mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-25 20:12:07 +00:00
add model
This commit is contained in:
parent
b5bac0dd2d
commit
06663162b4
@ -229,6 +229,19 @@ pub struct Gemma3 {
|
||||
vision_config: Gemma3VisionConfig,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub struct Llama4VisionConfig {
|
||||
pub(crate) image_size: usize,
|
||||
pub(crate) patch_size: usize,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub struct Llama4 {
|
||||
vision_config: Llama4VisionConfig,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
#[serde(tag = "model_type")]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
@ -258,6 +271,7 @@ pub enum Config {
|
||||
Phi3,
|
||||
Phimoe,
|
||||
Llama,
|
||||
Llama4(Llama4),
|
||||
Baichuan,
|
||||
Paligemma(Paligemma),
|
||||
Gemma,
|
||||
|
@ -179,6 +179,7 @@ pub enum HubPreprocessorConfig {
|
||||
Idefics2Processor(Idefics2Preprocessor),
|
||||
Idefics3Processor(Idefics2Preprocessor),
|
||||
Gemma3Processor(Gemma3Processor),
|
||||
Llama4Processor(Llama4Processor),
|
||||
}
|
||||
|
||||
impl HubPreprocessorConfig {
|
||||
@ -200,6 +201,13 @@ pub struct Gemma3Processor {
|
||||
do_image_splitting: bool,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
pub struct Llama4Processor {
|
||||
#[serde(default)]
|
||||
do_image_splitting: bool,
|
||||
}
|
||||
|
||||
|
||||
#[derive(Debug, Clone, Deserialize, Default)]
|
||||
pub struct HubProcessorConfig {
|
||||
pub chat_template: Option<ChatTemplateVersions>,
|
||||
|
@ -687,6 +687,7 @@ fn image_tokens(
|
||||
}
|
||||
Paligemma(config) => "<image>".repeat(config.get_number_of_features(height, width)),
|
||||
LlavaNext(config) => "<image>".repeat(config.get_number_of_features(height, width)),
|
||||
Llama4(_config) => "<image>".repeat(1),
|
||||
Qwen2Vl(config) => format!(
|
||||
"<|vision_start|>{:?}<|vision_end|>",
|
||||
"<|image_pad|>".repeat(config.get_number_of_features(height, width))
|
||||
@ -730,7 +731,7 @@ fn prepare_input<T: TokenizerTrait>(
|
||||
static RE: Lazy<Regex> = Lazy::new(|| Regex::new(r"!\[\]\([^\)]*\)").unwrap());
|
||||
let (tokenizer_query, input_chunks) = match config {
|
||||
Some(
|
||||
config @ (Idefics | Mllama | Idefics2(_) | Idefics3(_) | Gemma3(_) | Paligemma(_)
|
||||
config @ (Idefics | Mllama | Idefics2(_) | Idefics3(_) | Gemma3(_) | Llama4(_) | Paligemma(_)
|
||||
| LlavaNext(_) | Qwen2Vl(_) | Qwen2_5Vl(_)),
|
||||
) => {
|
||||
let mut input_chunks = Vec::new();
|
||||
|
@ -286,11 +286,17 @@ class HybridFP8UnquantLoader(WeightsLoader):
|
||||
|
||||
return UnquantizedWeight(w)
|
||||
|
||||
def get_multi_weights_col(self, weights: "Weights", prefixes: List[str], dim: int):
|
||||
def get_multi_weights_col(self, weights: "Weights", prefixes: List[str], dim: int, flag=True):
|
||||
# FIXME: Force to_device to false as fp8 weights do not support torch.cat on device yet
|
||||
w = [
|
||||
weights.get_sharded(f"{p}.weight", dim=0, to_device=False) for p in prefixes
|
||||
]
|
||||
if flag:
|
||||
w = [
|
||||
weights.get_sharded(f"{p}.weight", dim=0, to_device=False) for p in prefixes
|
||||
]
|
||||
else:
|
||||
w = [
|
||||
weights.get_sharded(f"{p}", dim=2, to_device=False)
|
||||
for p in prefixes
|
||||
]
|
||||
shapes = [x.shape for x in w]
|
||||
|
||||
# Concat then send to the device
|
||||
@ -354,8 +360,13 @@ class HybridFP8UnquantLoader(WeightsLoader):
|
||||
|
||||
return UnquantizedWeight(w)
|
||||
|
||||
def get_weights_row(self, weights: "Weights", prefix: str):
|
||||
w = weights.get_sharded(f"{prefix}.weight", dim=1)
|
||||
def get_weights_row(self, weights: "Weights", prefix: str, flag=True):
|
||||
if flag:
|
||||
w = weights.get_sharded(f"{prefix}.weight", dim=1, to_device=False)
|
||||
else:
|
||||
w = weights.get_sharded(f"{prefix}", dim=1, to_device=False)
|
||||
|
||||
w = w.to(weights.device)
|
||||
# FP8 branch
|
||||
if w.dtype == torch.float8_e4m3fn:
|
||||
if self.weight_block_size is not None:
|
||||
|
@ -6,7 +6,8 @@ import torch.nn as nn
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.utils.kernels import load_kernel
|
||||
from text_generation_server.utils.weights import UnquantizedWeight, Weights
|
||||
|
||||
from text_generation_server.utils.log import log_master
|
||||
from loguru import logger
|
||||
if SYSTEM == "ipex":
|
||||
from intel_extension_for_pytorch.llm.modules import GatedMLPMOE
|
||||
elif SYSTEM == "cuda":
|
||||
@ -113,24 +114,36 @@ def _load_expert_multi_weights_col(
|
||||
weights: Weights,
|
