api_repo = api.repo(Repo::with_revision(
tokenizer_name.to_string(),
RepoType::Model,
revision.clone().unwrap_or_else(|| "main".to_string()),
));
let tokenizer_filename = match api_repo.get("tokenizer.json").await {
Ok(tokenizer_filename) => Some(tokenizer_filename),
Err(_) => get_base_tokenizer(&api, &api_repo).await,
};
let config_filename = api_repo.get("config.json").await.ok();
let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok();
let processor_config_filename = api_repo.get("processor_config.json").await.ok();
let model_info = if let Some(model_info) = get_model_info(&api_repo).await {
Some(model_info)
} else {
tracing::warn!("Could not retrieve model info from the Hugging Face hub.");
None
};
(
tokenizer_filename,
config_filename,
tokenizer_config_filename,
processor_config_filename,
model_info,
)
}
Type::Cache(cache) => {
let repo = cache.repo(Repo::with_revision(
tokenizer_name.to_string(),
RepoType::Model,
revision.clone().unwrap_or_else(|| "main".to_string()),
));
(
repo.get("tokenizer.json"),
repo.get("config.json"),
repo.get("tokenizer_config.json"),
repo.get("processor_config.json"),
None,
)
}
};
let tokenizer: Option<Tokenizer> =
tokenizer_filename.and_then(|filename| Tokenizer::from_file(filename).ok());
let config: Option<Config> = config_filename.and_then(|filename| {
std::fs::read_to_string(filename)
.ok()
.as_ref()
.and_then(|c| {
let config: Result<Config, _> = serde_json::from_str(c);
if let Err(err) = &config {
tracing::warn!("Could not parse config {err:?}");
}
config.ok()
})
});
let model_info = model_info.unwrap_or_else(|| HubModelInfo {
model_id: tokenizer_name.to_string(),
sha: None,
pipeline_tag: None,
});
// Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
let tokenizer_config: Option<HubTokenizerConfig> = if let Some(filename) = tokenizer_config_path
{
HubTokenizerConfig::from_file(filename)
} else {
tokenizer_config_filename.and_then(HubTokenizerConfig::from_file)
};
let tokenizer_config = tokenizer_config.unwrap_or_else(|| {
tracing::warn!("Could not find tokenizer config locally and no API specified");
HubTokenizerConfig::default()
});
let processor_config = processor_config_filename
.and_then(HubProcessorConfig::from_file)
.unwrap_or_default();
tracing::info!("Using config {config:?}");
if tokenizer.is_none() {
tracing::warn!("Could not find a fast tokenizer implementation for {tokenizer_name}");
tracing::warn!("Rust input length validation and truncation is disabled");
}
// if pipeline-tag == text-generation we default to return_full_text = true
let compat_return_full_text = match &model_info.pipeline_tag {
None => {
tracing::warn!("no pipeline tag found for model {tokenizer_name}");
true
}
Some(pipeline_tag) => pipeline_tag.as_str() == "text-generation",
};
// Instantiate sharded client from the master unix socket
let mut sharded_client = ShardedClient::connect_uds(master_shard_uds_path)
.await
.map_err(RouterError::Connection)?;
// Clear the cache; useful if the webserver rebooted
sharded_client
.clear_cache(None)
.await
.map_err(RouterError::Cache)?;
// Get info from the shard
let shard_info = sharded_client.info().await.map_err(RouterError::Info)?;
// Warmup model
tracing::info!("Warming up model");
let max_supported_batch_total_tokens = match sharded_client
.warmup(
max_input_tokens as u32,
max_batch_prefill_tokens,
max_total_tokens as u32,
max_batch_size,
)
.await
.map_err(RouterError::Warmup)?
{
// Older models do not support automatic max-batch-total-tokens
None => {
let max_batch_total_tokens = max_batch_total_tokens
.unwrap_or(16000.max((max_total_tokens as u32).max(max_batch_prefill_tokens)));
tracing::warn!("Model does not support automatic max batch total tokens");
max_batch_total_tokens
}
// Flash attention models return their max supported total tokens
Some(max_supported_batch_total_tokens) => {
// Warn if user added his own max-batch-total-tokens as we will ignore it
if max_batch_total_tokens.is_some() {
tracing::warn!(
"`--max-batch-total-tokens` is deprecated for Flash \
Attention models."
);
tracing::warn!(
"Inferred max batch total tokens: {max_supported_batch_total_tokens}"
);
}
if max_total_tokens as u32 > max_supported_batch_total_tokens {
return Err(RouterError::ArgumentValidation(format!("`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {max_total_tokens} and {max_supported_batch_total_tokens}")));
}
max_supported_batch_total_tokens
}
};
tracing::info!("Setting max batch total tokens to {max_supported_batch_total_tokens}");
tracing::info!("Connected");
// Determine the server port based on the feature and environment variable.
let port = if cfg!(feature = "google") {
std::env::var("AIP_HTTP_PORT")
.map(|aip_http_port| aip_http_port.parse::<u16>().unwrap_or(port))
.unwrap_or(port)
} else {
port
};
let addr = match hostname.parse() {
Ok(ip) => SocketAddr::new(ip, port),
Err(_) => {
tracing::warn!("Invalid hostname, defaulting to 0.0.0.0");
SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), port)
}
};
// Run server
server::run(
model_info,
shard_info,
