text-generation-inference/server/bloom_inference/model.py

429 lines
16 KiB
Python
Raw Normal View History

2022-10-08 10:30:12 +00:00
import torch
import torch.distributed
from dataclasses import dataclass
from pathlib import Path
from typing import List, Tuple, Optional, Dict
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from transformers.modeling_utils import no_init_weights
from bloom_inference.cache import CacheEntry
from bloom_inference.pb import generate_pb2
from bloom_inference.shard_model import shard_model, match_suffix
from bloom_inference.utils import (
StoppingCriteria,
NextTokenChooser,
initialize_torch_distributed,
set_default_dtype,
)
torch.manual_seed(0)
@dataclass
class Batch:
batch_id: int
request_ids: List[int]
input_ids: Dict[str, torch.Tensor]
all_input_ids: List[torch.Tensor]
next_token_choosers: List[NextTokenChooser]
stopping_criterias: List[StoppingCriteria]
@classmethod
def from_batch_pb(
cls, pb: generate_pb2.Batch, tokenizer: AutoTokenizer, device: torch.device
) -> "Batch":
request_ids = []
inputs = []
next_token_choosers = []
stopping_criterias = []
# Parse batch
for r in pb.requests:
request_ids.append(r.id)
inputs.append(r.inputs)
next_token_choosers.append(
NextTokenChooser(
temperature=r.parameters.temperature,
top_k=r.parameters.top_k,
top_p=r.parameters.top_p,
do_sample=r.parameters.do_sample,
)
)
stopping_criterias.append(StoppingCriteria(max_new_tokens=r.max_new_tokens))
input_ids = tokenizer(inputs, return_tensors="pt", padding=True).to(device)
all_input_ids = input_ids["input_ids"].unsqueeze(-1)
return cls(
pb.id,
request_ids,
input_ids,
all_input_ids,
next_token_choosers,
stopping_criterias,
)
@classmethod
def from_cache_entry(cls, cache_entry: CacheEntry) -> "Batch":
return cls(
cache_entry.batch_id,
cache_entry.request_ids,
cache_entry.input_ids,
cache_entry.all_input_ids,
cache_entry.next_token_choosers,
cache_entry.stopping_criterias,
)
@classmethod
def from_batch_cached_pb(cls, pb: generate_pb2.BatchCached, cache) -> "Batch":
if len(pb.batch_cached_ids) == 1:
cache_entry = cache.pop(pb.batch_cached_ids[0])
if cache_entry is None:
raise ValueError(f"Batch ID {pb.batch_id} not found in cache")
return cls.from_cache_entry(cache_entry)
total_batch_size = pb.total_batch_size
max_sequence_length = pb.max_sequence_length
input_ids = {"input_ids": None, "attention_mask": None, "past_key_values": []}
request_ids = []
all_input_ids = []
next_token_choosers = []
stopping_criterias = []
start_index = 0
for i, batch_id in enumerate(pb.batch_cached_ids):
cache_entry = cache.pop(batch_id)
if cache_entry is None:
raise ValueError(f"Batch ID {batch_id} not found in cache")
request_ids.extend(cache_entry.request_ids)
all_input_ids.extend(cache_entry.all_input_ids)
next_token_choosers.extend(cache_entry.next_token_choosers)
stopping_criterias.extend(cache_entry.stopping_criterias)
batch_size = len(cache_entry.request_ids)
end_index = start_index + batch_size
sequence_length = max(len(entry) for entry in cache_entry.all_input_ids)
if input_ids["input_ids"] is None:
input_ids["input_ids"] = torch.empty(
(total_batch_size, 1),
dtype=cache_entry.input_ids["input_ids"].dtype,
device=cache_entry.input_ids["input_ids"].device,
)
input_ids["input_ids"][start_index:end_index] = cache_entry.input_ids[
"input_ids"
]
if input_ids["attention_mask"] is None:
input_ids["attention_mask"] = torch.zeros(
(total_batch_size, max_sequence_length),
dtype=cache_entry.input_ids["attention_mask"].dtype,
device=cache_entry.input_ids["attention_mask"].device,
)
input_ids["attention_mask"][
start_index:end_index, -sequence_length:
] = cache_entry.input_ids["attention_mask"][:, -sequence_length:]
for j, past in enumerate(cache_entry.input_ids["past_key_values"]):
# TODO: this could be done without the views by using indices
past_keys = past[0]
past_values = past[1]