||||
) -> torch.Tensor:
|
||||
all_weight = None
|
||||
for i in range(n_experts):
|
||||
weight = weights.get_multi_weights_col(
|
||||
[f"{prefix}.{i}.{gate_proj_name}", f"{prefix}.{i}.{up_proj_name}"], 0
|
||||
)
|
||||
all_weight = weights.get_multi_weights_col(
|
||||
[f"{prefix}.gate_up_proj"], 0, flag=False
|
||||
).weight.transpose(2, 1).contiguous()
|
||||
# for i in range(n_experts):
|
||||
# # weight = weights.get_weights_col(
|
||||
# # f"language_model.model.layers.0.feed_forward.experts.gate_up_proj",
|
||||
# # )
|
||||
# # weight = weights.get_multi_weights_col(
|
||||
# # [f"{prefix}.{gate_proj_name}", f"{prefix}.{up_proj_name}"], 0
|
||||
# # )
|
||||
|
||||
assert isinstance(weight, UnquantizedWeight)
|
||||
# weight = weights.get_multi_weights_col(
|
||||
# [f"{prefix}.gate_up_proj"], 0, flag=False
|
||||
# )
|
||||
|
||||
# from pdb import set_trace; set_trace()
|
||||
# assert isinstance(weight, UnquantizedWeight)
|
||||
|
||||
if all_weight is None:
|
||||
all_weight = torch.empty(
|
||||
(n_experts,) + weight.weight.shape,
|
||||
dtype=weight.weight.dtype,
|
||||
device=weight.weight.device,
|
||||
)
|
||||
# if all_weight is None:
|
||||
# all_weight = torch.empty(
|
||||
# (n_experts,) + weight.weight.shape,
|
||||
# dtype=weight.weight.dtype,
|
||||
# device=weight.weight.device,
|
||||
# )
|
||||
|
||||
all_weight[i] = weight.weight
|
||||
# all_weight[i] = weight.weight
|
||||
|
||||
assert all_weight is not None
|
||||
# assert all_weight is not None
|
||||
|
||||
log_master(logger.info, f"w1: {all_weight.shape}")
|
||||
return all_weight
|
||||
|
||||
|
||||
@ -142,23 +155,27 @@ def _load_expert_weights_row(
|
||||
weights: Weights,
|
||||
) -> torch.Tensor:
|
||||
all_weight = None
|
||||
for i in range(n_experts):
|
||||
weight = weights.get_weights_row(
|
||||
f"{prefix}.{i}.{name}",
|
||||
)
|
||||
all_weight = weights.get_weights_row(
|
||||
f"{prefix}.{name}", flag=False
|
||||
).weight.transpose(1,2).contiguous()
|
||||
# for i in range(n_experts):
|
||||
# weight = weights.get_weights_row(
|
||||
# f"{prefix}.{name}", flag=False
|
||||
# )
|
||||
|
||||
assert isinstance(weight, UnquantizedWeight)
|
||||
# assert isinstance(weight, UnquantizedWeight)
|
||||
|
||||
if all_weight is None:
|
||||
all_weight = torch.empty(
|
||||
(n_experts,) + weight.weight.shape,
|
||||
dtype=weight.weight.dtype,
|
||||
device=weight.weight.device,
|
||||
)
|
||||
# if all_weight is None:
|
||||
# all_weight = torch.empty(
|
||||
# (n_experts,) + weight.weight.shape,
|
||||
# dtype=weight.weight.dtype,
|
||||
# device=weight.weight.device,
|
||||
# )
|
||||
|
||||
all_weight[i] = weight.weight
|
||||
# all_weight[i] = weight.weight
|
||||
|
||||
assert all_weight is not None
|
||||
log_master(logger.info, f"w2: {all_weight.shape}")
|
||||
|
||||
return all_weight
|
||||
|
||||
|
@ -264,8 +264,8 @@ class PositionRotaryEmbedding(nn.Module):
|
||||
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
||||
|
||||
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
|
||||
self._cos_cached = torch.cos(freqs).to(dtype)
|
||||
self._sin_cached = torch.sin(freqs).to(dtype)
|
||||
self._cos_cached = torch.cos(freqs)
|
||||
self._sin_cached = torch.sin(freqs)
|
||||
|
||||
def get_cos_sin(self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype):
|
||||
"""
|
||||
|
@ -97,6 +97,9 @@ try:
|
||||
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
|
||||
FlashLlamaForCausalLM,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.flash_llama4_modeling import (
|
||||
Llama4ForConditionalGeneration,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.flash_cohere_modeling import (
|
||||
FlashCohereForCausalLM,
|
||||
)
|
||||
@ -252,6 +255,11 @@ class ModelType(enum.Enum):
|
||||
"name": "Llama",
|
||||
"url": "https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f",
|
||||
}
|
||||
LLAMA4 = {
|
||||
"type": "llama4",
|
||||
"name": "Llama4",
|
||||
"url": "https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f",
|
||||
}
|
||||
PHI3 = {
|
||||
"type": "phi3",
|
||||
"name": "Phi 3",
|
||||
@ -656,7 +664,6 @@ def get_model(
|
||||
raise ValueError(
|
||||
f"The backend {SYSTEM} does not support sliding window attention that is used by the model type {model_type}. To use this model nonetheless with the {SYSTEM} backend, please launch TGI with the argument `--max-input-tokens` smaller than sliding_window={sliding_window} (got here max_input_tokens={max_input_tokens})."
