2023-01-31 16:04:00 +00:00
/// HTTP Server logic
2024-06-04 13:56:56 +00:00
use crate ::config ::Config ;
2024-07-31 08:33:10 +00:00
use crate ::infer ::tool_grammar ::ToolGrammar ;
use crate ::infer ::{ Backend , Infer , InferError , InferResponse , InferStreamResponse } ;
2024-06-13 16:51:51 +00:00
#[ cfg(feature = " kserve " ) ]
use crate ::kserve ::{
kerve_server_metadata , kserve_health_live , kserve_health_ready , kserve_model_infer ,
kserve_model_metadata , kserve_model_metadata_ready ,
} ;
2024-07-31 08:33:10 +00:00
use crate ::usage_stats ;
2023-03-09 14:30:54 +00:00
use crate ::validation ::ValidationError ;
2022-10-27 12:25:29 +00:00
use crate ::{
2024-07-09 15:23:48 +00:00
BestOfSequence , Details , ErrorResponse , FinishReason , FunctionName , GenerateParameters ,
GenerateRequest , GenerateResponse , GrammarType , HubModelInfo , HubProcessorConfig ,
HubTokenizerConfig , Info , Message , MessageChunk , MessageContent , OutputMessage , PrefillToken ,
SimpleToken , StreamDetails , StreamResponse , TextMessage , Token , TokenizeResponse ,
ToolCallDelta , ToolCallMessage , Url , Usage , Validation ,
2024-02-29 15:44:20 +00:00
} ;
use crate ::{
ChatCompletion , ChatCompletionChoice , ChatCompletionChunk , ChatCompletionComplete ,
ChatCompletionDelta , ChatCompletionLogprob , ChatCompletionLogprobs , ChatCompletionTopLogprob ,
2024-07-03 10:56:27 +00:00
ChatRequest , Chunk , CompatGenerateRequest , Completion , CompletionComplete , CompletionFinal ,
CompletionRequest , CompletionType , DeltaToolCall , Function , Prompt , Tool , VertexRequest ,
2024-07-01 13:08:05 +00:00
VertexResponse ,
2022-10-27 12:25:29 +00:00
} ;
2024-07-19 15:12:02 +00:00
use crate ::{ FunctionDefinition , HubPreprocessorConfig , ToolCall , ToolChoice , ToolType } ;
2024-04-17 08:41:12 +00:00
use async_stream ::__private ::AsyncStream ;
2022-10-11 16:14:39 +00:00
use axum ::extract ::Extension ;
2024-07-31 08:33:10 +00:00
use axum ::http ::{ HeaderMap , HeaderValue , Method , StatusCode } ;
2023-01-31 16:04:00 +00:00
use axum ::response ::sse ::{ Event , KeepAlive , Sse } ;
2023-03-02 10:41:51 +00:00
use axum ::response ::{ IntoResponse , Response } ;
2022-10-15 18:21:50 +00:00
use axum ::routing ::{ get , post } ;
2023-02-17 17:22:00 +00:00
use axum ::{ http , Json , Router } ;
2023-09-27 08:40:18 +00:00
use axum_tracing_opentelemetry ::middleware ::OtelAxumLayer ;
2023-04-09 18:22:27 +00:00
use futures ::stream ::StreamExt ;
2024-04-17 08:41:12 +00:00
use futures ::stream ::{ FuturesOrdered , FuturesUnordered } ;
2023-01-31 16:04:00 +00:00
use futures ::Stream ;
2024-02-20 13:04:51 +00:00
use futures ::TryStreamExt ;
2024-07-31 08:33:10 +00:00
use hf_hub ::api ::tokio ::{ Api , ApiBuilder , ApiRepo } ;
use hf_hub ::{ Cache , Repo , RepoType } ;
2024-07-29 09:14:17 +00:00
use http ::header ::AUTHORIZATION ;
2023-04-09 18:13:28 +00:00
use metrics_exporter_prometheus ::{ Matcher , PrometheusBuilder , PrometheusHandle } ;
2024-02-28 10:10:27 +00:00
use serde_json ::Value ;
2023-01-31 16:04:00 +00:00
use std ::convert ::Infallible ;
2024-07-31 08:33:10 +00:00
use std ::fs ::File ;
use std ::io ::BufReader ;
use std ::net ::{ IpAddr , Ipv4Addr , SocketAddr } ;
use std ::path ::{ Path , PathBuf } ;
2024-06-04 13:56:56 +00:00
use thiserror ::Error ;
2024-07-31 08:33:10 +00:00
use tokenizers ::processors ::template ::TemplateProcessing ;
2022-10-11 14:50:54 +00:00
use tokenizers ::Tokenizer ;
2024-04-17 08:41:12 +00:00
use tokio ::select ;
2022-10-18 13:19:03 +00:00
use tokio ::signal ;
2024-04-17 08:41:12 +00:00
use tokio ::sync ::oneshot ;
2022-10-11 08:36:51 +00:00
use tokio ::time ::Instant ;
2023-02-17 17:22:00 +00:00
use tower_http ::cors ::{ AllowOrigin , CorsLayer } ;
2023-02-13 12:02:45 +00:00
use tracing ::{ info_span , instrument , Instrument } ;
2023-02-03 11:43:37 +00:00
use utoipa ::OpenApi ;
use utoipa_swagger_ui ::SwaggerUi ;
2022-10-11 08:36:51 +00:00
2023-04-18 14:16:06 +00:00
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[ utoipa::path(
2023-07-21 14:56:30 +00:00
post ,
tag = " Text Generation Inference " ,
path = " / " ,
request_body = CompatGenerateRequest ,
responses (
( status = 200 , description = " Generated Text " ,
content (
( " application/json " = GenerateResponse ) ,
( " text/event-stream " = StreamResponse ) ,
) ) ,
( status = 424 , description = " Generation Error " , body = ErrorResponse ,
example = json ! ( { " error " : " Request failed during generation " } ) ) ,
( status = 429 , description = " Model is overloaded " , body = ErrorResponse ,
example = json ! ( { " error " : " Model is overloaded " } ) ) ,
( status = 422 , description = " Input validation error " , body = ErrorResponse ,
example = json ! ( { " error " : " Input validation error " } ) ) ,
( status = 500 , description = " Incomplete generation " , body = ErrorResponse ,
example = json ! ( { " error " : " Incomplete generation " } ) ) ,
)
2023-04-18 14:16:06 +00:00
) ]
2023-05-23 18:47:37 +00:00
#[ instrument(skip(infer, req)) ]
2023-02-27 13:56:58 +00:00
async fn compat_generate (
2023-08-10 08:52:50 +00:00
Extension ( default_return_full_text ) : Extension < bool > ,
2023-02-27 13:56:58 +00:00
infer : Extension < Infer > ,
2024-01-29 10:20:08 +00:00
compute_type : Extension < ComputeType > ,
2023-08-10 08:52:50 +00:00
Json ( mut req ) : Json < CompatGenerateRequest > ,
2023-03-02 10:41:51 +00:00
) -> Result < Response , ( StatusCode , Json < ErrorResponse > ) > {
2023-02-28 09:19:32 +00:00
// default return_full_text given the pipeline_tag
if req . parameters . return_full_text . is_none ( ) {
2023-08-10 08:52:50 +00:00
req . parameters . return_full_text = Some ( default_return_full_text )
2023-02-28 09:19:32 +00:00
}
2023-02-27 13:56:58 +00:00
// switch on stream
if req . stream {
2024-01-29 11:30:50 +00:00
Ok ( generate_stream ( infer , compute_type , Json ( req . into ( ) ) )
2023-02-27 13:56:58 +00:00
. await
. into_response ( ) )
} else {
2024-01-29 10:20:08 +00:00
let ( headers , Json ( generation ) ) = generate ( infer , compute_type , Json ( req . into ( ) ) ) . await ? ;
2023-02-27 13:56:58 +00:00
// wrap generation inside a Vec to match api-inference
2023-08-10 08:52:50 +00:00
Ok ( ( headers , Json ( vec! [ generation ] ) ) . into_response ( ) )
2023-02-27 13:56:58 +00:00
}
}
2023-04-18 14:16:06 +00:00
/// Text Generation Inference endpoint info
#[ utoipa::path(
2023-07-21 14:56:30 +00:00
get ,
tag = " Text Generation Inference " ,
path = " /info " ,
responses ( ( status = 200 , description = " Served model info " , body = Info ) )
2023-04-18 14:16:06 +00:00
) ]
#[ instrument ]
2023-04-25 11:11:18 +00:00
async fn get_model_info ( info : Extension < Info > ) -> Json < Info > {
Json ( info . 0 )
2023-04-18 14:16:06 +00:00
}
2023-04-26 18:23:54 +00:00
#[ utoipa::path(
2023-07-21 14:56:30 +00:00
get ,
tag = " Text Generation Inference " ,
path = " /health " ,
responses (
( status = 200 , description = " Everything is working fine " ) ,
( status = 503 , description = " Text generation inference is down " , body = ErrorResponse ,
example = json ! ( { " error " : " unhealthy " , " error_type " : " healthcheck " } ) ) ,
)
2023-04-26 18:23:54 +00:00
) ]
2024-07-31 08:33:10 +00:00
#[ instrument(skip(infer)) ]
2022-10-18 13:19:03 +00:00
/// Health check method
2024-07-31 08:33:10 +00:00
async fn health ( infer : Extension < Infer > ) -> Result < ( ) , ( StatusCode , Json < ErrorResponse > ) > {
