Merge branch 'main' into lora-internal

This commit is contained in:
drbh 2024-06-24 18:43:52 -04:00 committed by GitHub
commit 0d496baaa4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
19 changed files with 267 additions and 133 deletions

View File

@ -1,46 +1,29 @@
name: Build and push docker image to internal registry
on:
workflow_dispatch:
push:
branches:
- 'main'
tags:
- 'v*'
pull_request:
paths:
- ".github/workflows/build.yaml"
- "integration-tests/**"
- "server/**"
- "proto/**"
- "router/**"
- "launcher/**"
- "Cargo.lock"
- "rust-toolchain.toml"
- "Dockerfile"
- "Dockerfile_amd"
- "Dockerfile_intel"
branches:
- 'main'
workflow_call:
inputs:
hardware:
type: string
description: Hardware
# options:
# - cuda
# - rocm
# - intel
required: true
jobs:
build-and-push-image:
build-and-push:
outputs:
docker_image: ${{ steps.final.outputs.docker_image }}
docker_devices: ${{ steps.final.outputs.docker_devices }}
runs_on: ${{ steps.final.outputs.runs_on }}
label: ${{ steps.final.outputs.label }}
concurrency:
group: ${{ github.workflow }}-build-and-push-image-${{ matrix.name }}-${{ github.head_ref || github.run_id }}
group: ${{ github.workflow }}-build-and-push-image-${{ inputs.hardware }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
# TODO see with @Glegendre to get CPU runner here instead
runs-on: [self-hosted, nvidia-gpu , multi-gpu, 4-a10, ci]
strategy:
matrix:
include:
- name: "cuda"
label: ""
dockerfile: "Dockerfile"
- name: "amd"
label: "-rocm"
dockerfile: "Dockerfile_amd"
- name: "intel"
label: "-intel"
dockerfile: "Dockerfile_intel"
permissions:
contents: write
packages: write
@ -50,10 +33,43 @@ jobs:
security-events: write
steps:
- name: Checkout repository
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Inject slug/short variables
uses: rlespinasse/github-slug-action@v4.4.1
- name: Construct harware variables
shell: bash
run: |
case ${{ inputs.hardware }} in
cuda)
export dockerfile="Dockerfile"
export label_extension=""
export docker_devices=""
export runs_on="nvidia-gpu"
;;
rocm)
export dockerfile="Dockerfile_amd"
export label_extension="-rocm"
export docker_devices="/dev/kfd,/dev/dri"
# TODO Re-enable when they pass.
# export runs_on="amd-gpu-tgi"
export runs_on="ubuntu-latest"
;;
intel)
export dockerfile="Dockerfile_intel"
export label_extension="-intel"
export docker_devices=""
export runs_on="ubuntu-latest"
;;
esac
echo $dockerfile
echo "Dockerfile=${dockerfile}"
echo $label_extension
echo $docker_devices
echo $runs_on
echo "DOCKERFILE=${dockerfile}" >> $GITHUB_ENV
echo "LABEL=${label_extension}" >> $GITHUB_ENV
echo "DOCKER_DEVICES=${docker_devices}" >> $GITHUB_ENV
echo "RUNS_ON=${runs_on}" >> $GITHUB_ENV
- name: Tailscale
uses: huggingface/tailscale-action@main
with:
@ -61,25 +77,25 @@ jobs:
slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
- name: Initialize Docker Buildx
uses: docker/setup-buildx-action@v2.0.0
uses: docker/setup-buildx-action@v3
with:
install: true
- name: Login to GitHub Container Registry
if: github.event_name != 'pull_request'
uses: docker/login-action@v2
uses: docker/login-action@v3
with:
registry: ghcr.io
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Login to internal Container Registry
uses: docker/login-action@v2.1.0
uses: docker/login-action@v3
with:
username: ${{ secrets.TAILSCALE_DOCKER_USERNAME }}
password: ${{ secrets.TAILSCALE_DOCKER_PASSWORD }}
registry: registry.internal.huggingface.tech
- name: Login to Azure Container Registry
if: github.event_name != 'pull_request'
uses: docker/login-action@v2.1.0
uses: docker/login-action@v3
with:
username: ${{ secrets.AZURE_DOCKER_USERNAME }}
password: ${{ secrets.AZURE_DOCKER_PASSWORD }}
@ -88,12 +104,12 @@ jobs:
- name: Extract metadata (tags, labels) for Docker
if: ${{ github.event_name == 'pull_request' }}
id: meta-pr
uses: docker/metadata-action@v4.3.0