_, head_dim, padded_sequence_length = past_keys.shape
past_keys = past_keys.view(
batch_size, -1, head_dim, padded_sequence_length
)
past_values = past_values.view(
batch_size, -1, padded_sequence_length, head_dim
)
num_heads = past_keys.shape[1]
if j == len(input_ids["past_key_values"]):
padded_past_keys = torch.zeros(
(
total_batch_size,
num_heads,
head_dim,
max_sequence_length - 1,
),
dtype=past_keys.dtype,
device=past_keys.device,
)
padded_past_values = torch.zeros(
(
total_batch_size,
num_heads,
max_sequence_length - 1,
head_dim,
),
dtype=past_values.dtype,
device=past_values.device,
)
input_ids["past_key_values"].append(
[padded_past_keys, padded_past_values]
)
input_ids["past_key_values"][j][0][
start_index:end_index, :, :, -(sequence_length - 1):
] = past_keys[:, :, :, -(sequence_length - 1):]
input_ids["past_key_values"][j][1][
start_index:end_index, :, -(sequence_length - 1):, :
] = past_values[:, :, -(sequence_length - 1):, :]
if (i + 1) == len(pb.batch_cached_ids):
input_ids["past_key_values"][j][0] = input_ids["past_key_values"][
j
][0].view(total_batch_size * num_heads, head_dim, -1)
input_ids["past_key_values"][j][1] = input_ids["past_key_values"][
j
][1].view(total_batch_size * num_heads, -1, head_dim)
start_index += batch_size
assert pb.request_ids == request_ids
return cls(
pb.id,
request_ids,
input_ids,
all_input_ids,
next_token_choosers,
stopping_criterias,
)
@dataclass
class FinishedGeneration:
request_id: str
output: str
def to_pb(self) -> generate_pb2.FinishedGeneration:
return generate_pb2.FinishedGeneration(id=self.request_id, output=self.output)
class BLOOM:
def __init__(self, model_name: str):
if torch.cuda.is_available():
self.device = torch.device("cuda")
else:
self.device = torch.device("cpu")
self.tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
self.model = (
AutoModelForCausalLM.from_pretrained(model_name).eval().to(self.device)
)
self.num_heads = self.model.base_model.num_heads
def forward(self, input_ids, attention_mask, past_key_values: Optional = None):
# Model Forward
return self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=True,
)
def generate_token(
self, batch: Batch
) -> Tuple[List[FinishedGeneration], Optional[CacheEntry]]:
with torch.no_grad():
outputs = self.forward(**batch.input_ids)
# List of indices to cache
cache_indices = []
cache_past_indices = []
# New input_ids for next forward; keep in cache
cache_next_input_ids = []
cache_all_input_ids = []
# Finished requests
finished_generations: List[FinishedGeneration] = []
# Zipped iterator
iterator = zip(
batch.request_ids,
outputs.logits,
batch.next_token_choosers,
batch.stopping_criterias,
batch.all_input_ids,
)
# For each member of the batch
for i, (
request_id,
logits,
next_token_chooser,
stopping_criteria,
all_tokens,
) in enumerate(iterator):
# Select next token
next_token = next_token_chooser(all_tokens, logits.unsqueeze(0)[:, -1])
# Append next token to all tokens
all_tokens = torch.cat([all_tokens, next_token])
# Evaluate stopping criteria
if stopping_criteria(all_tokens):
# Decode all tokens
output = self.tokenizer.decode(
all_tokens.squeeze(-1), skip_special_tokens=True
)
# Add to the list of finished generations with the original request id
finished_generations.append(FinishedGeneration(request_id, output))
# must be added to the cache
else:
cache_indices.append(i)
cache_past_indices.extend([j for j in range(i * self.num_heads, (i + 1) * self.num_heads)])
cache_next_input_ids.append(next_token)
cache_all_input_ids.append(all_tokens)
# No cache is needed, we finished all generations in the batch
if not cache_indices:
return finished_generations, None
# If we finished at least one generation
cache_input_ids = {"input_ids": torch.cat(cache_next_input_ids, dim=0)}
if finished_generations:
# Apply indices to attention mask, past key values and other items that need to be cached
cache_input_ids["attention_mask"] = batch.input_ids["attention_mask"][
cache_indices
]
cache_input_ids["past_key_values"] = [
(keys[cache_past_indices], values[cache_past_indices])
for keys, values in outputs["past_key_values"]
]
cache_request_ids = [batch.request_ids[i] for i in cache_indices]
cache_next_token_choosers = [
batch.next_token_choosers[i] for i in cache_indices
]
cache_stopping_criterias = [
batch.stopping_criterias[i] for i in cache_indices
]
else:
cache_input_ids["attention_mask"] = batch.input_ids["attention_mask"]
cache_input_ids["past_key_values"] = outputs["past_key_values"]
cache_request_ids = batch.request_ids
cache_next_token_choosers = batch.next_token_choosers
cache_stopping_criterias = batch.stopping_criterias
# Update attention_mask with padding as we added a new token to input_ids
cache_input_ids["attention_mask"] = torch.cat(
[
cache_input_ids["attention_mask"],
torch.ones((cache_input_ids["attention_mask"].shape[0], 1)).to(
cache_input_ids["attention_mask"].device
),
],
dim=1,
)
cache_entry = CacheEntry(
batch.batch_id,
cache_request_ids,
cache_input_ids,
cache_all_input_ids,
cache_next_token_choosers,
cache_stopping_criterias,
)
return finished_generations, cache_entry
class BLOOMSharded(BLOOM):
def __init__(self, model_name: str, shard_directory: Path):
super(BLOOM, self).__init__()
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
self.master = self.rank == 0
if torch.cuda.is_available():
self.device = torch.device(f"cuda:{self.rank}")
dtype = torch.bfloat16
else:
self.device = torch.device("cpu")
dtype = torch.float32
self.tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
# shard state_dict
if self.master:
# TODO @thomasw21 do some caching
shard_state_dict_paths = shard_model(
model_name, shard_directory, tp_world_size=self.world_size, dtype=dtype
)
shard_state_dict_paths = [
str(path.absolute()) for path in shard_state_dict_paths
]
else:
shard_state_dict_paths = [None] * self.world_size
torch.distributed.broadcast_object_list(
shard_state_dict_paths, src=0, group=self.process_group
)
shard_state_dict_path = shard_state_dict_paths[self.rank]
config = AutoConfig.from_pretrained(
model_name, slow_but_exact=False, tp_parallel=True
)
config.pad_token_id = 3
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True
with set_default_dtype(dtype):
with no_init_weights():
# we can probably set the device to `meta` here?
model = AutoModelForCausalLM.from_config(config).to(dtype)
torch.distributed.barrier(group=self.process_group)
# print_rank_0(f"Initialized model")
state_dict = torch.load(shard_state_dict_path)
# TODO @thomasw21: HACK in order to transpose all weight prior
for key in state_dict.keys():
do_transpose = False
if not match_suffix(key, "weight"):
continue
for potential_suffix in [
"self_attention.query_key_value.weight",
"self_attention.dense.weight",
"dense_h_to_4h.weight",
"dense_4h_to_h.weight",
]:
if match_suffix(key, potential_suffix):
do_transpose = True
if do_transpose:
state_dict[key] = state_dict[key].transpose(1, 0).contiguous()
model.load_state_dict(state_dict)
self.model = model.to(self.device).eval()
self.num_heads = config.n_head // self.process_group.size()
torch.distributed.barrier(group=self.process_group)
def forward(self, input_ids, attention_mask, past_key_values: Optional = None):
outputs = self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=True,
)
logits_shard = outputs.logits[:, -1, :].contiguous()
batch_size, vocab_shard_size = logits_shard.shape
vocab_size = self.world_size * vocab_shard_size
logits = [torch.empty_like(logits_shard) for _ in range(self.world_size)]
torch.distributed.all_gather(logits, logits_shard, group=self.process_group)
logits = torch.cat(logits, dim=1).view(batch_size, 1, vocab_size)
outputs.logits = logits
return outputs