match infer . health ( ) . await {
2023-04-26 18:23:54 +00:00
true = > Ok ( ( ) ) ,
false = > Err ( (
StatusCode ::SERVICE_UNAVAILABLE ,
Json ( ErrorResponse {
error : " unhealthy " . to_string ( ) ,
error_type : " healthcheck " . to_string ( ) ,
} ) ,
) ) ,
}
2022-10-14 13:56:21 +00:00
}
2023-02-03 11:43:37 +00:00
/// Generate tokens
#[ utoipa::path(
2023-07-21 14:56:30 +00:00
post ,
tag = " Text Generation Inference " ,
path = " /generate " ,
request_body = GenerateRequest ,
responses (
( status = 200 , description = " Generated Text " , body = GenerateResponse ) ,
( status = 424 , description = " Generation Error " , body = ErrorResponse ,
example = json ! ( { " error " : " Request failed during generation " } ) ) ,
( status = 429 , description = " Model is overloaded " , body = ErrorResponse ,
example = json ! ( { " error " : " Model is overloaded " } ) ) ,
( status = 422 , description = " Input validation error " , body = ErrorResponse ,
example = json ! ( { " error " : " Input validation error " } ) ) ,
( status = 500 , description = " Incomplete generation " , body = ErrorResponse ,
example = json ! ( { " error " : " Incomplete generation " } ) ) ,
)
2023-02-03 11:43:37 +00:00
) ]
2022-10-21 14:40:05 +00:00
#[ instrument(
2023-07-21 14:56:30 +00:00
skip_all ,
fields (
2023-08-10 08:52:50 +00:00
parameters = ? req . parameters ,
2023-07-21 14:56:30 +00:00
total_time ,
validation_time ,
queue_time ,
inference_time ,
time_per_token ,
seed ,
)
2022-10-21 14:40:05 +00:00
) ]
2022-10-11 08:36:51 +00:00
async fn generate (
2023-01-31 16:04:00 +00:00
infer : Extension < Infer > ,
2024-01-29 10:20:08 +00:00
Extension ( ComputeType ( compute_type ) ) : Extension < ComputeType > ,
2023-08-10 08:52:50 +00:00
Json ( req ) : Json < GenerateRequest > ,
2023-02-27 13:56:58 +00:00
) -> Result < ( HeaderMap , Json < GenerateResponse > ) , ( StatusCode , Json < ErrorResponse > ) > {
2023-01-31 16:04:00 +00:00
let span = tracing ::Span ::current ( ) ;
2024-04-17 08:41:12 +00:00
generate_internal ( infer , ComputeType ( compute_type ) , Json ( req ) , span ) . await
}
2024-06-13 16:51:51 +00:00
pub ( crate ) async fn generate_internal (
2024-04-17 08:41:12 +00:00
infer : Extension < Infer > ,
ComputeType ( compute_type ) : ComputeType ,
Json ( req ) : Json < GenerateRequest > ,
span : tracing ::Span ,
) -> Result < ( HeaderMap , Json < GenerateResponse > ) , ( StatusCode , Json < ErrorResponse > ) > {
2022-10-21 14:40:05 +00:00
let start_time = Instant ::now ( ) ;
2024-07-08 14:03:59 +00:00
metrics ::counter! ( " tgi_request_count " ) . increment ( 1 ) ;
2023-01-31 13:21:51 +00:00
Adding Llava-Next (Llava 1.6) with full support. (#1709)
# What does this PR do?
- Changed all models to extract `embed_tokens` in order to enable llava
to separately call the embeddings and the core model layers.
- Added VlmCausalLM to inherit from FlashMistral in order to be
maximally supported. The only added logics sits on top and parses images
into pixel values, preallocates input_ids space for the image
embeddings, and passes them for the model.
- Added Clip for the vision tower.
- Didn't add flash for the vision tower since there's no padding anyway.
- Added heuristic (potentially incomplete) to calculate number of
features *before* calculating the clip patches (allows for easier logic
reuse of the LLM under the hood).
Still needs to be done:
- [x] Implement the image parsing in the controller side, to avoid
downloading n times per TP shard and also refusing requests too large
early and avoid issues where the truncation actually truncates the
image.
- [ ] Make sure it works with quantization properly.
- [x] Make sure it works with TP>1
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
2024-04-09 19:32:00 +00:00
// Do not long ultra long inputs, like image payloads.
tracing ::debug! ( " Input: {} " , & req . inputs [ .. 1000. min ( req . inputs . len ( ) ) ] ) ;
2023-05-23 18:47:37 +00:00
2023-08-10 08:52:50 +00:00
let compute_characters = req . inputs . chars ( ) . count ( ) ;
2023-02-28 09:19:32 +00:00
let mut add_prompt = None ;
2023-08-10 08:52:50 +00:00
if req . parameters . return_full_text . unwrap_or ( false ) {
add_prompt = Some ( req . inputs . clone ( ) ) ;
2023-02-28 09:19:32 +00:00
}
2023-08-28 09:43:47 +00:00
let details : bool = req . parameters . details | | req . parameters . decoder_input_details ;
2023-02-28 09:19:32 +00:00
// Inference
2023-08-10 08:52:50 +00:00
let ( response , best_of_responses ) = match req . parameters . best_of {
2023-03-09 14:30:54 +00:00
Some ( best_of ) if best_of > 1 = > {
2023-08-10 08:52:50 +00:00
let ( response , best_of_responses ) = infer . generate_best_of ( req , best_of ) . await ? ;
2023-03-09 14:30:54 +00:00
( response , Some ( best_of_responses ) )
}
2023-08-10 08:52:50 +00:00
_ = > ( infer . generate ( req ) . await ? , None ) ,
2023-03-09 14:30:54 +00:00
} ;
2022-10-17 12:59:00 +00:00
2022-12-15 16:03:56 +00:00
// Token details
2024-01-11 18:01:43 +00:00
let input_length = response . _input_length ;
2022-12-15 16:03:56 +00:00
let details = match details {
2023-03-09 14:30:54 +00:00
true = > {
// convert best_of_responses
let best_of_sequences = best_of_responses . map ( | responses : Vec < InferResponse > | {
responses
. into_iter ( )
. map ( | response : InferResponse | {
// Add prompt if return_full_text
let mut output_text = response . generated_text . text ;
if let Some ( prompt ) = & add_prompt {
output_text = prompt . clone ( ) + & output_text ;
}
BestOfSequence {
generated_text : output_text ,
2024-06-04 13:56:56 +00:00
finish_reason : response . generated_text . finish_reason ,
2023-03-09 14:30:54 +00:00
generated_tokens : response . generated_text . generated_tokens ,
prefill : response . prefill ,
tokens : response . tokens ,
2023-08-28 09:43:47 +00:00
top_tokens : response . top_tokens ,
2023-03-09 14:30:54 +00:00
seed : response . generated_text . seed ,
}
} )
. collect ( )
} ) ;
Some ( Details {
2024-06-04 13:56:56 +00:00
finish_reason : response . generated_text . finish_reason ,
2023-03-09 14:30:54 +00:00
generated_tokens : response . generated_text . generated_tokens ,
prefill : response . prefill ,
tokens : response . tokens ,
seed : response . generated_text . seed ,
best_of_sequences ,
2023-08-28 09:43:47 +00:00
top_tokens : response . top_tokens ,
2023-03-09 14:30:54 +00:00
} )
}
2022-12-15 16:03:56 +00:00
false = > None ,
} ;
2022-10-21 14:40:05 +00:00
// Timings
let total_time = start_time . elapsed ( ) ;
let validation_time = response . queued - start_time ;
let queue_time = response . start - response . queued ;
2023-01-31 16:04:00 +00:00
let inference_time = Instant ::now ( ) - response . start ;
let time_per_token = inference_time / response . generated_text . generated_tokens ;
2022-10-21 14:40:05 +00:00
2023-04-09 18:13:28 +00:00
// Tracing metadata
span . record ( " total_time " , format! ( " {total_time:?} " ) ) ;
span . record ( " validation_time " , format! ( " {validation_time:?} " ) ) ;
span . record ( " queue_time " , format! ( " {queue_time:?} " ) ) ;
span . record ( " inference_time " , format! ( " {inference_time:?} " ) ) ;
span . record ( " time_per_token " , format! ( " {time_per_token:?} " ) ) ;
span . record ( " seed " , format! ( " {:?} " , response . generated_text . seed ) ) ;
2022-10-21 14:40:05 +00:00
// Headers
let mut headers = HeaderMap ::new ( ) ;
2024-01-29 10:20:08 +00:00