uses: docker/metadata-action@v5
with:
images: |
registry.internal.huggingface.tech/api-inference/community/text-generation-inference
tags: |
type=raw,value=sha-${{ env.GITHUB_SHA_SHORT }}${{ matrix.label }}
type=raw,value=sha-${{ env.GITHUB_SHA_SHORT }}${{ env.LABEL }}
# If main, release or tag
- name: Extract metadata (tags, labels) for Docker
if: ${{ github.event_name != 'pull_request' }}
@ -107,44 +123,61 @@ jobs:
ghcr.io/huggingface/text-generation-inference
db4c2190dd824d1f950f5d1555fbadf0.azurecr.io/text-generation-inference
tags: |
type=semver,pattern={{version}}${{ matrix.label }}
type=semver,pattern={{major}}.{{minor}}${{ matrix.label }}
type=raw,value=latest${{ matrix.label }},enable=${{ github.ref == format('refs/heads/{0}', github.event.repository.default_branch) }}
type=raw,value=sha-${{ env.GITHUB_SHA_SHORT }}${{ matrix.label }}
type=semver,pattern={{version}}${{ env.LABEL }}
type=semver,pattern={{major}}.{{minor}}${{ env.LABEL }}
type=raw,value=latest${{ env.LABEL }},enable=${{ github.ref == format('refs/heads/{0}', github.event.repository.default_branch) }}
type=raw,value=sha-${{ env.GITHUB_SHA_SHORT }}${{ env.LABEL }}
- name: Build and push Docker image
id: build-and-push
uses: docker/build-push-action@v4
with:
context: .
file: ${{ matrix.dockerfile }}
file: ${{ env.DOCKERFILE }}
push: true
platforms: 'linux/amd64'
build-args: |
GIT_SHA=${{ env.GITHUB_SHA }}
DOCKER_LABEL=sha-${{ env.GITHUB_SHA_SHORT }}${{ matrix.label }}
DOCKER_LABEL=sha-${{ env.GITHUB_SHA_SHORT }}${{ env.LABEL }}
tags: ${{ steps.meta.outputs.tags || steps.meta-pr.outputs.tags }}
labels: ${{ steps.meta.outputs.labels || steps.meta-pr.outputs.labels }}
network: host
cache-from: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache${{ matrix.label }},mode=min
cache-to: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache${{ matrix.label }},mode=min
cache-from: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache${{ env.LABEL }},mode=min
cache-to: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache${{ env.LABEL }},mode=min
- name: Final
id: final
run: |
echo "docker_image=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:sha-${{ env.GITHUB_SHA_SHORT}}${{ env.LABEL }}" >> "$GITHUB_OUTPUT"
echo "docker_devices=${{ env.DOCKER_DEVICES }}" >> "$GITHUB_OUTPUT"
echo "runs_on=${{ env.RUNS_ON }}" >> "$GITHUB_OUTPUT"
echo "label=${{ env.LABEL }}" >> "$GITHUB_OUTPUT"
integration_tests:
concurrency:
group: ${{ github.workflow }}-${{ github.job }}-${{ needs.build-and-push.outputs.label }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
needs: build-and-push
runs-on: ["self-hosted", "${{ needs.build-and-push.outputs.runs_on }}", "multi-gpu"]
if: needs.build-and-push.outputs.runs_on != 'ubuntu-latest'
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Inject slug/short variables
uses: rlespinasse/github-slug-action@v4.4.1
- name: Set up Python
if: matrix.name == 'cuda'
uses: actions/setup-python@v4
with:
python-version: 3.9
python-version: "3.10"
- name: Install
if: matrix.name == 'cuda'
run: |
make install-integration-tests
- name: Tailscale
uses: huggingface/tailscale-action@main
if: needs.build-and-push.outputs.runs_on != 'amd-gpu-tgi'
with:
authkey: ${{ secrets.TAILSCALE_AUTHKEY }}
- name: Run tests
if: matrix.name == 'cuda'
run: |
export DOCKER_VOLUME=/mnt/cache
export DOCKER_IMAGE=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:sha-${{ env.GITHUB_SHA_SHORT }}
export HUGGING_FACE_HUB_TOKEN=${{ secrets.HF_TOKEN }}
export DOCKER_IMAGE=${{ needs.build-and-push.outputs.docker_image }}
export DOCKER_DEVICES=${{ needs.build-and-push.outputs.docker_devices }}
export HUGGING_FACE_HUB_TOKEN=${{ secrets.HUGGING_FACE_HUB_TOKEN }}
echo $DOCKER_IMAGE
pytest -s -vv integration-tests
- name: Tailscale Wait
if: ${{ failure() || runner.debug == '1' }}
uses: huggingface/tailscale-action@main
with:
waitForSSH: true