|
||||
)
|
||||
|
||||
if model_type == DEEPSEEK_V2:
|
||||
if FLASH_ATTENTION:
|
||||
head_size = max(
|
||||
@ -1025,7 +1032,34 @@ def get_model(
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
|
||||
elif model_type == LLAMA4:
|
||||
return VlmCausalLM(
|
||||
model_id=model_id,
|
||||
model_class=Llama4ForConditionalGeneration,
|
||||
revision=revision,
|
||||
quantize=quantize,
|
||||
speculator=speculator,
|
||||
dtype=dtype,
|
||||
kv_cache_dtype=kv_cache_dtype,
|
||||
# TODO: once implemented in transformers, use the config class
|
||||
# and processor class from there.
|
||||
# config_class=Gemma3Config,
|
||||
# processor_class=Gemma3Processor,
|
||||
default_dtype=torch.bfloat16,
|
||||
trust_remote_code=trust_remote_code,
|
||||
lora_adapter_ids=lora_adapter_ids,
|
||||
)
|
||||
if FLASH_TRANSFORMERS_BACKEND:
|
||||
from transformers import Llama4ForConditionalGeneration as Llama4Model
|
||||
return TransformersFlashVlmCausalLM.fallback(
|
||||
model_id,
|
||||
Llama4Model,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
speculator=speculator,
|
||||
dtype=torch.bfloat16,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
elif model_type == BAICHUAN:
|
||||
if FLASH_ATTENTION:
|
||||
return FlashCausalLM(
|
||||
|
@ -0,0 +1,740 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2023, 2024 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List, Optional, Tuple, Type
|
||||
|
||||
import torch
|
||||
import torch.distributed
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
from text_generation_server.layers import (
|
||||
FastLinear,
|
||||
SpeculativeHead,
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelMultiAdapterLinear,
|
||||
TensorParallelAdapterRowLinear,
|
||||
get_linear,
|
||||
)
|
||||
from text_generation_server.layers.attention import (
|
||||
Seqlen,
|
||||
attention,
|
||||
paged_attention,
|
||||
)
|
||||
from text_generation_server.layers.attention.kv_cache import KVCache, get_kv_scales
|
||||
from text_generation_server.layers.layernorm import FastRMSNorm
|
||||
from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer
|
||||
from text_generation_server.layers.rotary import PositionRotaryEmbedding, get_mscale
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.utils.weights import Weights
|
||||
|
||||
if SYSTEM == "rocm":
|
||||
try:
|
||||
import vllm._custom_ops as ops
|
||||
except Exception as e:
|
||||
raise ImportError(f"Could not load `vllm._custom_ops`. Full error: {e}")
|
||||
|
||||
|
||||
# class FlashLlama4VisionModel(torch.nn.Module):
|
||||
# def __init__(self, prefix: str, config, weights: Weights):
|
||||
# super().__init__()
|
||||
# self.config = config
|
||||
# self.prefix = prefix
|
||||
# self.weights = weights
|
||||
|
||||
# self.image_size = config.image_size
|
||||
# self.patch_size = config.patch_size
|
||||
# # self.max_num_tiles = config.max_num_tiles
|
||||
# self.hidden_size = config.hidden_size
|
||||
# self.num_channels = config.num_channels
|
||||
# # self.intermediate_layers_indices = config.intermediate_layers_indices
|
||||
|
||||
# self.num_patches = (self.image_size // self.patch_size) ** 2 + 1
|
||||
# self.scale = config.hidden_size**-0.5
|
||||
|
||||
# self.patch_embedding = UnfoldConvolution(
|
||||
# in_channels=config.num_channels,
|
||||
# out_channels=self.hidden_size,
|
||||
# kernel_size=self.patch_size,
|
||||
# stride=self.patch_size,
|
||||
# bias=False,
|
||||
# )
|
||||
|
||||
# self.class_embedding = nn.Parameter(self.scale * torch.randn(self.hidden_size))
|
||||
# self.positional_embedding_vlm = nn.Parameter(
|
||||
# self.scale * torch.randn(self.num_patches, self.hidden_size)
|
||||
# )
|
||||
|
||||
# idx = self.image_size // self.patch_size
|
||||
# img_idx = torch.arange((self.image_size // self.patch_size) ** 2 , dtype=torch.int32)
|
||||
# img_idx = img_idx.reshape(idx ** 2, 1)
|
||||
# img_idx = torch.cat([img_idx, img_idx[:1]], dim=0)
|
||||
# img_idx[-1, -1] = PackingIndex.ID_CLS_TOKEN
|
||||
|
||||
# packed_img_idx = torch.empty(
|
||||
# img_idx.shape[0],
|
||||
# img_idx.shape[1],
|
||||