headers . insert ( " x-compute-type " , compute_type . parse ( ) . unwrap ( ) ) ;
2023-03-02 10:41:51 +00:00
headers . insert (
" x-compute-time " ,
2024-02-28 10:30:37 +00:00
total_time . as_secs_f64 ( ) . to_string ( ) . parse ( ) . unwrap ( ) ,
2023-03-02 10:41:51 +00:00
) ;
headers . insert (
" x-compute-characters " ,
compute_characters . to_string ( ) . parse ( ) . unwrap ( ) ,
) ;
2022-10-21 14:40:05 +00:00
headers . insert (
" x-total-time " ,
total_time . as_millis ( ) . to_string ( ) . parse ( ) . unwrap ( ) ,
) ;
headers . insert (
" x-validation-time " ,
validation_time . as_millis ( ) . to_string ( ) . parse ( ) . unwrap ( ) ,
) ;
headers . insert (
" x-queue-time " ,
queue_time . as_millis ( ) . to_string ( ) . parse ( ) . unwrap ( ) ,
2022-10-17 12:59:00 +00:00
) ;
2022-10-21 14:40:05 +00:00
headers . insert (
" x-inference-time " ,
inference_time . as_millis ( ) . to_string ( ) . parse ( ) . unwrap ( ) ,
) ;
headers . insert (
" x-time-per-token " ,
time_per_token . as_millis ( ) . to_string ( ) . parse ( ) . unwrap ( ) ,
) ;
2024-01-11 18:01:43 +00:00
headers . insert ( " x-prompt-tokens " , input_length . into ( ) ) ;
headers . insert (
" x-generated-tokens " ,
response . generated_text . generated_tokens . into ( ) ,
) ;
2022-10-21 14:40:05 +00:00
2023-02-16 16:18:53 +00:00
// Metrics
2024-07-08 14:03:59 +00:00
metrics ::counter! ( " tgi_request_success " ) . increment ( 1 ) ;
metrics ::histogram! ( " tgi_request_duration " ) . record ( total_time . as_secs_f64 ( ) ) ;
metrics ::histogram! ( " tgi_request_validation_duration " ) . record ( validation_time . as_secs_f64 ( ) ) ;
metrics ::histogram! ( " tgi_request_queue_duration " ) . record ( queue_time . as_secs_f64 ( ) ) ;
metrics ::histogram! ( " tgi_request_inference_duration " ) . record ( inference_time . as_secs_f64 ( ) ) ;
metrics ::histogram! ( " tgi_request_mean_time_per_token_duration " )
. record ( time_per_token . as_secs_f64 ( ) ) ;
metrics ::histogram! ( " tgi_request_generated_tokens " )
. record ( response . generated_text . generated_tokens as f64 ) ;
2023-02-16 16:18:53 +00:00
2022-10-18 13:19:03 +00:00
// Send response
2023-02-28 09:19:32 +00:00
let mut output_text = response . generated_text . text ;
if let Some ( prompt ) = add_prompt {
output_text = prompt + & output_text ;
}
2023-05-23 18:47:37 +00:00
tracing ::debug! ( " Output: {} " , output_text ) ;
tracing ::info! ( " Success " ) ;
2023-04-09 18:13:28 +00:00
2023-02-02 14:02:04 +00:00
let response = GenerateResponse {
2023-02-28 09:19:32 +00:00
generated_text : output_text ,
2022-12-15 16:03:56 +00:00
details ,
2023-02-02 14:02:04 +00:00
} ;
2022-10-21 14:40:05 +00:00
Ok ( ( headers , Json ( response ) ) )
2022-10-11 08:36:51 +00:00
}
2023-02-08 21:30:11 +00:00
/// Generate a stream of token using Server-Sent Events
2023-02-03 11:43:37 +00:00
#[ utoipa::path(
2023-07-21 14:56:30 +00:00
post ,
tag = " Text Generation Inference " ,
path = " /generate_stream " ,
request_body = GenerateRequest ,
responses (
( status = 200 , description = " Generated Text " , body = StreamResponse ,
content_type = " text/event-stream " ) ,
( status = 424 , description = " Generation Error " , body = ErrorResponse ,
example = json ! ( { " error " : " Request failed during generation " } ) ,
content_type = " text/event-stream " ) ,
( status = 429 , description = " Model is overloaded " , body = ErrorResponse ,
example = json ! ( { " error " : " Model is overloaded " } ) ,
content_type = " text/event-stream " ) ,
( status = 422 , description = " Input validation error " , body = ErrorResponse ,
example = json ! ( { " error " : " Input validation error " } ) ,
content_type = " text/event-stream " ) ,
( status = 500 , description = " Incomplete generation " , body = ErrorResponse ,
example = json ! ( { " error " : " Incomplete generation " } ) ,
content_type = " text/event-stream " ) ,
)
2023-02-03 11:43:37 +00:00
) ]
2023-01-31 16:04:00 +00:00
#[ instrument(
2023-07-21 14:56:30 +00:00
skip_all ,
fields (
2023-08-10 08:52:50 +00:00
parameters = ? req . parameters ,
2023-07-21 14:56:30 +00:00
total_time ,
validation_time ,
queue_time ,
inference_time ,
time_per_token ,
seed ,
)
2023-01-31 16:04:00 +00:00
) ]
async fn generate_stream (
2023-08-10 08:52:50 +00:00
Extension ( infer ) : Extension < Infer > ,
2024-01-29 10:20:08 +00:00
Extension ( compute_type ) : Extension < ComputeType > ,
2023-08-10 08:52:50 +00:00
Json ( req ) : Json < GenerateRequest > ,
2023-03-02 10:41:51 +00:00
) -> (
HeaderMap ,
Sse < impl Stream < Item = Result < Event , Infallible > > > ,
) {
2024-04-17 08:41:12 +00:00
let span = tracing ::Span ::current ( ) ;
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
let on_message_callback = | stream_token : StreamResponse | {
let event = Event ::default ( ) ;
event . json_data ( stream_token ) . unwrap ( )
} ;
let ( headers , response_stream ) =
2024-04-17 08:41:12 +00:00
generate_stream_internal ( infer , compute_type , Json ( req ) , on_message_callback , span ) . await ;
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
let sse = Sse ::new ( response_stream ) . keep_alive ( KeepAlive ::default ( ) ) ;
( headers , sse )
}
async fn generate_stream_internal (
infer : Infer ,
2024-01-29 10:20:08 +00:00
ComputeType ( compute_type ) : ComputeType ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
Json ( req ) : Json < GenerateRequest > ,
on_message_callback : impl Fn ( StreamResponse ) -> Event ,
2024-04-17 08:41:12 +00:00
span : tracing ::Span ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
) -> ( HeaderMap , impl Stream < Item = Result < Event , Infallible > > ) {
2023-01-31 16:04:00 +00:00
let start_time = Instant ::now ( ) ;
2024-07-08 14:03:59 +00:00
metrics ::counter! ( " tgi_request_count " ) . increment ( 1 ) ;
2023-01-31 16:04:00 +00:00
2023-08-10 08:52:50 +00:00
tracing ::debug! ( " Input: {} " , req . inputs ) ;
2023-05-23 18:47:37 +00:00
2023-08-10 08:52:50 +00:00
let compute_characters = req . inputs . chars ( ) . count ( ) ;
2023-03-02 10:41:51 +00:00
let mut headers = HeaderMap ::new ( ) ;
2024-01-29 11:30:50 +00:00
headers . insert ( " x-compute-type " , compute_type . parse ( ) . unwrap ( ) ) ;
2023-03-02 10:41:51 +00:00
headers . insert (
" x-compute-characters " ,
compute_characters . to_string ( ) . parse ( ) . unwrap ( ) ,
) ;
2023-06-28 09:50:12 +00:00
headers . insert ( " X-Accel-Buffering " , " no " . parse ( ) . unwrap ( ) ) ;
2023-03-02 10:41:51 +00:00
2023-01-31 16:04:00 +00:00
let stream = async_stream ::stream! {
// Inference
let mut end_reached = false ;
let mut error = false ;
2023-02-28 09:19:32 +00:00
let mut add_prompt = None ;
2023-08-10 08:52:50 +00:00
if req . parameters . return_full_text . unwrap_or ( false ) {
add_prompt = Some ( req . inputs . clone ( ) ) ;
2023-02-28 09:19:32 +00:00
}
2023-08-10 08:52:50 +00:00
let details = req . parameters . details ;
2023-01-31 16:04:00 +00:00
2023-08-10 08:52:50 +00:00
let best_of = req . parameters . best_of . unwrap_or ( 1 ) ;
2023-06-02 15:12:30 +00:00
if best_of ! = 1 {
let err = InferError ::from ( ValidationError ::BestOfStream ) ;
2024-07-08 14:03:59 +00:00
metrics ::counter! ( " tgi_request_failure " , " err " = > " validation " ) . increment ( 1 ) ;
2023-06-02 15:12:30 +00:00
tracing ::error! ( " {err} " ) ;
yield Ok ( Event ::from ( err ) ) ;
2023-08-10 08:52:50 +00:00
} else if req . parameters . decoder_input_details {
