mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-11 20:34:54 +00:00
fix: further simplify examples
This commit is contained in:
parent
f8e31c0243
commit
068ff80199
@ -74,6 +74,45 @@ curl localhost:3000/generate \
|
|||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### Hugging Face Hub Python Library
|
||||||
|
|
||||||
|
The Hugging Face Hub Python library provides a client that makes it easy to interact with the Messages API. Here's an example of how to use the client to send a request with a grammar parameter.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from huggingface_hub import InferenceClient
|
||||||
|
|
||||||
|
client = InferenceClient("http://localhost:3000")
|
||||||
|
|
||||||
|
schema = {
|
||||||
|
"properties": {
|
||||||
|
"location": {"title": "Location", "type": "string"},
|
||||||
|
"activity": {"title": "Activity", "type": "string"},
|
||||||
|
"animals_seen": {
|
||||||
|
"maximum": 5,
|
||||||
|
"minimum": 1,
|
||||||
|
"title": "Animals Seen",
|
||||||
|
"type": "integer",
|
||||||
|
},
|
||||||
|
"animals": {"items": {"type": "string"}, "title": "Animals", "type": "array"},
|
||||||
|
},
|
||||||
|
"required": ["location", "activity", "animals_seen", "animals"],
|
||||||
|
"title": "Animals",
|
||||||
|
"type": "object",
|
||||||
|
}
|
||||||
|
|
||||||
|
user_input = "I saw a puppy a cat and a raccoon during my bike ride in the park"
|
||||||
|
resp = client.text_generation(
|
||||||
|
f"convert to JSON: 'f{user_input}'. please use the following schema: {schema}",
|
||||||
|
max_new_tokens=100,
|
||||||
|
seed=42,
|
||||||
|
grammar={"type": "json", "value": schema},
|
||||||
|
)
|
||||||
|
|
||||||
|
print(resp)
|
||||||
|
# { "activity": "bike ride", "animals": ["puppy", "cat", "raccoon"], "animals_seen": 3, "location": "park" }
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
A grammar can be defined using Pydantic models, JSON schemas, or regular expressions. The LLM will then generate a response that conforms to the specified grammar.
|
A grammar can be defined using Pydantic models, JSON schemas, or regular expressions. The LLM will then generate a response that conforms to the specified grammar.
|
||||||
|
|
||||||
> Note: A grammar must compile to an intermediate representation to constrain the output. Grammar compilation is a computationally expensive and may take a few seconds to complete on the first request. Subsequent requests will use the cached grammar and will be much faster.
|
> Note: A grammar must compile to an intermediate representation to constrain the output. Grammar compilation is a computationally expensive and may take a few seconds to complete on the first request. Subsequent requests will use the cached grammar and will be much faster.
|
||||||
@ -83,125 +122,55 @@ A grammar can be defined using Pydantic models, JSON schemas, or regular express
|
|||||||
Using Pydantic models we can define a similar grammar as the previous example in a shorter and more readable way.
|
Using Pydantic models we can define a similar grammar as the previous example in a shorter and more readable way.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import requests
|
from huggingface_hub import InferenceClient
|
||||||
from pydantic import BaseModel, conint
|
from pydantic import BaseModel, conint
|
||||||
from typing import List
|
from typing import List
|
||||||
|
|
||||||
|
|
||||||
class Animals(BaseModel):
|
class Animals(BaseModel):
|
||||||
location: str
|
location: str
|
||||||
activity: str
|
activity: str
|
||||||
animals_seen: conint(ge=1, le=5) # Constrained integer type
|
animals_seen: conint(ge=1, le=5) # Constrained integer type
|
||||||
animals: List[str]
|
animals: List[str]
|
||||||
|
|
||||||
prompt = "convert to JSON: I saw a puppy a cat and a raccoon during my bike ride in the park"
|
|
||||||
|
|
||||||
data = {
|
client = InferenceClient("http://localhost:3000")
|
||||||
"inputs": prompt,
|
|
||||||
"parameters": {
|
|
||||||
"repetition_penalty": 1.3,
|
|
||||||
"grammar": {
|
|
||||||
"type": "json",
|
|
||||||
"value": Animals.schema()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
headers = {
|
user_input = "I saw a puppy a cat and a raccoon during my bike ride in the park"
|
||||||
"Content-Type": "application/json",
|
resp = client.text_generation(
|
||||||
}
|
f"convert to JSON: 'f{user_input}'. please use the following schema: {Animals.schema()}",
|
||||||
|
max_new_tokens=100,
|
||||||
response = requests.post(
|
seed=42,
|
||||||
'http://127.0.0.1:3000/generate',
|
grammar={"type": "json", "value": Animals.schema()},
|
||||||
headers=headers,
|
|
||||||
json=data
|
|
||||||
)
|
)
|
||||||
print(response.json())
|
|
||||||
# {'generated_text': '{ "activity": "bike riding", "animals": ["puppy","cat","raccoon"],"animals_seen": 3, "location":"park" }'}
|
print(resp)
|
||||||
|
# { "activity": "bike ride", "animals": ["puppy", "cat", "raccoon"], "animals_seen": 3, "location": "park" }
|
||||||
|
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### JSON Schema Integration
|
defining a grammar as regular expressions
|
||||||
|
|
||||||
If Pydantic's not your style, go raw with direct JSON Schema integration. This is similar to the first example but with programmatic control.