compat_return_full_text,
max_concurrent_requests,
max_best_of,
max_stop_sequences,
max_top_n_tokens,
max_input_tokens,
max_total_tokens,
waiting_served_ratio,
max_batch_prefill_tokens,
max_supported_batch_total_tokens,
max_waiting_tokens,
max_batch_size,
sharded_client,
tokenizer,
config,
validation_workers,
addr,
cors_allow_origin,
ngrok,
ngrok_authtoken,
ngrok_edge,
tokenizer_config,
processor_config,
messages_api_enabled,
disable_grammar_support,
max_client_batch_size,
) )
.await?; .await?;
Ok(()) Ok(())
} }
/// Init logging using env variables LOG_LEVEL and LOG_FORMAT:
/// - otlp_endpoint is an optional URL to an Open Telemetry collector
/// - LOG_LEVEL may be TRACE, DEBUG, INFO, WARN or ERROR (default to INFO)
/// - LOG_FORMAT may be TEXT or JSON (default to TEXT)
/// - LOG_COLORIZE may be "false" or "true" (default to "true" or ansi supported platforms)
fn init_logging(otlp_endpoint: Option<String>, json_output: bool) {
let mut layers = Vec::new();
// STDOUT/STDERR layer
let ansi = std::env::var("LOG_COLORIZE") != Ok("1".to_string());
let fmt_layer = tracing_subscriber::fmt::layer()
.with_file(true)
.with_ansi(ansi)
.with_line_number(true);
let fmt_layer = match json_output {
true => fmt_layer.json().flatten_event(true).boxed(),
false => fmt_layer.boxed(),
};
layers.push(fmt_layer);
// OpenTelemetry tracing layer
if let Some(otlp_endpoint) = otlp_endpoint {
global::set_text_map_propagator(TraceContextPropagator::new());
let tracer = opentelemetry_otlp::new_pipeline()
.tracing()
.with_exporter(
opentelemetry_otlp::new_exporter()
.tonic()
.with_endpoint(otlp_endpoint),
)
.with_trace_config(
trace::config()
.with_resource(Resource::new(vec![KeyValue::new(
"service.name",
"text-generation-inference.router",
)]))
.with_sampler(Sampler::AlwaysOn),
)
.install_batch(opentelemetry::runtime::Tokio);
if let Ok(tracer) = tracer {
layers.push(tracing_opentelemetry::layer().with_tracer(tracer).boxed());
init_tracing_opentelemetry::init_propagator().unwrap();
};
}
// Filter events with LOG_LEVEL
let varname = "LOG_LEVEL";
let env_filter = if let Ok(log_level) = std::env::var(varname) {
// Override to avoid simple logs to be spammed with tokio level informations
let log_level = match &log_level[..] {
"warn" => "text_generation_launcher=warn,text_generation_router=warn",
"info" => "text_generation_launcher=info,text_generation_router=info",
"debug" => "text_generation_launcher=debug,text_generation_router=debug",
log_level => log_level,
};
EnvFilter::builder()
.with_default_directive(LevelFilter::INFO.into())
.parse_lossy(log_level)
} else {
EnvFilter::new("info")
};
tracing_subscriber::registry()
.with(env_filter)
.with(layers)
.init();
}
/// get model info from the Huggingface Hub
pub async fn get_model_info(api: &ApiRepo) -> Option<HubModelInfo> {
let response = api.info_request().send().await.ok()?;
if response.status().is_success() {
let hub_model_info: HubModelInfo =
serde_json::from_str(&response.text().await.ok()?).ok()?;
if let Some(sha) = &hub_model_info.sha {
tracing::info!(
"Serving revision {sha} of model {}",
hub_model_info.model_id
);
}
Some(hub_model_info)
} else {
None
}
}
/// get base tokenizer
pub async fn get_base_tokenizer(api: &Api, api_repo: &ApiRepo) -> Option<PathBuf> {
let config_filename = api_repo.get("config.json").await.ok()?;
// Open the file in read-only mode with buffer.
let file = File::open(config_filename).ok()?;
let reader = BufReader::new(file);
// Read the JSON contents of the file as an instance of `User`.
let config: serde_json::Value = serde_json::from_reader(reader).ok()?;
if let Some(serde_json::Value::String(base_model_id)) = config.get("base_model_name_or_path") {
let api_base_repo = api.repo(Repo::with_revision(
base_model_id.to_string(),
RepoType::Model,
"main".to_string(),
));
api_base_repo.get("tokenizer.json").await.ok()
} else {
None
}
}
/// get tokenizer_config from the Huggingface Hub
pub async fn get_tokenizer_config(api_repo: &ApiRepo) -> Option<HubTokenizerConfig> {
let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok()?;
// Open the file in read-only mode with buffer.
let file = File::open(tokenizer_config_filename).ok()?;
let reader = BufReader::new(file);
// Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
let tokenizer_config: HubTokenizerConfig = serde_json::from_reader(reader)
.map_err(|e| {
tracing::warn!("Unable to parse tokenizer config: {}", e);
e
})
.ok()?;
Some(tokenizer_config)
}
#[derive(Debug, Error)]
enum RouterError {
#[error("Argument validation error: {0}")]
ArgumentValidation(String),
#[error("Unable to connect to the Python model shards: {0}")]
Connection(ClientError),
#[error("Unable to clear the Python model shards cache: {0}")]
Cache(ClientError),
#[error("Unable to get the Python model shards info: {0}")]
Info(ClientError),
#[error("Unable to warmup the Python model shards: {0}")]
Warmup(ClientError),
#[error("Tokio runtime failed to start: {0}")]
Tokio(#[from] std::io::Error),
#[error("Axum webserver failed: {0}")]
Axum(#[from] axum::BoxError),
}