2023-06-02 15:12:30 +00:00
let err = InferError ::from ( ValidationError ::PrefillDetailsStream ) ;
2024-07-08 14:03:59 +00:00
metrics ::counter! ( " tgi_request_failure " , " err " = > " validation " ) . increment ( 1 ) ;
2023-06-02 15:12:30 +00:00
tracing ::error! ( " {err} " ) ;
yield Ok ( Event ::from ( err ) ) ;
} else {
2023-08-10 08:52:50 +00:00
match infer . generate_stream ( req ) . instrument ( info_span! ( parent : & span , " async_stream " ) ) . await {
2023-04-20 09:07:40 +00:00
// Keep permit as long as generate_stream lives
2024-07-31 08:33:10 +00:00
Ok ( ( _permit , _input_length , response_stream ) ) = > {
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
let mut index = 0 ;
2024-07-31 08:33:10 +00:00
let mut response_stream = Box ::pin ( response_stream ) ;
2023-03-09 14:30:54 +00:00
// Server-Sent Event stream
while let Some ( response ) = response_stream . next ( ) . await {
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
index + = 1 ;
2023-03-09 14:30:54 +00:00
match response {
Ok ( response ) = > {
match response {
// Prefill is ignored
InferStreamResponse ::Prefill ( _ ) = > { }
// Yield event for every new token
2023-08-28 09:43:47 +00:00
InferStreamResponse ::Intermediate {
token ,
top_tokens ,
} = > {
2023-05-23 18:47:37 +00:00
tracing ::debug! ( parent : & span , " Token: {:?} " , token ) ;
2023-03-09 14:30:54 +00:00
// StreamResponse
let stream_token = StreamResponse {
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
index ,
2023-03-09 14:30:54 +00:00
token ,
2023-09-27 08:40:18 +00:00
top_tokens ,
2023-03-09 14:30:54 +00:00
generated_text : None ,
details : None ,
} ;
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
let event = on_message_callback ( stream_token ) ;
yield Ok ( event ) ;
2023-02-28 09:19:32 +00:00
}
2023-03-09 14:30:54 +00:00
// Yield event for last token and compute timings
InferStreamResponse ::End {
2023-01-31 16:04:00 +00:00
token ,
2023-03-09 14:30:54 +00:00
generated_text ,
start ,
queued ,
2023-08-28 09:43:47 +00:00
top_tokens ,
2023-03-09 14:30:54 +00:00
} = > {
// Token details
let details = match details {
true = > Some ( StreamDetails {
2024-06-04 13:56:56 +00:00
finish_reason : generated_text . finish_reason ,
2023-03-09 14:30:54 +00:00
generated_tokens : generated_text . generated_tokens ,
seed : generated_text . seed ,
} ) ,
false = > None ,
} ;
// Timings
let total_time = start_time . elapsed ( ) ;
let validation_time = queued - start_time ;
let queue_time = start - queued ;
let inference_time = Instant ::now ( ) - start ;
let time_per_token = inference_time / generated_text . generated_tokens ;
// Tracing metadata
span . record ( " total_time " , format! ( " {total_time:?} " ) ) ;
span . record ( " validation_time " , format! ( " {validation_time:?} " ) ) ;
span . record ( " queue_time " , format! ( " {queue_time:?} " ) ) ;
span . record ( " inference_time " , format! ( " {inference_time:?} " ) ) ;
span . record ( " time_per_token " , format! ( " {time_per_token:?} " ) ) ;
span . record ( " seed " , format! ( " {:?} " , generated_text . seed ) ) ;
// Metrics
2024-07-08 14:03:59 +00:00
metrics ::counter! ( " tgi_request_success " ) . increment ( 1 ) ;
metrics ::histogram! ( " tgi_request_duration " ) . record ( total_time . as_secs_f64 ( ) ) ;
metrics ::histogram! ( " tgi_request_validation_duration " ) . record ( validation_time . as_secs_f64 ( ) ) ;
metrics ::histogram! ( " tgi_request_queue_duration " ) . record ( queue_time . as_secs_f64 ( ) ) ;
metrics ::histogram! ( " tgi_request_inference_duration " ) . record ( inference_time . as_secs_f64 ( ) ) ;
metrics ::histogram! ( " tgi_request_mean_time_per_token_duration " ) . record ( time_per_token . as_secs_f64 ( ) ) ;
metrics ::histogram! ( " tgi_request_generated_tokens " ) . record ( generated_text . generated_tokens as f64 ) ;
2023-03-09 14:30:54 +00:00
// StreamResponse
end_reached = true ;
let mut output_text = generated_text . text ;
if let Some ( prompt ) = add_prompt {
output_text = prompt + & output_text ;
}
2023-05-23 18:47:37 +00:00
tracing ::debug! ( parent : & span , " Output: {} " , output_text ) ;
tracing ::info! ( parent : & span , " Success " ) ;
2023-04-09 18:13:28 +00:00
2023-03-09 14:30:54 +00:00
let stream_token = StreamResponse {
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
index ,
2023-03-09 14:30:54 +00:00
token ,
2023-09-27 08:40:18 +00:00
top_tokens ,
2023-03-09 14:30:54 +00:00
generated_text : Some ( output_text ) ,
details
} ;
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
let event = on_message_callback ( stream_token ) ;
yield Ok ( event ) ;
2023-03-09 14:30:54 +00:00
break ;
}
2023-01-31 16:04:00 +00:00
}
}
2023-03-09 14:30:54 +00:00
// yield error
Err ( err ) = > {
error = true ;
yield Ok ( Event ::from ( err ) ) ;
break ;
}
2023-01-31 16:04:00 +00:00
}
}
2023-03-09 14:30:54 +00:00
} ,
// yield error
Err ( err ) = > {
error = true ;
yield Ok ( Event ::from ( err ) ) ;
2023-01-31 16:04:00 +00:00
}
2023-03-09 14:30:54 +00:00
}
// Check if generation reached the end
// Skip if we already sent an error
if ! end_reached & & ! error {
let err = InferError ::IncompleteGeneration ;
2024-07-08 14:03:59 +00:00
metrics ::counter! ( " tgi_request_failure " , " err " = > " incomplete " ) . increment ( 1 ) ;
2023-03-09 14:30:54 +00:00
tracing ::error! ( " {err} " ) ;
2023-02-28 09:19:32 +00:00
yield Ok ( Event ::from ( err ) ) ;
2023-01-31 16:04:00 +00:00
}
}
} ;
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
( headers , stream )
}
2024-02-29 15:44:20 +00:00
/// Generate tokens
#[ utoipa::path(
2024-06-04 13:56:56 +00:00
post ,
tag = " Text Generation Inference " ,
path = " /v1/completions " ,
request_body = CompletionRequest ,
responses (
( status = 200 , description = " Generated Chat Completion " ,
content (
2024-07-09 15:23:48 +00:00
( " application/json " = CompletionFinal ) ,
( " text/event-stream " = Chunk ) ,
2024-06-04 13:56:56 +00:00
) ) ,
( status = 424 , description = " Generation Error " , body = ErrorResponse ,
example = json ! ( { " error " : " Request failed during generation " } ) ) ,
( status = 429 , description = " Model is overloaded " , body = ErrorResponse ,
example = json ! ( { " error " : " Model is overloaded " } ) ) ,
( status = 422 , description = " Input validation error " , body = ErrorResponse ,
example = json ! ( { " error " : " Input validation error " } ) ) ,
( status = 500 , description = " Incomplete generation " , body = ErrorResponse ,
example = json ! ( { " error " : " Incomplete generation " } ) ) ,
)
) ]
2024-02-29 15:44:20 +00:00
#[ instrument(
2024-06-04 13:56:56 +00:00
skip_all ,
fields (
// parameters = ? req.parameters,
total_time ,
validation_time ,
queue_time ,
inference_time ,
time_per_token ,
seed ,
)
) ]
2024-02-29 15:44:20 +00:00
async fn completions (
Extension ( infer ) : Extension < Infer > ,
Extension ( compute_type ) : Extension < ComputeType > ,
Extension ( info ) : Extension < Info > ,
Json ( req ) : Json < CompletionRequest > ,
) -> Result < Response , ( StatusCode , Json < ErrorResponse > ) > {
2024-04-17 08:41:12 +00:00
let span = tracing ::Span ::current ( ) ;
2024-07-08 14:03:59 +00:00
metrics ::counter! ( " tgi_request_count " ) . increment ( 1 ) ;
2024-02-29 15:44:20 +00:00
2024-05-23 13:37:09 +00:00
let CompletionRequest {
2024-07-08 14:06:49 +00:00
model ,
2024-05-23 13:37:09 +00:00
max_tokens ,
seed ,
stop ,
stream ,
temperature ,
..