# PackingIndex.NUM_METADATA - 1,
|
||||
# dtype=torch.int32,
|
||||
# )
|
||||
|
||||
# packed_img_idx[:, :, PackingIndex.Y] = img_idx // idx
|
||||
# packed_img_idx[:, :, PackingIndex.X] = img_idx % idx
|
||||
# packed_img_idx[:, :, PackingIndex.HEIGHT].fill_(idx)
|
||||
# packed_img_idx[:, :, PackingIndex.WIDTH].fill_(idx)
|
||||
# packed_img_idx[:, :, PackingIndex.IDX] = img_idx
|
||||
# packed_img_idx = packed_img_idx.reshape(1, -1, PackingIndex.NUM_METADATA - 1)
|
||||
|
||||
# rope_freq = self.get_rope_freqs(self.hidden_size // config.attention_heads // 2)
|
||||
# self.freqs_ci = self.update_rope_frequencies(packed_img_idx, rope_freq)
|
||||
|
||||
# # layer norms
|
||||
# self.layernorm_pre = LayerNorm(self.hidden_size, eps=1e-5)
|
||||
# self.layernorm_post = LayerNorm(self.hidden_size, eps=1e-5)
|
||||
|
||||
# # encoders
|
||||
# self.model = Llama4VisionEncoder(config)
|
||||
# self.vision_adapter = Llama4VisionPixelShuffleMLP(config)
|
||||
|
||||
# def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
||||
# inputs_embeds = self.embed_tokens(pixel_values)
|
||||
# return inputs_embeds
|
||||
|
||||
|
||||
def load_attention(config, prefix: str, weights, layer_id):
|
||||
# Only defined in granite.
|
||||
bias = getattr(config, "attention_bias", False)
|
||||
head_size = config.hidden_size // config.num_attention_heads
|
||||
sizes = None
|
||||
prefixes = None
|
||||
|
||||
# base_layer = TensorParallelColumnLinear.load_qkv(
|
||||
# config,
|
||||
# prefix=f"{prefix}.qkv_proj",
|
||||
# weights=weights,
|
||||
# bias=bias,
|
||||
# num_heads=config.num_attention_heads,
|
||||
# num_key_value_heads=config.num_key_value_heads,
|
||||
# )
|
||||
# prefixes = ["qkv_proj"]
|
||||
|
||||
prefixes = ["q_proj", "k_proj", "v_proj"]
|
||||
sizes = [
|
||||
head_size * config.num_attention_heads,
|
||||
head_size * config.num_key_value_heads,
|
||||
head_size * config.num_key_value_heads,
|
||||
]
|
||||
base_layer = TensorParallelColumnLinear.load_multi(
|
||||
config,
|
||||
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
|
||||
dim=0,
|
||||
weights=weights,
|
||||
bias=bias,
|
||||
)
|
||||
|
||||
return TensorParallelMultiAdapterLinear.load(
|
||||
base_layer=base_layer,
|
||||
layer_id=layer_id,
|
||||
layer_names=prefixes,
|
||||
sizes=sizes,
|
||||
process_group=weights.process_group,
|
||||
)
|
||||
|
||||
class Llama4TextL2Norm(torch.nn.Module):
|
||||
def __init__(self, eps: float = 1e-6):
|
||||
super().__init__()
|
||||
self.eps = 1e-6
|
||||
|
||||
def _norm(self, x):
|
||||
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
||||
|
||||
def forward(self, x):
|
||||
return self._norm(x.float()).type_as(x)
|
||||
|
||||
def apply_rotary_emb(
|
||||
xq: torch.Tensor,
|
||||
xk: torch.Tensor,
|
||||
freqs_cis: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Reshape to complex: last dim becomes complex numbers
|
||||
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) # [12, 40, 64]
|
||||
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) # [12, 40, 64]
|
||||
|
||||
# Apply rotary embedding (elementwise complex multiplication)
|
||||
xq_out = torch.view_as_real(xq_ * freqs_cis) # [12, 40, 64, 2]
|
||||
xk_out = torch.view_as_real(xk_ * freqs_cis) # [12, 40, 64, 2]
|
||||
|
||||
# Flatten the last two dims back to real-valued representation
|
||||
xq_out = xq_out.reshape(*xq.shape) # [12, 40, 128]
|
||||
xk_out = xk_out.reshape(*xk.shape) # [12, 40, 128]
|
||||
|
||||
return xq_out.type_as(xq), xk_out.type_as(xk)
|
||||
|
||||
|
||||
class Llama4Attention(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
index: int,
|
||||
prefix: str,
|
||||
config,
|
||||
weights,
|
||||
):
|
||||
super().__init__()
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.hidden_size = config.hidden_size
|
||||
self.head_size = self.hidden_size // self.num_heads
|
||||
|
||||
config.rope_theta = getattr(config, "rope_theta", 10000)
|
||||
config.num_key_value_heads = getattr(
|
||||
config, "num_key_value_heads", config.num_attention_heads
|
||||
)
|
||||
self.rotary_emb = PositionRotaryEmbedding.static(
|
||||
