mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-10 20:04:52 +00:00
Remove mpt.
This commit is contained in:
parent
da7e104241
commit
0a50ac31a7
@ -1,361 +0,0 @@
|
||||
"""A simple, flexible implementation of a GPT model.
|
||||
|
||||
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
||||
"""
|
||||
# import math
|
||||
# import warnings
|
||||
# from typing import List, Optional, Tuple, Union
|
||||
# import torch
|
||||
# import torch.nn as nn
|
||||
# import torch.nn.functional as F
|
||||
# from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast
|
||||
# from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
||||
# from .attention import attn_bias_shape, build_attn_bias
|
||||
# from .blocks import MPTBlock
|
||||
# from .custom_embedding import SharedEmbedding
|
||||
# from .norm import NORM_CLASS_REGISTRY
|
||||
# from .configuration_mpt import MPTConfig
|
||||
# from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
|
||||
# from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
|
||||
# from .meta_init_context import init_empty_weights
|
||||
# from .param_init_fns import MODEL_INIT_REGISTRY, generic_param_init_fn_
|
||||
# try:
|
||||
# from .flash_attn_triton import flash_attn_func
|
||||
# except:
|
||||
# pass
|
||||
|
||||
"""GPT Blocks used for the GPT Model."""
|
||||
from typing import Dict, Optional, Tuple
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import math
|
||||
|
||||
from text_generation_server.utils.layers import (
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
PositionRotaryEmbedding,
|
||||
TensorParallelHead,
|
||||
FastLayerNorm,
|
||||
)
|
||||
|
||||
EPS = 1e-5
|
||||
|
||||
def _gen_slopes(n_heads, alibi_bias_max=8, device=None):
|
||||
_n_heads = 2 ** math.ceil(math.log2(n_heads))
|
||||
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
|
||||
m = m.mul(alibi_bias_max / _n_heads)
|
||||
slopes = 1.0 / torch.pow(2, m)
|
||||
if _n_heads != n_heads:
|
||||
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
|
||||
return slopes.view(1, n_heads, 1, 1)
|
||||
|
||||
def _build_alibi_bias(n_heads, seq_len, device, dtype, alibi_bias_max):
|
||||
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
|
||||
slopes = _gen_slopes(n_heads, alibi_bias_max, device=device)
|
||||
alibi_bias = alibi_bias * slopes
|
||||
return alibi_bias.to(dtype=dtype)
|
||||
|
||||
ALIBI = None
|
||||
|
||||
def build_alibi_bias(n_heads, seq_len, device, dtype, alibi_bias_max=8):
|
||||
global ALIBI
|
||||
if ALIBI is None or seq_len > ALIBI.shape[-1]:
|
||||
ALIBI = _build_alibi_bias(n_heads, seq_len, device, dtype, alibi_bias_max=alibi_bias_max)
|
||||
return ALIBI[:, :, :, :seq_len]
|
||||
|
||||
|
||||
class MPTAttention(nn.Module):
|
||||
def __init__(self, config, prefix, weights):
|
||||
super().__init__()
|
||||
|
||||
self.num_heads = config.n_heads
|
||||
self.hidden_size = config.d_model
|
||||
self.head_size = self.hidden_size // self.num_heads
|
||||
self.Wqkv = TensorParallelColumnLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.Wqkv",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
self.out_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.out_proj",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
def forward(self,
|
||||
hidden_states,
|
||||
alibi,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
max_s,
|
||||
past_key_values,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
):
|
||||
qkv = self.Wqkv(hidden_states)
|
||||
qkv = qkv.view(-1, 3, self.num_heads, self.head_size)
|
||||
|
||||
# Todo
|
||||
raise Exception("Apply alibi ?");
|
||||
|
||||
# Prefill
|
||||
if prefill:
|
||||
# Copy to layer past
|
||||
layer_past[...] = qkv[:, 1:]
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(qkv[:, 0])
|
||||
# flash attention
|
||||
flash_attn_cuda.fwd(
|
||||
qkv[:, 0],
|
||||
qkv[:, 1],
|
||||
qkv[:, 2],
|
||||
attn_output,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq,
|
||||
end_seq,
|
||||
max_s,
|
||||
max_s,
|
||||
0.0,
|
||||
self.softmax_scale,
|
||||
False,
|
||||
True,
|
||||
False,
|
||||
0,
|
||||
None,
|
||||
)
|
||||
# Decode
|
||||
else:
|
||||
query = qkv[:, 0]
|
||||
# Add present to the layer_past tensor at the correct indices
|
||||
layer_past[past_present_indices] = qkv[:, 1:]
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(query)
|
||||
# flash attention
|
||||
flash_attn_cuda.fwd(
|
||||
query,
|
||||
layer_past[:, 0],
|
||||
layer_past[:, 1],
|
||||
attn_output,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq,
|
||||
end_seq,
|
||||
1,
|
||||
max_s,
|
||||
0.0,
|
||||
self.softmax_scale,
|
||||
False,
|
||||
False,
|
||||
False,
|
||||
0,
|
||||
None,
|
||||
)
|
||||
|
||||
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
||||
class MPTMLP(nn.Module):
|
||||
def __init__(self, config, prefix, weights):
|
||||
super().__init__()
|
||||
|
||||
self.up_proj = TensorParallelColumnLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.up_proj",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