72
tgi/.gitignore vendored Normal file
View File

@ -0,0 +1,72 @@
/target
# Byte-compiled / optimized / DLL files
__pycache__/
.pytest_cache/
*.py[cod]
# C extensions
*.so
# Distribution / packaging
.Python
.venv/
env/
bin/
build/
develop-eggs/
dist/
eggs/
lib/
lib64/
parts/
sdist/
var/
include/
man/
venv/
*.egg-info/
.installed.cfg
*.egg
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
pip-selfcheck.json
# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.cache
nosetests.xml
coverage.xml
# Translations
*.mo
# Mr Developer
.mr.developer.cfg
.project
.pydevproject
# Rope
.ropeproject
# Django stuff:
*.log
*.pot
.DS_Store
# Sphinx documentation
docs/_build/
# PyCharm
.idea/
# VSCode
.vscode/
# Pyenv
.python-version

16
tgi/Cargo.toml Normal file
View File

@ -0,0 +1,16 @@
[package]
name = "tgi"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[lib]
name = "tgi"
crate-type = ["cdylib"]
[dependencies]
pyo3 = { version = "0.20.0", features = ["extension-module"] }
pyo3-asyncio = { version = "0.20.0", features = ["tokio-runtime"] }
tokio = "1.4"
text-generation-router = { path = "../router" }
text-generation-launcher = { path = "../launcher" }

6
tgi/Makefile Normal file
View File

@ -0,0 +1,6 @@
build:
maturin build
install: build
pip install -e .