config=config,
|
||||
dim=self.head_size,
|
||||
base=config.rope_theta,
|
||||
device=weights.device,
|
||||
)
|
||||
|
||||
self.softmax_scale = self.head_size**-0.5
|
||||
|
||||
if self.num_heads % weights.process_group.size() != 0:
|
||||
raise ValueError(
|
||||
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
|
||||
f"and `num_shards`: {weights.process_group.size()}"
|
||||
)
|
||||
if config.num_key_value_heads % weights.process_group.size() != 0:
|
||||
raise ValueError(
|
||||
f"`num_key_value_heads` must be divisible by `num_shards` (got `num_key_value_heads`: {config.num_key_value_heads} "
|
||||
f"and `num_shards`: {weights.process_group.size()}"
|
||||
)
|
||||
self.num_heads = self.num_heads // weights.process_group.size()
|
||||
self.num_key_value_heads = (
|
||||
config.num_key_value_heads // weights.process_group.size()
|
||||
)
|
||||
|
||||
self.query_key_value = load_attention(config, prefix, weights, index)
|
||||
self.index = index
|
||||
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
|
||||
o_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
weights=weights,
|
||||
bias=getattr(config, "attention_bias", False),
|
||||
)
|
||||
|
||||
self.o_proj = TensorParallelAdapterRowLinear.load(
|
||||
o_proj,
|
||||
index,
|
||||
"o_proj",
|
||||
process_group=weights.process_group,
|
||||
)
|
||||
|
||||
self.qk_norm = Llama4TextL2Norm(config.rms_norm_eps)
|
||||
|
||||
self.num_groups = self.num_heads // self.num_key_value_heads
|
||||
self.kv_head_mapping = torch.arange(
|
||||
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
|
||||
).repeat_interleave(self.num_groups)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache: KVCache,
|
||||
block_tables,
|
||||
slots,
|
||||
seqlen,
|
||||
max_s,
|
||||
adapter_data,
|
||||
):
|
||||
qkv = self.query_key_value(hidden_states, adapter_data)
|
||||
query, kv = qkv.split(
|
||||
[
|
||||
self.head_size * self.num_heads,
|
||||
2 * self.head_size * self.num_key_value_heads,
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
|
||||
kv = kv.view(-1, 2, self.num_key_value_heads * self.head_size)
|
||||
key = kv[:, 0]
|
||||
value = kv[:, 1]
|
||||
|
||||
x, y = hidden_states.shape
|
||||
query = query.reshape(1, x, 8, -1)
|
||||
key = key.reshape(1, x, 8, -1)
|
||||
|
||||
# query = query.reshape(-1, self.head_size)
|
||||
# key = key.reshape(-1, self.head_size)
|
||||
|
||||
query = self.qk_norm(query.contiguous())
|
||||
key = self.qk_norm(key.contiguous())
|
||||
|
||||
query = query.view(-1, self.num_heads, self.head_size)
|
||||
key = key.view(-1, self.num_key_value_heads, self.head_size)
|
||||
value = value.view(-1, self.num_key_value_heads, self.head_size)
|
||||
freqs_cis = torch.complex(cos, sin)
|
||||
query, key = apply_rotary_emb(
|
||||
query, key, freqs_cis.to(query.device)
|
||||
)
|
||||
# self.rotary_emb(query, key, cos.to(hidden_states.dtype), sin.to(hidden_states.dtype))
|
||||
# from pdb import set_trace; set_trace()
|
||||
# query = query.to(hidden_states.dtype)
|
||||
# key = key.to(hidden_states.dtype)
|
||||
# from pdb import set_trace; set_trace()
|
||||
kv_cache.store(
|
||||
key=key,
|
||||
value=value,
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
# flash attention
|
||||
attn_output = attention(
|
||||
query=query,
|
||||
key=key,
|
||||
value=value,
|
||||
kv_scales=self.kv_scales,
|
||||
kv_cache=kv_cache,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
softmax_scale=self.softmax_scale,
|
||||
)
|
||||
# Decode
|
||||
else:
|
||||
attn_output = paged_attention(
|
||||
query,
|
||||
kv_cache,
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
seqlen,
|
||||
max_s,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
# from pdb import set_trace; set_trace()
|
||||
return self.o_proj(
|
||||
attn_output.view(-1, self.num_heads * self.head_size), adapter_data
|
||||
)
|
||||
|
||||
|
||||
class Llama4MLP(nn.Module):
|
||||
def __init__(self, prefix: str, config, weights, intermediate_size: int):
|
||||
super().__init__()
|
||||
self.hidden_act = config.hidden_act
|
||||
if self.hidden_act != "silu":
