mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-24 00:12:08 +00:00
Remove useless modification
Signed-off-by: yuanwu <yuan.wu@intel.com>
This commit is contained in:
parent
3f0f0e0825
commit
05c13c89de
@ -10,12 +10,7 @@ import numpy as np
|
||||
from loguru import logger
|
||||
from dataclasses import dataclass
|
||||
from opentelemetry import trace
|
||||
from transformers import (
|
||||
PreTrainedTokenizerBase,
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
GenerationConfig,
|
||||
)
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
from typing import Optional, Tuple, List, Type, Dict
|
||||
|
||||
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
|
||||
@ -24,11 +19,6 @@ from text_generation_server.models import Model
|
||||
from text_generation_server.utils.tokens import batch_top_tokens
|
||||
from text_generation_server.utils.dist import RANK
|
||||
from text_generation_server.utils.speculate import get_speculate
|
||||
from text_generation_server.utils import (
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
Weights,
|
||||
)
|
||||
from text_generation_server.models.types import (
|
||||
Batch,
|
||||
Tokens,
|
||||
@ -696,97 +686,20 @@ class FlashCausalLMBatch(Batch):
|
||||
class FlashCausalLM(Model):
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
model_class,
|
||||
revision: Optional[str] = None,
|
||||
quantize: Optional[str] = None,
|
||||
speculator: Optional[str] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
trust_remote_code: bool = False,
|
||||
lora_adapter_ids: Optional[list] = [],
|
||||
tokenizer_class: PreTrainedTokenizerBase = AutoTokenizer,
|
||||
config_class: PreTrainedTokenizerBase = AutoConfig,
|
||||
default_dtype=torch.bfloat16,
|
||||
aliases=None,
|
||||
# Used for Santacoder override of config
|
||||
num_kv_heads: Optional[int] = None,
|
||||
# Deepseek V2 uses different QK and V dims.
|
||||
head_size: Optional[int] = None,
|
||||
skip_special_tokens: bool = True,
|
||||
model: torch.nn.Module,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_layers: int,
|
||||
num_kv_heads: int,
|
||||
head_size: int,
|
||||
dtype: torch.dtype,
|
||||
device: torch.device,
|
||||
rank: int = 0,
|
||||
world_size: int = 1,
|
||||
sliding_window: Optional[int] = None,
|
||||
):
|
||||
|
||||
# Create model
|
||||
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
||||
rank = int(os.getenv("RANK", "0"))
|
||||
dtype = torch.bfloat16 if dtype is None else dtype
|
||||
device = torch.device("hpu")
|
||||
|
||||
tokenizer = tokenizer_class.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
padding_side="left",
|
||||
truncation_side="left",
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
try:
|
||||
generation_config = GenerationConfig.from_pretrained(
|
||||
model_id, revision=revision, trust_remote_code=trust_remote_code
|
||||
)
|
||||
if isinstance(generation_config.eos_token_id, (list, set)):
|
||||
# TODO Huge hack
|
||||
tokenizer._eos_token_ids = set(generation_config.eos_token_id)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
config = config_class.from_pretrained(
|
||||
model_id, revision=revision, trust_remote_code=trust_remote_code
|
||||
)
|
||||
config.quantize = quantize
|
||||
config.speculator = speculator
|
||||
|
||||
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
weights = Weights(filenames, device, dtype)
|
||||
|
||||
|
||||
|
||||
prefix = ""
|
||||
model = model_class(prefix, config, weights)
|
||||
|
||||
# VLM models define the config we care about in their text_config
|
||||
text_config = getattr(config, "text_config", None)
|
||||
if text_config is not None:
|
||||
config = text_config
|
||||
|
||||
|
||||
self.num_layers = config.num_hidden_layers
|
||||
# Validation is done in the model itself
|
||||
if num_kv_heads is None:
|
||||
num_kv_heads = getattr(config, "num_key_value_heads", None)
|
||||
# GPT-2 workaround
|
||||
if num_kv_heads is None:
|
||||
num_kv_heads = getattr(config, "n_head", None)
|
||||
if num_kv_heads is None:
|
||||
raise ValueError("Cannot get the number of key/value heads")
|
||||
self.num_kv_heads = num_kv_heads (
|
||||
num_kv_heads // self.process_group.size()
|
||||
if num_kv_heads > 1
|
||||
else num_kv_heads
|
||||
)
|
||||
assert self.num_kv_heads > 0
|
||||
|
||||
if head_size is None:
|
||||
# Some models use GQA and different sizes for o_proj
|
||||
# and q_proj, that allows for that.
|
||||
if hasattr(config, "head_dim"):
|
||||
self.head_size = config.head_dim
|
||||
else:
|
||||
self.head_size = config.hidden_size // config.num_attention_heads
|
||||
else:
|
||||
self.head_size = head_size
|
||||
|
||||
self.cuda_graphs = {}
|
||||
self.kv_cache = []
|
||||
self.num_layers = num_layers
|
||||
self.num_kv_heads = num_kv_heads
|
||||
self.head_size = head_size
|
||||
|
||||
self.cuda_graphs = {}
|
||||
|
||||
@ -798,7 +711,7 @@ class FlashCausalLM(Model):
|
||||
device=device,
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
sliding_window=None,
|
||||
sliding_window=sliding_window,
|
||||
)
|
||||
|
||||
@property
|
||||
|
Loading…
Reference in New Issue
Block a user