View File

@ -11,7 +11,7 @@ concurrency:
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yaml@main
with:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}

36
.github/workflows/ci_build.yaml vendored Normal file
View File

@ -0,0 +1,36 @@
name: CI build
on:
push:
branches:
- 'main'
tags:
- 'v*'
pull_request:
paths:
- ".github/workflows/build.yaml"
- "integration-tests/**"
- "server/**"
- "proto/**"
- "router/**"
- "launcher/**"
- "Cargo.lock"
- "rust-toolchain.toml"
- "Dockerfile"
- "Dockerfile_amd"
- "Dockerfile_intel"
branches:
- 'main'
jobs:
build:
strategy:
# super important if you want to see all results, even if one fails
# fail-fast is true by default
fail-fast: false
matrix:
hardware: ["cuda", "rocm", "intel"]
uses: ./.github/workflows/build.yaml # calls the one above ^
with:
hardware: ${{ matrix.hardware }}
secrets: inherit

View File

@ -0,0 +1,41 @@
name: Integration tests
on:
workflow_call:
inputs:
docker_image:
type: string
description: Hardware
required: true
docker_devices:
type: string
description: Hardware
runs_on:
type: string
required: true
description: Hardware to run integration tests
jobs:
integration_tests:
concurrency:
group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
runs-on: ${{ inputs.runs_on }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Inject slug/short variables
uses: rlespinasse/github-slug-action@v4.4.1
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.9
- name: Install
run: |
make install-integration-tests
- name: Run tests
run: |
export DOCKER_VOLUME=/mnt/cache
export DOCKER_IMAGE=${{ inputs.docker_image }}
export DOCKER_DEVICES=${{ inputs.docker_devices }}
export HUGGING_FACE_HUB_TOKEN=${{ secrets.HUGGING_FACE_HUB_TOKEN }}
pytest -s -vv integration-tests

View File

@ -33,8 +33,8 @@ jobs:
- name: Install Rust
uses: actions-rs/toolchain@v1
with:
# Released on: June 13, 2024
# https://releases.rs/docs/1.79.0/
# Released on: 02 May, 2024
# https://releases.rs/docs/1.78.0/
toolchain: 1.79.0
override: true
components: rustfmt, clippy

View File

@ -5,6 +5,7 @@ WORKDIR /usr/src
ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse
FROM chef as planner
COPY Cargo.lock Cargo.lock
COPY Cargo.toml Cargo.toml
COPY rust-toolchain.toml rust-toolchain.toml
COPY proto proto

View File

@ -5,6 +5,7 @@ WORKDIR /usr/src
ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse
FROM chef as planner
COPY Cargo.lock Cargo.lock
COPY Cargo.toml Cargo.toml
COPY rust-toolchain.toml rust-toolchain.toml
COPY proto proto

View File

@ -4,6 +4,7 @@ WORKDIR /usr/src
ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse
FROM chef as planner
COPY Cargo.lock Cargo.lock
COPY Cargo.toml Cargo.toml
COPY rust-toolchain.toml rust-toolchain.toml
COPY proto proto