|
||||
# Bail out because MoE only supports silu.
|
||||
raise NotImplementedError(
|
||||
"Currently only `silu` is supported as an activation for Deepseek V2."
|
||||
)
|
||||
self.act = ACT2FN[self.hidden_act]
|
||||
|
||||
self.gate_up_proj = TensorParallelColumnLinear.load_multi(
|
||||
config,
|
||||
prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"],
|
||||
weights=weights,
|
||||
dim=0,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
self.down_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.down_proj",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
self.intermediate_size = intermediate_size // weights.process_group.size()
|
||||
|
||||
# TODO: This is a hotfix to be removed & properly refactored.
|
||||
self.quantize = config.quantize
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, reduce: bool = True):
|
||||
if (
|
||||
SYSTEM == "rocm"
|
||||
and self.hidden_act == "silu"
|
||||
and hidden_states.dtype == torch.float16
|
||||
and hidden_states.shape[0] == 1
|
||||
and not self.quantize
|
||||
and self.hidden_size
|
||||
!= 16384 # TODO: Temporary workaround for `LLMM_Silu` kernel not working with LLama3.1 405B; needs refactoring once fixed.
|
||||
):
|
||||
out = torch.empty(
|
||||
hidden_states.shape[0],
|
||||
self.intermediate_size,
|
||||
dtype=hidden_states.dtype,
|
||||
device="cuda",
|
||||
)
|
||||
ops.LLMM_Silu(self.gate_up_proj.linear.weight, hidden_states, out, 8)
|
||||
return self.down_proj(out, reduce=reduce)
|
||||
else:
|
||||
gate_up_states = self.gate_up_proj(hidden_states)
|
||||
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size)
|
||||
return self.down_proj(
|
||||
self.act(gate_up_states[:, 0]) * gate_up_states[:, 1], reduce=reduce
|
||||
)
|
||||
|
||||
|
||||
class Llama4MoE(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
prefix,
|
||||
config,
|
||||
moe_layer_cls: Type[MoELayer],
|
||||
weights,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.hidden_dim = config.hidden_size
|
||||
|
||||
# Gating
|
||||
self.gate = FastLinear.load(config, f"{prefix}.router", weights, bias=False)
|
||||
|
||||
self.moe_layer = moe_layer_cls(
|
||||
prefix=f"{prefix}.experts",
|
||||
n_experts=config.num_local_experts,
|
||||
n_expert_group=None,
|
||||
renormalize=True,
|
||||
topk=config.num_experts_per_tok,
|
||||
topk_group=None,
|
||||
scoring_func="sigmoid",
|
||||
weights=weights,
|
||||
)
|
||||
assert isinstance(self.moe_layer, MoELayer)
|
||||
|
||||
self.shared_experts = Llama4MLP(
|
||||
prefix=f"{prefix}.shared_expert",
|
||||
config=config,
|
||||
weights=weights,
|
||||
intermediate_size=config.intermediate_size
|
||||
)
|
||||
|
||||
self.process_group = weights.process_group
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
from pdb import set_trace; set_trace()
|
||||
if self.shared_experts is not None:
|
||||
shared_output = self.shared_experts(x, reduce=False)
|
||||
else:
|
||||
shared_output = None
|
||||
|
||||
router_logits = self.gate(x)
|
||||
from pdb import set_trace; set_trace()
|
||||
|
||||
out = self.moe_layer(x, gating_output=router_logits)
|
||||
from pdb import set_trace; set_trace()
|
||||
|
||||
if shared_output is not None:
|
||||
out = out + shared_output
|
||||
|
||||
# Reduce sum
|
||||
if self.process_group.size() > 1:
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
from pdb import set_trace; set_trace()
|
||||
|
||||
return out.view(*x.shape)
|
||||
|
||||
|
||||
class Llama4Layer(nn.Module):
|
||||
def __init__(self, prefix, layer_id, config, weights):
|
||||
super().__init__()
|
||||
prefix = f"{prefix}.layers.{layer_id}"
|
||||
|
||||
self.self_attn = Llama4Attention(
|
||||
index=layer_id,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
config=config,
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
# if (
|
||||
# config.n_routed_experts is not None
|
||||
# and layer_id >= config.first_k_dense_replace
|
||||
# and layer_id % config.moe_layer_freq == 0
|
||||
# ):
|
||||
moe_layer_cls = (
|
||||
SparseMoELayer
|
||||
if SparseMoELayer.is_supported(weights)
|
||||
else DenseMoELayer
|
||||
)
|
||||
self.mlp = Llama4MoE(f"{prefix}.feed_forward", config, moe_layer_cls, weights)
|
||||