47
tgi/README.md Normal file
View File

@ -0,0 +1,47 @@
# TGI (Python Package)
> [!IMPORTANT]
> This is an experimental package and intended for research purposes only. The package is likely to change and should only be used for testing and development.
`tgi` is a simple Python package that wraps the `text-generation-server` and `text-generation-launcher` packages. It provides a simple interface to the text generation server.
```bash
make install
# this compiles the code and runs pip install for `tgi`
```
## Usage
See the full example in the [`app.py`](./app.py) file.
```python
from tgi import TGI
from huggingface_hub import InferenceClient
import time
llm = TGI(model_id="google/paligemma-3b-mix-224")
# ✂️ startup logic snipped
print("Model is ready!")
client = InferenceClient("http://localhost:3000")
generated = client.text_generation("What are the main characteristics of a cat?")
print(generated)
# Cats are known for their independent nature, curious minds, and affectionate nature. Here are the main characteristics of a cat...
llm.close()
```
## How it works
Technically this is a `pyo3` package that wraps the `text-generation-server` and `text-generation-launcher` packages, and slightly modifies the launcher to rely on the interal code rather than launch an external binary.
## Known issues/limitations
- [ ] server does not gracefully handle shutdowns (trying to avoid python context for better notebook dev experience)
- [ ] issues with tracing (launcher and router should share tracer)
- [ ] text-generation-server is not integrated and still relies on the external install
- [ ] not all parameters are exposed/passed through
- [ ] general cleanup and refactoring needed
- [ ] review naming and explore pushing to PyPi

38
tgi/app.py Normal file
View File

@ -0,0 +1,38 @@
from tgi import TGI
from huggingface_hub import InferenceClient
import time
llm = TGI(model_id="google/paligemma-3b-mix-224")
client = InferenceClient("http://localhost:3000")
while True:
print("Waiting for the model to be ready...")
try:
time.sleep(5)
generated = client.text_generation("What is Deep Learning?")
break
except Exception as e:
print(e)
print("Model is ready!")
time.sleep(2)
# do a couple of inference requests
print("Generating text...")
generated = client.text_generation("Where is the capital of France?")
print(generated)
time.sleep(2)
generated = client.text_generation(
"What can you tell me about the history of the United States?"
)
print(generated)
time.sleep(2)
generated = client.text_generation("What are the main characteristics of a cat?")
print(generated)
llm.close()

15
tgi/pyproject.toml Normal file
View File

@ -0,0 +1,15 @@
[build-system]
requires = ["maturin>=1.5,<2.0"]
build-backend = "maturin"
[project]
name = "tgi"
requires-python = ">=3.8"
classifiers = [
"Programming Language :: Rust",
"Programming Language :: Python :: Implementation :: CPython",
"Programming Language :: Python :: Implementation :: PyPy",
]
dynamic = ["version"]
[tool.maturin]
features = ["pyo3/extension-module"]