View File

@ -34,6 +34,7 @@ from text_generation.types import (
DOCKER_IMAGE = os.getenv("DOCKER_IMAGE", None)
HUGGING_FACE_HUB_TOKEN = os.getenv("HUGGING_FACE_HUB_TOKEN", None)
DOCKER_VOLUME = os.getenv("DOCKER_VOLUME", "/data")
DOCKER_DEVICES = os.getenv("DOCKER_DEVICES")
class ResponseComparator(JSONSnapshotExtension):
@ -453,6 +454,18 @@ def launcher(event_loop):
if DOCKER_VOLUME:
volumes = [f"{DOCKER_VOLUME}:/data"]
if DOCKER_DEVICES:
devices = DOCKER_DEVICES.split(",")
visible = os.getenv("ROCR_VISIBLE_DEVICES")
if visible:
env["ROCR_VISIBLE_DEVICES"] = visible
device_requests = []
else:
devices = []
device_requests = [
docker.types.DeviceRequest(count=gpu_count, capabilities=[["gpu"]])
]
container = client.containers.run(
DOCKER_IMAGE,
command=args,
@ -460,9 +473,8 @@ def launcher(event_loop):
environment=env,
auto_remove=False,
detach=True,
device_requests=[
docker.types.DeviceRequest(count=gpu_count, capabilities=[["gpu"]])
],
device_requests=device_requests,
devices=devices,
volumes=volumes,
ports={"80/tcp": port},
shm_size="1G",

View File

@ -340,7 +340,7 @@ def quantize(
logger_level=logger_level,
json_output=json_output,
)
from text_generation_server.utils.gptq.quantize import quantize
from text_generation_server.layers.gptq.quantize import quantize
quantize(
model_id=model_id,

View File

@ -12,7 +12,7 @@ from huggingface_hub import HfApi
from accelerate import init_empty_weights
from text_generation_server.utils import initialize_torch_distributed, Weights
from text_generation_server.utils.hub import weight_files
from text_generation_server.utils.gptq.quant_linear import QuantLinear
from text_generation_server.layers.gptq.quant_linear import QuantLinear
from loguru import logger
from typing import Optional

View File

@ -40,31 +40,12 @@ def _load_gqa(config, prefix: str, weights):
assert config.hidden_size % config.num_attention_heads == 0
assert config.num_attention_heads % weights.process_group.size() == 0
weight = weights.get_multi_weights_col(
return TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
quantize=config.quantize,
dim=0,
)
if config.quantize not in ["gptq", "awq", "marlin"]:
weight = weight.to(dtype=weights.dtype).to(device=weights.device)
head_size = config.hidden_size // config.num_attention_heads
num_heads = config.num_attention_heads // weights.process_group.size()
num_key_value_heads = config.num_key_value_heads // weights.process_group.size()
assert list(weight.shape) == [
(num_heads + 2 * num_key_value_heads) * head_size,
config.hidden_size,
], f"{list(weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}"
w = [
weights.get_sharded(f"{p}.bias", dim=0)
for p in [f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"]
]
bias = torch.cat(w, dim=0).to(dtype=weights.dtype).to(device=weights.device)
return TensorParallelColumnLinear(
get_linear(weight, bias=bias, quantize=config.quantize)
weights=weights,
bias=True,
)

View File

@ -16,6 +16,13 @@ if cuda_graphs is not None:
else:
cuda_graphs = None
# sorting the cuda graphs in descending order helps reduce the
# memory impact and results in less memory usage
if cuda_graphs is not None:
cuda_graphs.sort(reverse=True)
CUDA_GRAPHS = cuda_graphs
# This is overridden at model loading.