# else:
|
||||
# self.mlp = Llama4MLP(
|
||||
# prefix=f"{prefix}.mlp",
|
||||
# config=config,
|
||||
# weights=weights,
|
||||
# intermediate_size=config.intermediate_size,
|
||||
# )
|
||||
|
||||
self.input_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
self.post_attention_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.post_attention_layernorm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
residual: torch.Tensor,
|
||||
cos: torch.Tensor,
|
||||
sin: torch.Tensor,
|
||||
cu_seqlen_prefill: torch.Tensor,
|
||||
kv_cache,
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
seqlen: Seqlen,
|
||||
max_s: int,
|
||||
adapter_data,
|
||||
):
|
||||
normed_hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
||||
|
||||
# Self Attention
|
||||
attn_output = self.self_attn(
|
||||
normed_hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
seqlen,
|
||||
max_s,
|
||||
adapter_data,
|
||||
)
|
||||
from pdb import set_trace; set_trace()
|
||||
|
||||
# faster post attention rms norm
|
||||
normed_attn_res_output, residual = self.post_attention_layernorm(
|
||||
attn_output, residual
|
||||
)
|
||||
from pdb import set_trace; set_trace()
|
||||
|
||||
output = self.mlp(normed_attn_res_output)
|
||||
|
||||
return output, residual
|
||||
|
||||
|
||||
class Llama4Model(torch.nn.Module):
|
||||
def __init__(self, prefix: str, config, weights: Weights):
|
||||
super().__init__()
|
||||
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
Llama4Layer(
|
||||
prefix,
|
||||
layer_id,
|
||||
config,
|
||||
weights,
|
||||
)
|
||||
for layer_id in range(1)
|
||||
]
|
||||
)
|
||||
self.norm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.norm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
|
||||
self.head_size = self.layers[0].self_attn.head_size
|
||||
self.num_heads = self.layers[0].self_attn.num_heads
|
||||
self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads
|
||||
|
||||
def forward(
|
||||
self,
|
||||
inputs_embeds: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
seqlen: Seqlen,
|
||||
max_s: int,
|
||||
adapter_data,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = inputs_embeds
|
||||
# Get rotary cos and sin for this forward
|
||||
# Avoid to index in each layer
|
||||
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
|
||||
position_ids, max_s, hidden_states.dtype
|
||||
)
|
||||
|
||||
residual = None
|
||||
for i, layer in enumerate(self.layers):
|
||||
hidden_states, residual = layer(
|
||||
hidden_states,
|
||||
residual,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache[i],
|
||||
block_tables,
|
||||
slots,
|
||||
seqlen,
|
||||
max_s,
|
||||
adapter_data,
|
||||
)
|
||||
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FlashLlama4ForCausalLM(torch.nn.Module):
|
||||
def __init__(self, prefix: str, config, weights: Weights):
|
||||
super().__init__()
|
||||
self.embed_tokens = TensorParallelEmbedding(
|
||||
prefix=f"{prefix}.model.embed_tokens", weights=weights
|
||||
)
|
||||
|
||||
self.model = Llama4Model(
|
||||
"model" if not prefix else f"{prefix}.model", config, weights
|
||||
)
|
||||
self.lm_head = SpeculativeHead.load(
|
||||
config,
|
||||
prefix="lm_head" if not prefix else f"{prefix}.lm_head",
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
seqlen: Seqlen,
|
||||
max_s: int,
|
||||
prefill_cache_indices: Optional[torch.Tensor],
|
||||
lm_head_indices: Optional[torch.Tensor] = None,
|
||||
adapter_data: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
|
||||
hidden_states = self.model(
|
||||
hidden_states,
|
||||
position_ids,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
seqlen,
|
||||
max_s,
|
||||
)
|
||||
if lm_head_indices is not None:
|
||||
hidden_states = hidden_states[lm_head_indices]
|
||||
logits, speculative_logits = self.lm_head(hidden_states)
|
||||
return logits, speculative_logits
|
||||
|
||||
|
||||
class Llama4ForConditionalGeneration(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
prefix: str,
|
||||
config: PretrainedConfig,
|
||||
weights: Weights,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
|
||||
config.vision_config.quantize = config.quantize
|
||||
|
||||
text_config = config.text_config