455
tgi/src/lib.rs Normal file
View File

@ -0,0 +1,455 @@
use pyo3::{prelude::*, wrap_pyfunction};
use text_generation_launcher::{launcher_main, launcher_main_without_server};
use text_generation_router::internal_main;
#[allow(clippy::too_many_arguments)]
#[pyfunction]
#[pyo3(signature = (
model_id,
revision,
validation_workers,
sharded,
num_shard,
_quantize,
speculate,
_dtype,
trust_remote_code,
max_concurrent_requests,
max_best_of,
max_stop_sequences,
max_top_n_tokens,
max_input_tokens,
max_input_length,
max_total_tokens,
waiting_served_ratio,
max_batch_prefill_tokens,
max_batch_total_tokens,
max_waiting_tokens,
max_batch_size,
cuda_graphs,
hostname,
port,
shard_uds_path,
master_addr,
master_port,
huggingface_hub_cache,
weights_cache_override,
disable_custom_kernels,
cuda_memory_fraction,
_rope_scaling,
rope_factor,
json_output,
otlp_endpoint,
cors_allow_origin,
watermark_gamma,
watermark_delta,
ngrok,
ngrok_authtoken,
ngrok_edge,
tokenizer_config_path,
disable_grammar_support,
env,
max_client_batch_size,
))]
fn rust_launcher(
py: Python<'_>,
model_id: String,
revision: Option<String>,
validation_workers: usize,
sharded: Option<bool>,
num_shard: Option<usize>,
_quantize: Option<String>, // Option<Quantization>,
speculate: Option<usize>,
_dtype: Option<String>, // Option<Dtype>,
trust_remote_code: bool,
max_concurrent_requests: usize,
max_best_of: usize,
max_stop_sequences: usize,
max_top_n_tokens: u32,
max_input_tokens: Option<usize>,
max_input_length: Option<usize>,
max_total_tokens: Option<usize>,
waiting_served_ratio: f32,
max_batch_prefill_tokens: Option<u32>,
max_batch_total_tokens: Option<u32>,
max_waiting_tokens: usize,
max_batch_size: Option<usize>,
cuda_graphs: Option<Vec<usize>>,
hostname: String,
port: u16,
shard_uds_path: String,
master_addr: String,
master_port: usize,
huggingface_hub_cache: Option<String>,
weights_cache_override: Option<String>,
disable_custom_kernels: bool,
cuda_memory_fraction: f32,
_rope_scaling: Option<f32>, // Option<RopeScaling>,
rope_factor: Option<f32>,
json_output: bool,
otlp_endpoint: Option<String>,
cors_allow_origin: Vec<String>,
watermark_gamma: Option<f32>,
watermark_delta: Option<f32>,
ngrok: bool,
ngrok_authtoken: Option<String>,
ngrok_edge: Option<String>,
tokenizer_config_path: Option<String>,
disable_grammar_support: bool,
env: bool,
max_client_batch_size: usize,
) -> PyResult<&PyAny> {
pyo3_asyncio::tokio::future_into_py(py, async move {
launcher_main(
model_id,
revision,
validation_workers,
sharded,
num_shard,
None,
speculate,
None,
trust_remote_code,
max_concurrent_requests,
max_best_of,
max_stop_sequences,
max_top_n_tokens,
max_input_tokens,
max_input_length,
max_total_tokens,
waiting_served_ratio,
max_batch_prefill_tokens,
max_batch_total_tokens,
max_waiting_tokens,
max_batch_size,
cuda_graphs,
hostname,
port,
shard_uds_path,
master_addr,
master_port,
huggingface_hub_cache,
weights_cache_override,
disable_custom_kernels,
cuda_memory_fraction,
None,
rope_factor,
json_output,
otlp_endpoint,
cors_allow_origin,
watermark_gamma,
watermark_delta,
ngrok,
ngrok_authtoken,
ngrok_edge,
tokenizer_config_path,
disable_grammar_support,
env,
max_client_batch_size,
)
.unwrap();
Ok(Python::with_gil(|py| py.None()))
})
}
#[allow(clippy::too_many_arguments)]
#[pyfunction]
#[pyo3(signature = (
model_id,
revision,
validation_workers,
sharded,
num_shard,
_quantize,
speculate,
_dtype,
trust_remote_code,
max_concurrent_requests,
max_best_of,
max_stop_sequences,
max_top_n_tokens,
max_input_tokens,
max_input_length,
max_total_tokens,
waiting_served_ratio,
max_batch_prefill_tokens,
max_batch_total_tokens,
max_waiting_tokens,
max_batch_size,