} = req ;
let max_new_tokens = max_tokens . or ( Some ( 100 ) ) ;
let stop = stop . unwrap_or_default ( ) ;
// enable greedy only when temperature is 0
let ( do_sample , temperature ) = match temperature {
Some ( temperature ) if temperature = = 0.0 = > ( false , None ) ,
other = > ( true , other ) ,
} ;
2024-02-29 15:44:20 +00:00
// if suffix is present throw an error
if req . suffix . is_some ( ) {
2024-07-08 14:03:59 +00:00
metrics ::counter! ( " tgi_request_failure " , " err " = > " validation " ) . increment ( 1 ) ;
2024-02-29 15:44:20 +00:00
return Err ( (
StatusCode ::UNPROCESSABLE_ENTITY ,
Json ( ErrorResponse {
error : " Suffix is not supported and can be achieved by preprocessing the prompt. "
. to_string ( ) ,
error_type : " suffix not supported " . to_string ( ) ,
} ) ,
) ) ;
}
2024-07-01 13:08:05 +00:00
if req . prompt . 0. len ( ) > info . max_client_batch_size {
2024-07-08 14:03:59 +00:00
metrics ::counter! ( " tgi_request_failure " , " err " = > " validation " ) . increment ( 1 ) ;
2024-04-17 08:41:12 +00:00
return Err ( (
StatusCode ::UNPROCESSABLE_ENTITY ,
Json ( ErrorResponse {
error : format ! (
" Number of prompts exceeds the maximum allowed batch size of {} " ,
info . max_client_batch_size
) ,
error_type : " batch size exceeded " . to_string ( ) ,
} ) ,
) ) ;
}
let generate_requests : Vec < GenerateRequest > = req
. prompt
2024-07-01 13:08:05 +00:00
. 0
2024-04-17 08:41:12 +00:00
. iter ( )
. map ( | prompt | GenerateRequest {
inputs : prompt . to_string ( ) ,
parameters : GenerateParameters {
best_of : None ,
2024-05-23 13:37:09 +00:00
temperature ,
2024-04-17 08:41:12 +00:00
repetition_penalty : req . repetition_penalty ,
frequency_penalty : req . frequency_penalty ,
top_k : None ,
top_p : req . top_p ,
typical_p : None ,
2024-05-23 13:37:09 +00:00
do_sample ,
2024-04-17 08:41:12 +00:00
max_new_tokens ,
return_full_text : None ,
2024-05-23 13:37:09 +00:00
stop : stop . clone ( ) ,
2024-04-17 08:41:12 +00:00
truncate : None ,
watermark : false ,
details : true ,
decoder_input_details : ! stream ,
seed ,
top_n_tokens : None ,
grammar : None ,
2024-07-08 14:06:49 +00:00
adapter_id : model . as_ref ( ) . filter ( | m | * m ! = " tgi " ) . map ( String ::from ) ,
2024-04-17 08:41:12 +00:00
} ,
} )
. collect ( ) ;
let mut x_compute_type = None ;
let mut x_compute_characters = 0 u32 ;
let mut x_accel_buffering = None ;
2024-02-29 15:44:20 +00:00
if stream {
2024-04-17 08:41:12 +00:00
let mut response_streams = FuturesOrdered ::new ( ) ;
for ( index , generate_request ) in generate_requests . into_iter ( ) . enumerate ( ) {
let model_id = info . model_id . clone ( ) ;
let system_fingerprint =
format! ( " {} - {} " , info . version , info . docker_label . unwrap_or ( " native " ) ) ;
let infer_clone = infer . clone ( ) ;
let compute_type_clone = compute_type . clone ( ) ;
let span_clone = span . clone ( ) ;
// Create a future for each generate_stream_internal call.
let generate_future = async move {
let on_message_callback = move | stream_token : StreamResponse | {
let event = Event ::default ( ) ;
let current_time = std ::time ::SystemTime ::now ( )
. duration_since ( std ::time ::UNIX_EPOCH )
. unwrap_or_else ( | _ | std ::time ::Duration ::from_secs ( 0 ) )
. as_secs ( ) ;
event
2024-07-03 10:56:27 +00:00
. json_data ( Completion ::Chunk ( Chunk {
2024-04-17 08:41:12 +00:00
id : " " . to_string ( ) ,
created : current_time ,
choices : vec ! [ CompletionComplete {
finish_reason : " " . to_string ( ) ,
index : index as u32 ,
logprobs : None ,
text : stream_token . token . text ,
} ] ,
model : model_id . clone ( ) ,
system_fingerprint : system_fingerprint . clone ( ) ,
2024-07-03 10:56:27 +00:00
} ) )
2024-05-06 11:48:11 +00:00
. unwrap_or_else ( | _e | Event ::default ( ) )
2024-04-17 08:41:12 +00:00
} ;
let ( header_tx , header_rx ) = oneshot ::channel ( ) ;
let ( sse_tx , sse_rx ) = tokio ::sync ::mpsc ::unbounded_channel ( ) ;
tokio ::spawn ( async move {
let ( header_map , sse ) = generate_stream_internal (
infer_clone . clone ( ) ,
compute_type_clone . clone ( ) ,
Json ( generate_request ) ,
on_message_callback ,
span_clone . clone ( ) ,
)
. await ;
2024-02-29 15:44:20 +00:00
2024-04-17 08:41:12 +00:00
// send and dont wait for response
let _ = header_tx . send ( header_map ) ;
2024-02-29 15:44:20 +00:00
2024-04-17 08:41:12 +00:00
// pin an emit messages to the sse_tx
let mut sse = Box ::pin ( sse ) ;
while let Some ( event ) = sse . next ( ) . await {
if sse_tx . send ( event ) . is_err ( ) {
tracing ::error! ( " Failed to send event. Receiver dropped. " ) ;
break ;
}
}
} ) ;
( header_rx , sse_rx )
} ;
response_streams . push_back ( generate_future ) ;
}
let mut all_rxs = vec! [ ] ;
while let Some ( ( header_rx , sse_rx ) ) = response_streams . next ( ) . await {
all_rxs . push ( sse_rx ) ;
// get the headers from the first response of each stream
let headers = header_rx . await . map_err ( | e | {
tracing ::error! ( " Failed to get headers: {:?} " , e ) ;
(
StatusCode ::INTERNAL_SERVER_ERROR ,
Json ( ErrorResponse {
error : " Failed to get headers " . to_string ( ) ,
error_type : " headers " . to_string ( ) ,
} ) ,
2024-02-29 15:44:20 +00:00
)
2024-04-17 08:41:12 +00:00
} ) ? ;
if x_compute_type . is_none ( ) {
x_compute_type = headers
. get ( " x-compute-type " )
. and_then ( | v | v . to_str ( ) . ok ( ) )
. map ( | v | v . to_string ( ) ) ;
x_accel_buffering = headers
. get ( " x-accel-buffering " )
. and_then ( | v | v . to_str ( ) . ok ( ) )
. map ( | v | v . to_string ( ) ) ;
}
x_compute_characters + = headers
. get ( " x-compute-characters " )
. and_then ( | v | v . to_str ( ) . ok ( ) )
. and_then ( | v | v . parse ( ) . ok ( ) )
. unwrap_or ( 0 ) ;
}
2024-02-29 15:44:20 +00:00
2024-04-17 08:41:12 +00:00
let mut headers = HeaderMap ::new ( ) ;
if let Some ( x_compute_type ) = x_compute_type {
headers . insert ( " x-compute-type " , x_compute_type . parse ( ) . unwrap ( ) ) ;
}
headers . insert ( " x-compute-characters " , x_compute_characters . into ( ) ) ;
if let Some ( x_accel_buffering ) = x_accel_buffering {
headers . insert ( " x-accel-buffering " , x_accel_buffering . parse ( ) . unwrap ( ) ) ;
}
2024-02-29 15:44:20 +00:00
2024-04-17 08:41:12 +00:00
// now sink the sse streams into a single stream and remove the ones that are done
let stream : AsyncStream < Result < Event , Infallible > , _ > = async_stream ::stream! {
loop {
let mut i = 0 ;
while i < all_rxs . len ( ) {
let rx = & mut all_rxs [ i ] ;
select! {
Some ( event ) = rx . recv ( ) = > {
yield event ;
}
else = > {
all_rxs . remove ( i ) ;
continue ; // skip the increment to handle the next element at the same index
}
}
i + = 1 ; // only increment when no element was removed
}
if all_rxs . is_empty ( ) {
break ;
}
}
} ;
2024-07-11 14:42:58 +00:00
let stream = stream . chain ( futures ::stream ::once ( async {
Ok ( Event ::default ( ) . data ( " [DONE] " ) )
} ) ) ;
2024-04-17 08:41:12 +00:00
let sse = Sse ::new ( stream ) . keep_alive ( KeepAlive ::default ( ) ) ;
2024-02-29 15:44:20 +00:00
Ok ( ( headers , sse ) . into_response ( ) )
} else {
let current_time = std ::time ::SystemTime ::now ( )
. duration_since ( std ::time ::UNIX_EPOCH )
. unwrap_or_else ( | _ | std ::time ::Duration ::from_secs ( 0 ) )
. as_secs ( ) ;