|
||||
text_config.speculator = config.speculator
|
||||
text_config.quantize = config.quantize
|
||||
|
||||
# self.vision_model = FlashLlama4VisionModel(
|
||||
# prefix=f"{prefix}.vision_model",
|
||||
# config=config.vision_config,
|
||||
# weights=weights,
|
||||
# )
|
||||
|
||||
self.text_model = FlashLlama4ForCausalLM(
|
||||
prefix=f"language_model",
|
||||
config=text_config,
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
|
||||
self.pad_token_id = (
|
||||
config.pad_token_id if config.pad_token_id is not None else -1
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
seqlen: Seqlen,
|
||||
max_s: int,
|
||||
prefill_cache_indices: Optional[torch.Tensor] = None,
|
||||
lm_head_indices: Optional[torch.Tensor] = None,
|
||||
pixel_values: torch.FloatTensor = None,
|
||||
# Unused here
|
||||
attention_mask: Optional[torch.BoolTensor] = None,
|
||||
pixel_attention_mask: Optional[torch.BoolTensor] = None,
|
||||
image_sizes: Optional[torch.Tensor] = None,
|
||||
adapter_data: Optional[torch.Tensor] = None,
|
||||
image_grid_thw: Optional[torch.LongTensor] = None,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
inputs_embeds = self.text_model.embed_tokens(input_ids)
|
||||
|
||||
# if pixel_values is not None:
|
||||
# pixel_values = pixel_values.to(dtype=inputs_embeds.dtype)
|
||||
# image_outputs = self.vision_model(pixel_values)
|
||||
# vision_outputs = self.post_vision_model_layernorm(
|
||||
# image_outputs.last_hidden_state
|
||||
# )
|
||||
# image_features = self.multimodal_projector(vision_outputs)
|
||||
|
||||
# image_token_mask = (input_ids == self.config.image_token_index).to(
|
||||
# input_ids.device
|
||||
# )
|
||||
# inputs_embeds[image_token_mask] = image_features.view(
|
||||
# -1, image_features.shape[-1]
|
||||
# )
|
||||
|
||||
hidden_states = self.text_model.model(
|
||||
inputs_embeds=inputs_embeds,
|
||||
position_ids=position_ids,
|
||||
cu_seqlen_prefill=cu_seqlen_prefill,
|
||||
kv_cache=kv_cache,
|
||||
block_tables=block_tables,
|
||||
slots=slots,
|
||||
seqlen=seqlen,
|
||||
max_s=max_s,
|
||||
adapter_data=adapter_data,
|
||||
)
|
||||
|
||||
if lm_head_indices is not None:
|
||||
hidden_states = hidden_states[lm_head_indices]
|
||||
logits, speculative_logits = self.text_model.lm_head(hidden_states)
|
||||
|
||||
return logits, speculative_logits
|
||||
|
@ -134,6 +134,8 @@ def image_text_replacement(processor, image_input, config, image_id: int) -> str
|
||||
num_pads = 256
|
||||
padding = "<image_soft_token>" * num_pads
|
||||
return f"\n\n<start_of_image>{padding}<end_of_image>\n\n"
|
||||
elif config.model_type == "llama4":
|
||||
return "<image>" * 1
|
||||
else:
|
||||
raise RuntimeError(f"Unknown config {config.model_type} for multimodal")
|
||||
|
||||
|
@ -250,6 +250,8 @@ class Weights:
|
||||
tensor = slice_[start:stop]
|
||||
elif dim == 1:
|
||||
tensor = slice_[:, start:stop]
|
||||
elif dim == 2:
|
||||
tensor = slice_[:, :, start:stop]
|
||||
else:
|
||||
raise NotImplementedError("Let's make that generic when needed")
|
||||
# Special case for gptq which shouldn't convert
|
||||
@ -373,8 +375,8 @@ class Weights:
|
||||
def get_weights_col(self, prefix: str):
|
||||
return self.weights_loader.get_weights_col(self, prefix)
|
||||
|
||||
def get_multi_weights_col(self, prefixes: List[str], dim: int):
|
||||
return self.weights_loader.get_multi_weights_col(self, prefixes, dim)
|
||||
def get_multi_weights_col(self, prefixes: List[str], dim: int, flag=True):
|
||||
return self.weights_loader.get_multi_weights_col(self, prefixes, dim, flag=flag)
|
||||
|
||||
def get_tensor_shard(self, var, dim):
|
||||
world_size = self.process_group.size()
|
||||
@ -392,8 +394,8 @@ class Weights:
|
||||
tensor = tensor.to(device=self.device)
|
||||
return tensor
|
||||
|
||||
def get_weights_row(self, prefix: str):
|
||||
return self.weights_loader.get_weights_row(self, prefix)
|
||||
def get_weights_row(self, prefix: str, flag=True):
|
||||
return self.weights_loader.get_weights_row(self, prefix, flag=flag)
|
||||
|
||||
@contextmanager
|
||||
def use_loader(self, weights_loader: WeightsLoader):
|
||||
|
Loading…
Reference in New Issue
Block a user