cuda_graphs,
hostname,
port,
shard_uds_path,
master_addr,
master_port,
huggingface_hub_cache,
weights_cache_override,
disable_custom_kernels,
cuda_memory_fraction,
_rope_scaling,
rope_factor,
json_output,
otlp_endpoint,
cors_allow_origin,
watermark_gamma,
watermark_delta,
ngrok,
ngrok_authtoken,
ngrok_edge,
tokenizer_config_path,
disable_grammar_support,
env,
max_client_batch_size,
))]
fn fully_packaged(
py: Python<'_>,
model_id: String,
revision: Option<String>,
validation_workers: usize,
sharded: Option<bool>,
num_shard: Option<usize>,
_quantize: Option<String>, // Option<Quantization>,
speculate: Option<usize>,
_dtype: Option<String>, // Option<Dtype>,
trust_remote_code: bool,
max_concurrent_requests: usize,
max_best_of: usize,
max_stop_sequences: usize,
max_top_n_tokens: u32,
max_input_tokens: Option<usize>,
max_input_length: Option<usize>,
max_total_tokens: Option<usize>,
waiting_served_ratio: f32,
max_batch_prefill_tokens: Option<u32>,
max_batch_total_tokens: Option<u32>,
max_waiting_tokens: usize,
max_batch_size: Option<usize>,
cuda_graphs: Option<Vec<usize>>,
hostname: String,
port: u16,
shard_uds_path: String,
master_addr: String,
master_port: usize,
huggingface_hub_cache: Option<String>,
weights_cache_override: Option<String>,
disable_custom_kernels: bool,
cuda_memory_fraction: f32,
_rope_scaling: Option<f32>, // Option<RopeScaling>,
rope_factor: Option<f32>,
json_output: bool,
otlp_endpoint: Option<String>,
cors_allow_origin: Vec<String>,
watermark_gamma: Option<f32>,
watermark_delta: Option<f32>,
ngrok: bool,
ngrok_authtoken: Option<String>,
ngrok_edge: Option<String>,
tokenizer_config_path: Option<String>,
disable_grammar_support: bool,
env: bool,
max_client_batch_size: usize,
) -> PyResult<&PyAny> {
pyo3_asyncio::tokio::future_into_py(py, async move {
use std::thread;
use tokio::runtime::Runtime;
let model_id_clone = model_id.clone();
let max_concurrent_requests_clone = max_concurrent_requests;
let max_best_of_clone = max_best_of;
let max_stop_sequences_clone = max_stop_sequences;
let max_top_n_tokens_clone = max_top_n_tokens;
let max_input_tokens_clone = max_input_tokens.unwrap_or(1024);
let max_total_tokens_clone = max_total_tokens.unwrap_or(2048);
let waiting_served_ratio_clone = waiting_served_ratio;
let max_batch_prefill_tokens_clone = max_batch_prefill_tokens.unwrap_or(4096);
let max_batch_total_tokens_clone = max_batch_total_tokens;
let max_waiting_tokens_clone = max_waiting_tokens;
let max_batch_size_clone = max_batch_size;
let hostname_clone = hostname.clone();
let port_clone = port;
// TODO: fix this
let _shard_uds_path_clone = shard_uds_path.clone();
let tokenizer_config_path = tokenizer_config_path.clone();
let revision = revision.clone();
let validation_workers = validation_workers;
let json_output = json_output;
let otlp_endpoint = otlp_endpoint.clone();
let cors_allow_origin = cors_allow_origin.clone();
let ngrok = ngrok;
let ngrok_authtoken = ngrok_authtoken.clone();
let ngrok_edge = ngrok_edge.clone();
let messages_api_enabled = true;
let disable_grammar_support = disable_grammar_support;
let max_client_batch_size = max_client_batch_size;
let ngrok_clone = ngrok;
let ngrok_authtoken_clone = ngrok_authtoken.clone();
let ngrok_edge_clone = ngrok_edge.clone();
let messages_api_enabled_clone = messages_api_enabled;
let disable_grammar_support_clone = disable_grammar_support;
let max_client_batch_size_clone = max_client_batch_size;
let tokenizer_config_path_clone = tokenizer_config_path.clone();
let revision_clone = revision.clone();
let validation_workers_clone = validation_workers;
let json_output_clone = json_output;
let otlp_endpoint_clone = otlp_endpoint.clone();