2024-04-17 08:41:12 +00:00
let responses = FuturesUnordered ::new ( ) ;
for ( index , generate_request ) in generate_requests . into_iter ( ) . enumerate ( ) {
let infer_clone = infer . clone ( ) ;
let compute_type_clone = compute_type . clone ( ) ;
let span_clone = span . clone ( ) ;
let response_future = async move {
let result = generate_internal (
Extension ( infer_clone ) ,
compute_type_clone ,
Json ( generate_request ) ,
span_clone ,
)
. await ;
result . map ( | ( headers , generation ) | ( index , headers , generation ) )
} ;
responses . push ( response_future ) ;
}
let generate_responses = responses . try_collect ::< Vec < _ > > ( ) . await ? ;
let mut prompt_tokens = 0 u32 ;
let mut completion_tokens = 0 u32 ;
let mut total_tokens = 0 u32 ;
let mut x_compute_time = 0 u32 ;
let mut x_total_time = 0 u32 ;
let mut x_validation_time = 0 u32 ;
let mut x_queue_time = 0 u32 ;
let mut x_inference_time = 0 u32 ;
let mut x_time_per_token = 0 u32 ;
let mut x_prompt_tokens = 0 u32 ;
let mut x_generated_tokens = 0 u32 ;
let choices = generate_responses
. into_iter ( )
. map ( | ( index , headers , Json ( generation ) ) | {
let details = generation . details . ok_or ( (
// this should never happen but handle if details are missing unexpectedly
StatusCode ::INTERNAL_SERVER_ERROR ,
Json ( ErrorResponse {
error : " No details in generation " . to_string ( ) ,
error_type : " no details " . to_string ( ) ,
} ) ,
) ) ? ;
if x_compute_type . is_none ( ) {
x_compute_type = headers
. get ( " x-compute-type " )
. and_then ( | v | v . to_str ( ) . ok ( ) )
. map ( | v | v . to_string ( ) ) ;
}
// accumulate headers and usage from each response
x_compute_time + = headers
. get ( " x-compute-time " )
. and_then ( | v | v . to_str ( ) . ok ( ) ? . parse ( ) . ok ( ) )
. unwrap_or ( 0 ) ;
x_compute_characters + = headers
. get ( " x-compute-characters " )
. and_then ( | v | v . to_str ( ) . ok ( ) ? . parse ( ) . ok ( ) )
. unwrap_or ( 0 ) ;
x_total_time + = headers
. get ( " x-total-time " )
. and_then ( | v | v . to_str ( ) . ok ( ) ? . parse ( ) . ok ( ) )
. unwrap_or ( 0 ) ;
x_validation_time + = headers
. get ( " x-validation-time " )
. and_then ( | v | v . to_str ( ) . ok ( ) ? . parse ( ) . ok ( ) )
. unwrap_or ( 0 ) ;
x_queue_time + = headers
. get ( " x-queue-time " )
. and_then ( | v | v . to_str ( ) . ok ( ) ? . parse ( ) . ok ( ) )
. unwrap_or ( 0 ) ;
x_inference_time + = headers
. get ( " x-inference-time " )
. and_then ( | v | v . to_str ( ) . ok ( ) ? . parse ( ) . ok ( ) )
. unwrap_or ( 0 ) ;
x_time_per_token + = headers
. get ( " x-time-per-token " )
. and_then ( | v | v . to_str ( ) . ok ( ) ? . parse ( ) . ok ( ) )
. unwrap_or ( 0 ) ;
x_prompt_tokens + = headers
. get ( " x-prompt-tokens " )
. and_then ( | v | v . to_str ( ) . ok ( ) ? . parse ( ) . ok ( ) )
. unwrap_or ( 0 ) ;
x_generated_tokens + = headers
. get ( " x-generated-tokens " )
. and_then ( | v | v . to_str ( ) . ok ( ) ? . parse ( ) . ok ( ) )
. unwrap_or ( 0 ) ;
prompt_tokens + = details . prefill . len ( ) as u32 ;
completion_tokens + = details . generated_tokens ;
total_tokens + = details . prefill . len ( ) as u32 + details . generated_tokens ;
Ok ( CompletionComplete {
finish_reason : details . finish_reason . to_string ( ) ,
index : index as u32 ,
logprobs : None ,
text : generation . generated_text ,
} )
} )
. collect ::< Result < Vec < _ > , _ > > ( )
. map_err ( | ( status , Json ( err ) ) | ( status , Json ( err ) ) ) ? ;
2024-02-29 15:44:20 +00:00
2024-07-03 10:56:27 +00:00
let response = Completion ::Final ( CompletionFinal {
2024-02-29 15:44:20 +00:00
id : " " . to_string ( ) ,
created : current_time ,
model : info . model_id . clone ( ) ,
system_fingerprint : format ! (
" {}-{} " ,
info . version ,
info . docker_label . unwrap_or ( " native " )
) ,
2024-04-17 08:41:12 +00:00
choices ,
2024-02-29 15:44:20 +00:00
usage : Usage {
2024-04-17 08:41:12 +00:00
prompt_tokens ,
completion_tokens ,
total_tokens ,
2024-02-29 15:44:20 +00:00
} ,
2024-07-03 10:56:27 +00:00
} ) ;
2024-02-29 15:44:20 +00:00
2024-04-17 08:41:12 +00:00
// headers similar to `generate` but aggregated
let mut headers = HeaderMap ::new ( ) ;
if let Some ( x_compute_type ) = x_compute_type {
headers . insert ( " x-compute-type " , x_compute_type . parse ( ) . unwrap ( ) ) ;
}
headers . insert ( " x-compute-characters " , x_compute_characters . into ( ) ) ;
headers . insert ( " x-total-time " , x_total_time . into ( ) ) ;
headers . insert ( " x-validation-time " , x_validation_time . into ( ) ) ;
headers . insert ( " x-queue-time " , x_queue_time . into ( ) ) ;
headers . insert ( " x-inference-time " , x_inference_time . into ( ) ) ;
headers . insert ( " x-time-per-token " , x_time_per_token . into ( ) ) ;
headers . insert ( " x-prompt-tokens " , x_prompt_tokens . into ( ) ) ;
headers . insert ( " x-generated-tokens " , x_generated_tokens . into ( ) ) ;
if let Some ( x_accel_buffering ) = x_accel_buffering {
headers . insert ( " x-accel-buffering " , x_accel_buffering . parse ( ) . unwrap ( ) ) ;
}
2024-02-29 15:44:20 +00:00
Ok ( ( headers , Json ( response ) ) . into_response ( ) )
}
}
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
/// Generate tokens
#[ utoipa::path(
2024-06-04 13:56:56 +00:00
post ,
tag = " Text Generation Inference " ,
path = " /v1/chat/completions " ,
request_body = ChatRequest ,
responses (
( status = 200 , description = " Generated Chat Completion " ,
content (
( " application/json " = ChatCompletion ) ,
( " text/event-stream " = ChatCompletionChunk ) ,
) ) ,
( status = 424 , description = " Generation Error " , body = ErrorResponse ,
example = json ! ( { " error " : " Request failed during generation " } ) ) ,
( status = 429 , description = " Model is overloaded " , body = ErrorResponse ,
example = json ! ( { " error " : " Model is overloaded " } ) ) ,
( status = 422 , description = " Input validation error " , body = ErrorResponse ,
example = json ! ( { " error " : " Input validation error " } ) ) ,
( status = 500 , description = " Incomplete generation " , body = ErrorResponse ,
example = json ! ( { " error " : " Incomplete generation " } ) ) ,
)
) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
#[ instrument(
2024-06-04 13:56:56 +00:00
skip_all ,
fields (
// parameters = ? req.parameters,
total_time ,
validation_time ,
queue_time ,
inference_time ,
time_per_token ,
seed ,
)
) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
async fn chat_completions (
Extension ( infer ) : Extension < Infer > ,
2024-01-29 10:20:08 +00:00
Extension ( compute_type ) : Extension < ComputeType > ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
Extension ( info ) : Extension < Info > ,
Json ( req ) : Json < ChatRequest > ,
) -> Result < Response , ( StatusCode , Json < ErrorResponse > ) > {
2024-04-17 08:41:12 +00:00
let span = tracing ::Span ::current ( ) ;
2024-07-08 14:03:59 +00:00
metrics ::counter! ( " tgi_request_count " ) . increment ( 1 ) ;
2024-04-16 13:02:46 +00:00
let ChatRequest {
2024-07-08 14:06:49 +00:00
model ,
2024-04-16 13:02:46 +00:00
logprobs ,
max_tokens ,
messages ,
presence_penalty ,
seed ,
stop ,
stream ,
tools ,
tool_choice ,
tool_prompt ,
2024-04-25 13:31:35 +00:00
temperature ,
2024-06-11 14:44:56 +00:00
response_format ,
2024-04-16 13:02:46 +00:00
..