self.act = nn.GELU(approximate='none')
|
||||
self.down_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.down_proj",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.down_proj(self.act(self.up_proj(x)))
|
||||
|
||||
class MPTBlock(nn.Module):
|
||||
def __init__(self, config, prefix, weights):
|
||||
super().__init__()
|
||||
self.norm_1 = FastLayerNorm.load_no_bias(prefix=f"{prefix}.norm_1", weights=weights, eps=EPS)
|
||||
self.attn = MPTAttention(config, prefix=f"{prefix}.attn", weights=weights)
|
||||
self.norm_2 = FastLayerNorm.load_no_bias(prefix=f"{prefix}.norm_2", weights=weights, eps=EPS)
|
||||
self.ffn = MPTMLP(config, prefix=f"{prefix}.ffn", weights=weights)
|
||||
|
||||
def forward(self,
|
||||
hidden_states,
|
||||
residual,
|
||||
alibi,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
max_s,
|
||||
past_key_values,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
):
|
||||
residual = hidden_states
|
||||
hidden_states, _ = self.norm_1(hidden_states)
|
||||
# (hidden_states, attn_weights) = self.attn(
|
||||
hidden_states = self.attn(
|
||||
hidden_states,
|
||||
alibi,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
max_s,
|
||||
past_key_values,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
)
|
||||
hidden_states += residual
|
||||
residual = hidden_states
|
||||
hidden_states, _ = self.norm_2(hidden_states)
|
||||
hidden_states = self.ffn(hidden_states)
|
||||
hidden_states += residual
|
||||
return (x, attn_weights)
|
||||
|
||||
class MPTModel(nn.Module):
|
||||
def __init__(self, config, weights):
|
||||
super().__init__()
|
||||
self.wte = TensorParallelEmbedding(
|
||||
prefix="transformer.wte", weights=weights
|
||||
)
|
||||
self.num_heads = config.n_heads
|
||||
self.hidden_size = config.d_model
|
||||
self.head_size = self.hidden_size // self.num_heads
|
||||
self.blocks = nn.ModuleList([MPTBlock(config, prefix=f"transformer.blocks.{i}", weights=weights) for i in range(config.n_layers)])
|
||||
self.norm_f = FastLayerNorm.load_no_bias(
|
||||
prefix="transformer.norm_f", weights=weights, eps=EPS
|
||||
)
|
||||
|
||||
# Create a default sizeable global alibi
|
||||
build_alibi_bias(n_heads=self.num_heads, seq_len=1024,device=weights.device, dtype = weights.dtype)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
max_s,
|
||||
past_present_indices,
|
||||
past_key_values=None,
|
||||
pre_allocate_past_size: Optional[int] = None,
|
||||
):
|
||||
hidden_states = self.wte(input_ids)
|
||||
|
||||
|
||||
|
||||
# Prefill
|
||||
if past_key_values is None:
|
||||
assert pre_allocate_past_size is not None
|
||||
|
||||
prefill = True
|
||||
|
||||
# Create past tensor
|
||||
# We create a tensor of the same size as input_ids as we don't want to slice at every layer
|
||||
past_key_values = hidden_states.new_empty(
|
||||
(
|
||||
len(input_ids),
|
||||
len(self.blocks),
|
||||
2,
|
||||
self.num_heads,
|
||||
self.head_size,
|
||||
)
|
||||
)
|
||||
# Decode
|
||||
else:
|
||||
prefill = False
|
||||
|
||||
alibi = build_alibi_bias(n_heads=self.num_heads, seq_len=max_s,device=hidden_states.device, dtype = hidden_states.dtype)
|
||||
# Cast alibi into correct shape
|
||||
alibi = alibi[:, :, :, position_ids]
|
||||
|
||||
residual = None
|
||||
for i, layer in enumerate(self.blocks):
|
||||
hidden_states, residual = layer(
|
||||
hidden_states,
|
||||
residual,
|
||||
alibi,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
max_s,
|
||||
past_key_values[:, i],
|
||||
past_present_indices,
|
||||
prefill,
|
||||
)
|
||||
|
||||
if prefill:
|
||||
present = past_key_values
|
||||
# Create padded past tensor
|
||||
past_key_values = hidden_states.new_empty(
|
||||
(
|
||||
pre_allocate_past_size,
|
||||
len(self.blocks),
|
||||
2,
|
||||
self.num_heads,
|
||||
self.head_size,
|
||||
)
|
||||
)
|
||||
# We slice only once instead of at every layer
|
||||
past_key_values[past_present_indices] = present
|
||||
|
||||
hidden_states, _ = self.norm_f(hidden_states, residual)
|
||||
|
||||
return hidden_states, past_key_values
|
||||
|
||||
class MPTForCausalLM(nn.Module):
|
||||
def __init__(self, config, weights):
|
||||
super().__init__()
|
||||
self.transformer = MPTModel(config, weights)
|
||||
self.lm_head = TensorParallelHead.load(
|
||||
config,
|
||||
prefix="transformer.wte",
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
max_s,
|
||||
past_present_indices,
|
||||
past_key_values: Optional[torch.Tensor] = None,
|
||||
pre_allocate_past_size: Optional[int] = None,
|
||||
lm_head_indices: Optional[torch.Tensor] = None,
|
||||
):
|
||||
hidden_states, present = self.transformer(
|
||||
input_ids,
|
||||
position_ids,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
max_s,
|
||||
past_present_indices,
|
||||
past_key_values,
|
||||
pre_allocate_past_size,
|
||||
)
|
||||
if lm_head_indices is not None:
|
||||
hidden_states = hidden_states[lm_head_indices]
|
||||
logits = self.lm_head(hidden_states)
|
||||
return logits, present
|
Loading…
Reference in New Issue
Block a user