let webserver_callback = move || {
let handle = thread::spawn(move || {
let rt = Runtime::new().unwrap();
rt.block_on(async {
internal_main(
max_concurrent_requests_clone,
max_best_of_clone,
max_stop_sequences_clone,
max_top_n_tokens_clone,
max_input_tokens_clone,
max_total_tokens_clone,
waiting_served_ratio_clone,
max_batch_prefill_tokens_clone,
max_batch_total_tokens_clone,
max_waiting_tokens_clone,
max_batch_size_clone,
hostname_clone,
port_clone,
"/tmp/text-generation-server-0".to_string(),
model_id_clone,
tokenizer_config_path_clone,
revision_clone,
validation_workers_clone,
json_output_clone,
otlp_endpoint_clone,
None,
ngrok_clone,
ngrok_authtoken_clone,
ngrok_edge_clone,
messages_api_enabled_clone,
disable_grammar_support_clone,
max_client_batch_size_clone,
)
.await
})
});
match handle.join() {
Ok(_) => println!("Server exited successfully"),
Err(e) => println!("Server exited with error: {:?}", e),
}
Ok(())
};
// parse the arguments and run the main function
launcher_main_without_server(
model_id,
revision,
validation_workers,
sharded,
num_shard,
None,
speculate,
None,
trust_remote_code,
max_concurrent_requests,
max_best_of,
max_stop_sequences,
max_top_n_tokens,
max_input_tokens,
max_input_length,
max_total_tokens,
waiting_served_ratio,
max_batch_prefill_tokens,
max_batch_total_tokens,
max_waiting_tokens,
max_batch_size,
cuda_graphs,
hostname,
port,
shard_uds_path,
master_addr,
master_port,
huggingface_hub_cache,
weights_cache_override,
disable_custom_kernels,
cuda_memory_fraction,
None,
rope_factor,
json_output,
otlp_endpoint,
cors_allow_origin,
watermark_gamma,
watermark_delta,
ngrok,
ngrok_authtoken,
ngrok_edge,
tokenizer_config_path,
disable_grammar_support,
env,
max_client_batch_size,
Box::new(webserver_callback),
)
.unwrap();
Ok(Python::with_gil(|py| py.None()))
})
}
/// Asynchronous sleep function.
#[pyfunction]
fn rust_sleep(py: Python<'_>) -> PyResult<&PyAny> {
pyo3_asyncio::tokio::future_into_py(py, async {
tokio::time::sleep(std::time::Duration::from_secs(20)).await;
Ok(Python::with_gil(|py| py.None()))
})
}
// TODO: remove hardcoding
#[pyfunction]
fn rust_server(py: Python<'_>) -> PyResult<&PyAny> {
pyo3_asyncio::tokio::future_into_py(py, async {
let _ = internal_main(
128, // max_concurrent_requests: usize,
2, // max_best_of: usize,
4, // max_stop_sequences: usize,
5, // max_top_n_tokens: u32,
1024, // max_input_tokens: usize,
2048, // max_total_tokens: usize,
1.2, // waiting_served_ratio: f32,
4096, // max_batch_prefill_tokens: u32,
None, // max_batch_total_tokens: Option<u32>,
20, // max_waiting_tokens: usize,
None, // max_batch_size: Option<usize>,
"0.0.0.0".to_string(), // hostname: String,
3000, // port: u16,
"/tmp/text-generation-server-0".to_string(), // master_shard_uds_path: String,
"llava-hf/llava-v1.6-mistral-7b-hf".to_string(), // tokenizer_name: String,
None, // tokenizer_config_path: Option<String>,
None, // revision: Option<String>,
2, // validation_workers: usize,
false, // json_output: bool,
None, // otlp_endpoint: Option<String>,
None, // cors_allow_origin: Option<Vec<String>>,
false, // ngrok: bool,
None, // ngrok_authtoken: Option<String>,
None, // ngrok_edge: Option<String>,
false, // messages_api_enabled: bool,
false, // disable_grammar_support: bool,
4, // max_client_batch_size: usize,
)
.await;
Ok(Python::with_gil(|py| py.None()))
})
}
#[pymodule]
fn tgi(_py: Python, m: &PyModule) -> PyResult<()> {
m.add_function(wrap_pyfunction!(rust_sleep, m)?)?;
m.add_function(wrap_pyfunction!(rust_server, m)?)?;
m.add_function(wrap_pyfunction!(rust_launcher, m)?)?;
m.add_function(wrap_pyfunction!(fully_packaged, m)?)?;
Ok(())
}