} = req ;
let repetition_penalty = presence_penalty . map ( | x | x + 2.0 ) ;
let max_new_tokens = max_tokens . or ( Some ( 100 ) ) ;
let logprobs = logprobs . unwrap_or ( false ) ;
let tool_prompt = tool_prompt . unwrap_or_default ( ) ;
let stop = stop . unwrap_or_default ( ) ;
2024-04-25 13:31:35 +00:00
// enable greedy only when temperature is 0
let ( do_sample , temperature ) = match temperature {
Some ( temperature ) if temperature = = 0.0 = > ( false , None ) ,
other = > ( true , other ) ,
} ;
2024-04-16 13:02:46 +00:00
2024-06-11 14:44:56 +00:00
// response_format and tools are mutually exclusive
if response_format . is_some ( ) & & tools . as_ref ( ) . is_some ( ) {
2024-07-08 14:03:59 +00:00
metrics ::counter! ( " tgi_request_failure " , " err " = > " validation " ) . increment ( 1 ) ;
2024-06-11 14:44:56 +00:00
return Err ( (
StatusCode ::UNPROCESSABLE_ENTITY ,
Json ( ErrorResponse {
error : " Grammar and tools are mutually exclusive " . to_string ( ) ,
error_type : " grammar and tools " . to_string ( ) ,
} ) ,
) ) ;
}
2024-04-16 13:02:46 +00:00
// extract tool grammar if present
let tool_grammar = match ToolGrammar ::apply ( tools , tool_choice ) {
Ok ( grammar ) = > grammar ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
Err ( err ) = > {
2024-07-08 14:03:59 +00:00
metrics ::counter! ( " tgi_request_failure " , " err " = > " validation " ) . increment ( 1 ) ;
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
tracing ::error! ( " {err} " ) ;
return Err ( (
StatusCode ::UNPROCESSABLE_ENTITY ,
Json ( ErrorResponse {
error : err . to_string ( ) ,
error_type : err . error_type ( ) . to_string ( ) ,
} ) ,
) ) ;
}
} ;
2024-06-11 14:44:56 +00:00
// determine the appropriate arguments for apply_chat_template
let tools_grammar_prompt = tool_grammar
2024-04-16 13:02:46 +00:00
. as_ref ( )
. map ( | t | ( GrammarType ::Json ( serde_json ::json! ( t ) ) , tool_prompt ) ) ;
2024-02-28 10:10:27 +00:00
2024-06-11 14:44:56 +00:00
let ( tools_grammar_prompt , grammar ) = match response_format {
Some ( response_format ) = > ( None , Some ( response_format ) ) ,
None = > (
tools_grammar_prompt . clone ( ) ,
tools_grammar_prompt . map ( | ( grammar , _ ) | grammar . clone ( ) ) ,
) ,
} ;
2024-02-28 10:10:27 +00:00
2024-04-16 13:02:46 +00:00
// apply chat template to flatten the request into a single input
2024-06-11 14:44:56 +00:00
let inputs = match infer . apply_chat_template ( messages , tools_grammar_prompt ) {
2024-04-16 13:02:46 +00:00
Ok ( inputs ) = > inputs ,
Err ( err ) = > {
2024-07-08 14:03:59 +00:00
metrics ::counter! ( " tgi_request_failure " , " err " = > " validation " ) . increment ( 1 ) ;
2024-04-16 13:02:46 +00:00
tracing ::error! ( " {err} " ) ;
return Err ( (
2024-02-28 10:10:27 +00:00
StatusCode ::UNPROCESSABLE_ENTITY ,
Json ( ErrorResponse {
2024-04-16 13:02:46 +00:00
error : err . to_string ( ) ,
error_type : err . error_type ( ) . to_string ( ) ,
2024-02-28 10:10:27 +00:00
} ) ,
2024-04-16 13:02:46 +00:00
) ) ;
}
2024-02-28 10:10:27 +00:00
} ;
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
// build the request passing some parameters
let generate_request = GenerateRequest {
inputs : inputs . to_string ( ) ,
parameters : GenerateParameters {
best_of : None ,
2024-04-25 13:31:35 +00:00
temperature ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
repetition_penalty ,
2024-02-08 17:41:25 +00:00
frequency_penalty : req . frequency_penalty ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
top_k : None ,
Disable `decoder_input_details` on OpenAI-compatible chat streaming, pass temp and top-k from API (#1470)
This PR makes some minor tweaks to the new OpenAI-compatible chat
endpoint #1427 in `GenerateParameters`:
- Disables `decoder_input_details` when streaming is enabled. This was
causing all streaming chat requests to fail before, since
[`decoder_input_details`==true is not enabled when streaming
tokens](https://github.com/huggingface/text-generation-inference/blob/98e5faff9daec6170cc2b0f963f2d73cf846b341/router/src/validation.rs#L406).
- Passes through `temperature` and `top_p` hyperparameters from the API
request to `GenerateParameters`
## Testing
```bash
curl localhost:8080/v1/chat/completions \
-X POST \
-d '{
"model": "",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
Should work correctly. Currently, most recent release from `main`
returns error:
```
data:{"error":"Input validation error: `decoder_input_details` == true is not supported when streaming tokens","error_type":"validation"}
```
It's my first time contributing to this project, so I could be missing
something. Would especially appreciate @drbh's eyes on this one
2024-01-23 14:55:05 +00:00
top_p : req . top_p ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
typical_p : None ,
2024-04-25 13:31:35 +00:00
do_sample ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
max_new_tokens ,
return_full_text : None ,
2024-03-01 17:08:11 +00:00
stop ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
truncate : None ,
watermark : false ,
details : true ,
Disable `decoder_input_details` on OpenAI-compatible chat streaming, pass temp and top-k from API (#1470)
This PR makes some minor tweaks to the new OpenAI-compatible chat
endpoint #1427 in `GenerateParameters`:
- Disables `decoder_input_details` when streaming is enabled. This was
causing all streaming chat requests to fail before, since
[`decoder_input_details`==true is not enabled when streaming
tokens](https://github.com/huggingface/text-generation-inference/blob/98e5faff9daec6170cc2b0f963f2d73cf846b341/router/src/validation.rs#L406).
- Passes through `temperature` and `top_p` hyperparameters from the API
request to `GenerateParameters`
## Testing
```bash
curl localhost:8080/v1/chat/completions \
-X POST \
-d '{
"model": "",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
Should work correctly. Currently, most recent release from `main`
returns error:
```
data:{"error":"Input validation error: `decoder_input_details` == true is not supported when streaming tokens","error_type":"validation"}
```
It's my first time contributing to this project, so I could be missing
something. Would especially appreciate @drbh's eyes on this one
2024-01-23 14:55:05 +00:00
decoder_input_details : ! stream ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
seed ,
fix: adjust logprob response logic (#1682)
This PR fixes a bug with `ChatCompletionLogprobs` where if
`top_tokens.len() == 0` empty results were returned.