|
|
||||||
|
|
||||||
```python
|
|
||||||
import requests
|
|
||||||
|
|
||||||
json_schema = {
|
|
||||||
"properties": {
|
|
||||||
"location": {
|
|
||||||
"type": "string"
|
|
||||||
},
|
|
||||||
"activity": {
|
|
||||||
"type": "string"
|
|
||||||
},
|
|
||||||
"animals_seen": {
|
|
||||||
"type": "integer",
|
|
||||||
"minimum": 1,
|
|
||||||
"maximum": 5
|
|
||||||
},
|
|
||||||
"animals": {
|
|
||||||
"type": "array",
|
|
||||||
"items": {
|
|
||||||
"type": "string"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"required": ["location", "activity", "animals_seen", "animals"]
|
|
||||||
}
|
|
||||||
|
|
||||||
data = {
|
|
||||||
"inputs": "convert to JSON: I saw a puppy a cat and a raccoon during my bike ride in the park",
|
|
||||||
"parameters": {
|
|
||||||
"max_new_tokens": 200,
|
|
||||||
"repetition_penalty": 1.3,
|
|
||||||
"grammar": {
|
|
||||||
"type": "json",
|
|
||||||
"value": json_schema
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
headers = {
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
}
|
|
||||||
|
|
||||||
response = requests.post(
|
|
||||||
'http://127.0.0.1:3000/generate',
|
|
||||||
headers=headers,
|
|
||||||
json=data
|
|
||||||
)
|
|
||||||
print(response.json())
|
|
||||||
# {'generated_text': '{\n"activity": "biking",\n"animals": ["puppy","cat","raccoon"]\n , "animals_seen": 3,\n "location":"park"}'}
|
|
||||||
|
|
||||||
```
|
|
||||||
|
|
||||||
### Hugging Face Hub Python Library
|
|
||||||
|
|
||||||
The Hugging Face Hub Python library provides a client that makes it easy to interact with the Messages API. Here's an example of how to use the client to send a request with a grammar parameter.
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from huggingface_hub import InferenceClient
|
from huggingface_hub import InferenceClient
|
||||||
|
|
||||||
client = InferenceClient(
|
client = InferenceClient("http://localhost:3000")
|
||||||
"http://localhost:3000" # local endpoint
|
|
||||||
# "meta-llama/Meta-Llama-3-8B-Instruct" # HF serverless endpoint
|
regexp = "((25[0-5]|2[0-4]\\d|[01]?\\d\\d?)\\.){3}(25[0-5]|2[0-4]\\d|[01]?\\d\\d?)"
|
||||||
)
|
|
||||||
|
|
||||||
resp = client.text_generation(
|
resp = client.text_generation(
|
||||||
"Whats Googles DNS",
|
f"Whats Googles DNS? Please use the following regex: {regexp}",
|
||||||
max_new_tokens=10,
|
|
||||||
decoder_input_details=True,
|
|
||||||
seed=42,
|
seed=42,
|
||||||
grammar={
|
grammar={
|
||||||
"type": "regex",
|
"type": "regex",
|
||||||
"value": "((25[0-5]|2[0-4]\\d|[01]?\\d\\d?)\\.){3}(25[0-5]|2[0-4]\\d|[01]?\\d\\d?)",
|
"value": regexp,
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
print(resp)
|
print(resp)
|
||||||
# 1.0.0.1
|
# 7.1.1.1
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -115,8 +115,6 @@ print(chat_completion)
|
|||||||
# ChatCompletion(id='', choices=[Choice(finish_reason='eos_token', index=0, logprobs=None, message=ChatCompletionMessage(content=' The image depicts an anthropomorphic rabbit dressed in a space suit with gear that resembles NASA attire. The setting appears to be a solar eclipse with dramatic mountain peaks and a partial celestial body in the sky. The artwork is detailed and vivid, with a warm color palette and a sense of an adventurous bunny exploring or preparing for a journey beyond Earth. ', role='assistant', function_call=None, tool_calls=None))], created=1714589732, model='llava-hf/llava-v1.6-mistral-7b-hf', object='text_completion', system_fingerprint='2.0.2-native', usage=CompletionUsage(completion_tokens=84, prompt_tokens=2943, total_tokens=3027))
|
# ChatCompletion(id='', choices=[Choice(finish_reason='eos_token', index=0, logprobs=None, message=ChatCompletionMessage(content=' The image depicts an anthropomorphic rabbit dressed in a space suit with gear that resembles NASA attire. The setting appears to be a solar eclipse with dramatic mountain peaks and a partial celestial body in the sky. The artwork is detailed and vivid, with a warm color palette and a sense of an adventurous bunny exploring or preparing for a journey beyond Earth. ', role='assistant', function_call=None, tool_calls=None))], created=1714589732, model='llava-hf/llava-v1.6-mistral-7b-hf', object='text_completion', system_fingerprint='2.0.2-native', usage=CompletionUsage(completion_tokens=84, prompt_tokens=2943, total_tokens=3027))
|
||||||
```
|
```
|
||||||
|
|
||||||
If you want additional details, you can add `details=True`. In this case, you get a `TextGenerationStreamResponse` which contains additional information such as the probabilities and the tokens. For the final response in the stream, it also returns the full generated text.
|
|
||||||
|
|
||||||
### Inference Through Sending `cURL` Requests
|
### Inference Through Sending `cURL` Requests
|
||||||
|
|
||||||
To use the `generate_stream` endpoint with curl, you can add the `-N` flag. This flag disables curl default buffering and shows data as it arrives from the server.
|
To use the `generate_stream` endpoint with curl, you can add the `-N` flag. This flag disables curl default buffering and shows data as it arrives from the server.
|
||||||
|
Loading…
Reference in New Issue
Block a user