View File

@ -130,29 +130,57 @@ class Weights:
), f"The choosen size {size} is not compatible with sharding on {world_size} shards"
return self.get_partial_sharded(tensor_name, dim)
def _get_qweight(self, name: str, block_sizes: Union[int, List[int]]):
slice_ = self._get_slice(name)
total_size = slice_.get_shape()[1]
def get_packed_sharded(
self, tensor_name: str, dim: int, block_sizes: Union[int, List[int]]
) -> torch.Tensor:
"""
Get a shard from a tensor that packs multiple tensors.
When a tensor packs multiple tensors (such as QKV or an up
projection + gate projection), sharding with `get_sharded` is not
safe since it would not split the packed tensors across shards.
This method shards a tensor, such that the packed tensors are
split across shards.
The columns are split in equally sized blocks when blocks is an `int`, or
in blocks proportional given to the sizes. For instance `[2, 1, 1]` will
divide an input with dimensionality `1024` in `[512, 256, 256]`. This is
convenient for e.g. splitting QKV without knowing the storage details of
quantized weights.
"""
slice_ = self._get_slice(tensor_name)
total_size = slice_.get_shape()[dim]
block_sizes = _blocks_to_block_sizes(total_size=total_size, blocks=block_sizes)
world_size = self.process_group.size()
rank = self.process_group.rank()
weights = []
tensors = []
block_offset = 0
for block_size in block_sizes:
assert (
block_size % world_size == 0
), f"Prepacked qkv cannot be sharded across {world_size} shards"
), f"Prepacked tensor cannot be sharded across {world_size} shards"
shard_block_size = block_size // world_size
start = rank * shard_block_size
stop = (rank + 1) * shard_block_size
weights.append(slice_[:, block_offset + start : block_offset + stop])
if dim == 0:
tensor = slice_[block_offset + start : block_offset + stop]
elif dim == 1:
tensor = slice_[:, block_offset + start : block_offset + stop]
else:
raise NotImplementedError("Currently only dim=0 or dim=1 is supported")
tensors.append(tensor)
block_offset += block_size
tensor = torch.cat(tensors, dim=dim)
tensor = tensor.to(device=self.device)
weight = torch.cat(weights, dim=1)
weight = weight.to(device=self.device)
return weight
# Avoid casting quantizer dtypes.
if tensor.dtype not in [torch.int16, torch.int32, torch.int64]:
tensor = tensor.to(dtype=self.dtype)
return tensor
def get_weights_col_packed_qkv(
self,
@ -185,7 +213,9 @@ class Weights:
from text_generation_server.layers.gptq import GPTQWeight
try:
qweight = self._get_qweight(f"{prefix}.qweight", block_sizes)
qweight = self.get_packed_sharded(
f"{prefix}.qweight", dim=1, block_sizes=block_sizes
)
except RuntimeError:
raise RuntimeError(
f"Cannot load `{quantize}` weight, make sure the model is already quantized."
@ -193,8 +223,12 @@ class Weights:
gptq_params = self._get_gptq_params()
qzeros = self._get_qweight(f"{prefix}.qzeros", block_sizes)
scales = self._get_qweight(f"{prefix}.scales", block_sizes)
qzeros = self.get_packed_sharded(
f"{prefix}.qzeros", dim=1, block_sizes=block_sizes
)
scales = self.get_packed_sharded(
f"{prefix}.scales", dim=1, block_sizes=block_sizes
)
scales = scales.to(dtype=self.dtype)
if quantize == "gptq" and gptq_params.quant_method == "gptq":
@ -237,13 +271,17 @@ class Weights:
if quant_method == "gptq":
gptq_params = self._get_gptq_params()
try:
qweight = self._get_qweight(f"{prefix}.qweight", block_sizes)
qweight = self.get_packed_sharded(
f"{prefix}.qweight", dim=1, block_sizes=block_sizes
)
except RuntimeError:
raise RuntimeError(
f"Cannot load `{quantize}` weight for GPTQ -> Marlin repacking, make sure the model is already quantized"
)
scales = self._get_qweight(f"{prefix}.scales", block_sizes)
scales = self.get_packed_sharded(
f"{prefix}.scales", dim=1, block_sizes=block_sizes
)
g_idx = self.get_tensor(f"{prefix}.g_idx")
weight = repack_gptq_for_marlin(
qweight=qweight,
@ -257,34 +295,17 @@ class Weights:
)
else:
B = self._get_qweight(f"{prefix}.B", block_sizes)
s = self._get_qweight(f"{prefix}.s", block_sizes)
B = self.get_packed_sharded(
f"{prefix}.B", dim=1, block_sizes=block_sizes
)
s = self.get_packed_sharded(
f"{prefix}.s", dim=1, block_sizes=block_sizes
)
weight = MarlinWeight(B=B, s=s)
else:
slice_ = self._get_slice(f"{prefix}.weight")
total_size = slice_.get_shape()[0]
block_sizes = _blocks_to_block_sizes(
total_size=total_size, blocks=block_sizes
weight = self.get_packed_sharded(
f"{prefix}.weight", dim=0, block_sizes=block_sizes
)
world_size = self.process_group.size()
rank = self.process_group.rank()
tensors = []
block_offset = 0
for block_size in block_sizes:
assert (
block_size % world_size == 0
), f"Prepacked weights cannot be sharded across {world_size} shards"
shard_block_size = block_size // world_size
start = rank * shard_block_size
stop = (rank + 1) * shard_block_size
tensor = slice_[block_offset + start : block_offset + stop]
tensors.append(tensor)
block_offset += block_size
weight = torch.cat(tensors, dim=0)
weight = weight.to(device=self.device)
weight = weight.to(dtype=self.dtype)
return weight
def get_weights_col(self, prefix: str, quantize: str):