fix modules_to_not_convert

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
This commit is contained in:
jiqing-feng 2025-02-24 16:11:48 +00:00
parent 06dfe9abfe
commit 0bad926fb8
3 changed files with 21 additions and 2 deletions

View File

@ -6,7 +6,7 @@ import torch
from loguru import logger
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils.log import log_once
from text_generation_server.utils.weights import Weight, Weights, WeightsLoader
from text_generation_server.utils.weights import Weight, Weights, WeightsLoader, UnquantizedWeight
if SYSTEM == "ipex":
from .ipex import QuantLinear
@ -90,6 +90,7 @@ class GPTQWeightsLoader(WeightsLoader):
quant_method: str,
quantize: str,
sym: bool,
modules_to_not_convert: Optional[List[str]],
):
self.bits = bits
self.desc_act = desc_act
@ -97,6 +98,7 @@ class GPTQWeightsLoader(WeightsLoader):
self.quant_method = quant_method
self.quantize = quantize
self.sym = sym
self.modules_to_not_convert = modules_to_not_convert
def get_weights(self, weights: Weights, prefix: str):
self._get_gptq_params(weights)
@ -109,6 +111,10 @@ class GPTQWeightsLoader(WeightsLoader):
log_once(logger.warning, "Disabling exllama because desc_act=True")
use_exllama = False
if self.is_layer_skipped_quantization(prefix, self.modules_to_not_convert):
w = weights.get_tensor(f"{prefix}.weight")
return UnquantizedWeight(w)
try:
qweight = weights.get_tensor(f"{prefix}.qweight")
except RuntimeError:
@ -171,9 +177,15 @@ class GPTQWeightsLoader(WeightsLoader):
g_idx=g_idx,
bits=self.bits,
groupsize=self.groupsize,
use_awq_kernel=self.quantize == "awq",
use_exllama=use_exllama,
)
def is_layer_skipped_quantization(self, prefix: str, modules_to_not_convert: List[str]):
if modules_to_not_convert is None:
return False
return any(module_name in prefix for module_name in modules_to_not_convert)
def get_weights_col_packed(
self,
weights: Weights,

View File

@ -85,6 +85,8 @@ class UnquantizedSparseMoELayer(nn.Module):
use_grouped_topk=self.n_expert_group is not None,
num_expert_group=self.n_expert_group,
topk_group=self.topk_group,
scoring_func=self.scoring_func,
e_score_correction_bias=self.e_score_correction_bias,
)
return fused_moe(
x,

View File

@ -21,6 +21,7 @@ class _QuantizerConfig:
quant_method: str
sym: bool
weight_block_size: Optional[List[int]]
modules_to_not_convert: Optional[List[str]]
@dataclass
@ -51,6 +52,7 @@ def _get_quantizer_config(model_id, revision):
sym = False
desc_act = False
weight_block_size = None
modules_to_not_convert = None
filename = "config.json"
try:
@ -73,7 +75,8 @@ def _get_quantizer_config(model_id, revision):
# Order is important here, desc_act is missing on some real models
quant_method = data["quantization_config"]["quant_method"]
checkpoint_format = data["quantization_config"].get("checkpoint_format")
desc_act = data["quantization_config"]["desc_act"]
desc_act = data["quantization_config"].get("desc_act", False)
modules_to_not_convert = data["quantization_config"].get("modules_to_not_convert", None)
except Exception:
filename = "quantize_config.json"
try:
@ -110,6 +113,7 @@ def _get_quantizer_config(model_id, revision):
sym=sym,
desc_act=desc_act,
weight_block_size=weight_block_size,
modules_to_not_convert=modules_to_not_convert,
)
@ -159,6 +163,7 @@ def get_loader(
quant_method=quantizer_config.quant_method,
quantize=quantize,
sym=quantizer_config.sym,
modules_to_not_convert=quantizer_config.modules_to_not_convert,
)
elif quantize == "bitsandbytes":
from text_generation_server.layers.bnb import BNBWeight