132
tgi/tgi/__init__.py Normal file
View File

@ -0,0 +1,132 @@
from .tgi import *
import threading
from tgi import rust_launcher, rust_sleep, fully_packaged
import asyncio
from dataclasses import dataclass, asdict
import sys
# add the rust_launcher coroutine to the __all__ list
__doc__ = tgi.__doc__
if hasattr(tgi, "__all__"):
__all__ = tgi.__all__
@dataclass
class Args:
model_id = "google/gemma-2b-it"
revision = None
validation_workers = 2
sharded = None
num_shard = None
quantize = None
speculate = None
dtype = None
trust_remote_code = True
max_concurrent_requests = 128
max_best_of = 2
max_stop_sequences = 4
max_top_n_tokens = 5
max_input_tokens = None
max_input_length = None
max_total_tokens = None
waiting_served_ratio = 0.3
max_batch_prefill_tokens = None
max_batch_total_tokens = None
max_waiting_tokens = 20
max_batch_size = None
cuda_graphs = None
hostname = "0.0.0.0"
port = 3000
shard_uds_path = "/tmp/text-generation-server"
master_addr = "localhost"
master_port = 29500
huggingface_hub_cache = None
weights_cache_override = None
disable_custom_kernels = False
cuda_memory_fraction = 1.0
rope_scaling = None
rope_factor = None
json_output = False
otlp_endpoint = None
cors_allow_origin = []
watermark_gamma = None
watermark_delta = None
ngrok = False
ngrok_authtoken = None
ngrok_edge = None
tokenizer_config_path = None
disable_grammar_support = False
env = False
max_client_batch_size = 4
class TGI(object):
# only allow a limited set of arguments for now
def __init__(self, model_id=None):
app_args = Args()
if model_id:
app_args.model_id = model_id
print(asdict(app_args))
self.thread = threading.Thread(target=self.run, args=(asdict(app_args),))
self.thread.start()
async def runit(self, args: dict):
print(args)
args = Args(**args)
try:
await fully_packaged(
args.model_id,
args.revision,
args.validation_workers,
args.sharded,
args.num_shard,
args.quantize,
args.speculate,
args.dtype,
args.trust_remote_code,
args.max_concurrent_requests,
args.max_best_of,
args.max_stop_sequences,
args.max_top_n_tokens,
args.max_input_tokens,
args.max_input_length,
args.max_total_tokens,
args.waiting_served_ratio,
args.max_batch_prefill_tokens,
args.max_batch_total_tokens,
args.max_waiting_tokens,
args.max_batch_size,
args.cuda_graphs,
args.hostname,
args.port,
args.shard_uds_path,
args.master_addr,
args.master_port,
args.huggingface_hub_cache,
args.weights_cache_override,
args.disable_custom_kernels,
args.cuda_memory_fraction,
args.rope_scaling,
args.rope_factor,
args.json_output,
args.otlp_endpoint,
args.cors_allow_origin,
args.watermark_gamma,
args.watermark_delta,
args.ngrok,
args.ngrok_authtoken,
args.ngrok_edge,
args.tokenizer_config_path,
args.disable_grammar_support,
args.env,
args.max_client_batch_size,
)
except Exception as e:
print(e)
def run(self, args: dict):
asyncio.run(self.runit(args))
def close(self):
self.thread.join()