```bash
curl http://localhost:3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"logprobs": true,
"messages": [
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": false,
"max_tokens": 20
}'
```
response
```json
{"id":"","object":"text_completion","created":1711588522,"model":"google/gemma-2b-it","system_fingerprint":"1.4.4-native","choices":[{"index":0,"message":{"role":"assistant","content":"**Deep learning** is a subset of machine learning (ML) that emphasizes the creation of **artificial"},"logprobs":{"content":[{"token":"**","logprob":-0.22558594,"top_logprobs":[]},{"token":"Deep","logprob":-0.0014877319,"top_logprobs":[]},{"token":" learning","logprob":-0.12695312,"top_logprobs":[]},{"token":"**","logprob":-0.055664062,"top_logprobs":[]},{"token":" is","logprob":-0.00090026855,"top_logprobs":[]},{"token":" a","logprob":-0.006072998,"top_logprobs":[]},{"token":" subset","logprob":-2.25,"top_logprobs":[]},{"token":" of","logprob":-0.00031089783,"top_logprobs":[]},{"token":" machine","logprob":-0.091308594,"top_logprobs":[]},{"token":" learning","logprob":-0.00002348423,"top_logprobs":[]},{"token":" (","logprob":-1.671875,"top_logprobs":[]},{"token":"ML","logprob":-0.00040626526,"top_logprobs":[]},{"token":")","logprob":-0.00016212463,"top_logprobs":[]},{"token":" that","logprob":-0.13769531,"top_logprobs":[]},{"token":" emphasizes","logprob":-4.03125,"top_logprobs":[]},{"token":" the","logprob":-0.2890625,"top_logprobs":[]},{"token":" creation","logprob":-3.109375,"top_logprobs":[]},{"token":" of","logprob":-0.00024032593,"top_logprobs":[]},{"token":" **","logprob":-1.2265625,"top_logprobs":[]},{"token":"artificial","logprob":-0.10546875,"top_logprobs":[]}]},"finish_reason":"length"}],"usage":{"prompt_tokens":15,"completion_tokens":20,"total_tokens":35}}
```
2024-03-28 16:01:46 +00:00
top_n_tokens : req . top_logprobs ,
2024-06-11 14:44:56 +00:00
grammar ,
2024-07-08 14:06:49 +00:00
adapter_id : model . filter ( | m | * m ! = " tgi " ) . map ( String ::from ) ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
} ,
} ;
// static values that will be returned in all cases
let model_id = info . model_id . clone ( ) ;
let system_fingerprint = format! ( " {} - {} " , info . version , info . docker_label . unwrap_or ( " native " ) ) ;
// switch on stream
if stream {
// pass this callback to the stream generation and build the required event structure
let on_message_callback = move | stream_token : StreamResponse | {
let event = Event ::default ( ) ;
let current_time = std ::time ::SystemTime ::now ( )
. duration_since ( std ::time ::UNIX_EPOCH )
. unwrap_or_else ( | _ | std ::time ::Duration ::from_secs ( 0 ) )
. as_secs ( ) ;
2024-02-08 17:41:25 +00:00
let logprobs = logprobs . then ( | | {
ChatCompletionLogprobs ::from ( ( stream_token . token . clone ( ) , stream_token . top_tokens ) )
} ) ;
2024-02-28 10:10:27 +00:00
// replace the content with the tool calls if grammar is present
let ( content , tool_calls ) = if tool_grammar . is_some ( ) {
( None , Some ( vec! [ stream_token . token . text ] ) )
} else {
2024-04-25 17:41:50 +00:00
let content = if ! stream_token . token . special {
Some ( stream_token . token . text )
} else {
None
} ;
( content , None )
2024-02-28 10:10:27 +00:00
} ;
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
event
2024-07-01 13:08:05 +00:00
. json_data ( CompletionType ::ChatCompletionChunk (
ChatCompletionChunk ::new (
model_id . clone ( ) ,
system_fingerprint . clone ( ) ,
content ,
tool_calls ,
current_time ,
logprobs ,
stream_token . details . map ( | d | d . finish_reason . to_string ( ) ) ,
) ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
) )
2024-05-06 11:48:11 +00:00
. unwrap_or_else ( | e | {
println! ( " Failed to serialize ChatCompletionChunk: {:?} " , e ) ;
Event ::default ( )
} )
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
} ;
2024-01-29 11:30:50 +00:00
let ( headers , response_stream ) = generate_stream_internal (
infer ,
compute_type ,
Json ( generate_request ) ,
on_message_callback ,
2024-04-17 08:41:12 +00:00
span ,
2024-01-29 11:30:50 +00:00
)
. await ;
2024-07-11 14:42:58 +00:00
let response_stream = response_stream . chain ( futures ::stream ::once ( async {
Ok ( Event ::default ( ) . data ( " [DONE] " ) )
} ) ) ;
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
let sse = Sse ::new ( response_stream ) . keep_alive ( KeepAlive ::default ( ) ) ;
Ok ( ( headers , sse ) . into_response ( ) )
} else {
2024-04-17 08:41:12 +00:00
let ( headers , Json ( generation ) ) =
generate_internal ( Extension ( infer ) , compute_type , Json ( generate_request ) , span ) . await ? ;
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
let current_time = std ::time ::SystemTime ::now ( )
. duration_since ( std ::time ::UNIX_EPOCH )
. unwrap_or_else ( | _ | std ::time ::Duration ::from_secs ( 0 ) )
. as_secs ( ) ;
2024-02-28 10:10:27 +00:00
let ( tool_calls , output ) = if tool_grammar . is_some ( ) {
2024-07-19 15:12:02 +00:00
let gen_text_value : Value = serde_json ::from_str ( & generation . generated_text )
. map_err ( | e | InferError ::ToolError ( e . to_string ( ) ) ) ? ;
let function = gen_text_value . get ( " function " ) . ok_or ( InferError ::ToolError (
" No function found in generated text " . to_string ( ) ,
) ) ? ;
let name = function
. get ( " _name " )
. and_then ( Value ::as_str )
. ok_or ( InferError ::ToolError (
" No _name found in generated text " . to_string ( ) ,
) ) ?
. to_string ( ) ;
let mut arguments = function . clone ( ) ;
if let Value ::Object ( ref mut props ) = arguments {
props . remove ( " _name " ) ;
}
2024-03-21 16:45:56 +00:00
let tool_calls = vec! [ ToolCall {
2024-05-16 08:17:00 +00:00
id : " 0 " . to_string ( ) ,
2024-02-28 10:10:27 +00:00
r#type : " function " . to_string ( ) ,
function : FunctionDefinition {
description : None ,
2024-07-19 15:12:02 +00:00
name ,
arguments ,
2024-02-28 10:10:27 +00:00
} ,
2024-03-21 16:45:56 +00:00
} ] ;
( Some ( tool_calls ) , None )
2024-02-28 10:10:27 +00:00
} else {
( None , Some ( generation . generated_text ) )
} ;
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
// build the complete response object with the full text
2024-07-01 13:08:05 +00:00
let response = CompletionType ::ChatCompletion ( ChatCompletion ::new (
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
model_id ,
system_fingerprint ,
2024-02-28 10:10:27 +00:00
output ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
current_time ,
generation . details . unwrap ( ) ,
logprobs ,
2024-02-28 10:10:27 +00:00
tool_calls ,
2024-07-01 13:08:05 +00:00
) ) ;
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
// wrap generation inside a Vec to match api-inference
Ok ( ( headers , Json ( response ) ) . into_response ( ) )
}
2023-01-31 16:04:00 +00:00
}
2024-02-20 13:04:51 +00:00
/// Generate tokens from Vertex request
#[ utoipa::path(
2024-06-04 13:56:56 +00:00
post ,
tag = " Text Generation Inference " ,
path = " /vertex " ,
request_body = VertexRequest ,
responses (
( status = 200 , description = " Generated Text " , body = VertexResponse ) ,
( status = 424 , description = " Generation Error " , body = ErrorResponse ,
example = json ! ( { " error " : " Request failed during generation " } ) ) ,
( status = 429 , description = " Model is overloaded " , body = ErrorResponse ,
example = json ! ( { " error " : " Model is overloaded " } ) ) ,
( status = 422 , description = " Input validation error " , body = ErrorResponse ,
example = json ! ( { " error " : " Input validation error " } ) ) ,
( status = 500 , description = " Incomplete generation " , body = ErrorResponse ,
example = json ! ( { " error " : " Incomplete generation " } ) ) ,
)
) ]
2024-02-20 13:04:51 +00:00
#[ instrument(
skip_all ,
fields (
total_time ,
validation_time ,
queue_time ,
inference_time ,
time_per_token ,
seed ,
)
) ]
async fn vertex_compatibility (
Extension ( infer ) : Extension < Infer > ,
Extension ( compute_type ) : Extension < ComputeType > ,
Json ( req ) : Json < VertexRequest > ,
) -> Result < Response , ( StatusCode , Json < ErrorResponse > ) > {
2024-04-17 08:41:12 +00:00
let span = tracing ::Span ::current ( ) ;
2024-07-08 14:03:59 +00:00
metrics ::counter! ( " tgi_request_count " ) . increment ( 1 ) ;
2024-02-20 13:04:51 +00:00
// check that theres at least one instance
if req . instances . is_empty ( ) {
return Err ( (
StatusCode ::UNPROCESSABLE_ENTITY ,
Json ( ErrorResponse {
error : " Input validation error " . to_string ( ) ,
error_type : " Input validation error " . to_string ( ) ,
} ) ,
) ) ;
}
// Process all instances
let predictions = req
. instances
. iter ( )
. map ( | instance | {
let generate_request = GenerateRequest {
inputs : instance . inputs . clone ( ) ,
parameters : GenerateParameters {
do_sample : true ,
max_new_tokens : instance . parameters . as_ref ( ) . and_then ( | p | p . max_new_tokens ) ,
seed : instance . parameters . as_ref ( ) . and_then ( | p | p . seed ) ,
details : true ,
decoder_input_details : true ,
.. Default ::default ( )
} ,
} ;
async {
2024-04-17 08:41:12 +00:00
generate_internal (
2024-02-20 13:04:51 +00:00
Extension ( infer . clone ( ) ) ,
2024-04-17 08:41:12 +00:00
compute_type . clone ( ) ,
2024-02-20 13:04:51 +00:00
Json ( generate_request ) ,
2024-04-17 08:41:12 +00:00
span . clone ( ) ,
2024-02-20 13:04:51 +00:00
)
. await
. map ( | ( _ , Json ( generation ) ) | generation . generated_text )
. map_err ( | _ | {
(
StatusCode ::INTERNAL_SERVER_ERROR ,
Json ( ErrorResponse {
error : " Incomplete generation " . into ( ) ,
error_type : " Incomplete generation " . into ( ) ,
} ) ,
)
} )
}
} )
. collect ::< FuturesUnordered < _ > > ( )
. try_collect ::< Vec < _ > > ( )
. await ? ;
let response = VertexResponse { predictions } ;
Ok ( ( HeaderMap ::new ( ) , Json ( response ) ) . into_response ( ) )
}
Add a new `/tokenize` route to get the tokenized input (#1471)
# What does this PR do?
Ideally this is done client side, but this is a recurring request,
therefore we implemented it.
- Runs only if rust tokenizer is present (not encumbering the main
inference pipeline is important).
- Returns simple results, ID, text (gotten with offsets from the
original string) and offsets (so users can do things like highlighting
text).
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
2024-01-25 13:19:03 +00:00
/// Tokenize inputs
#[ utoipa::path(
2024-06-04 13:56:56 +00:00
post ,
tag = " Text Generation Inference " ,
path = " /tokenize " ,
request_body = GenerateRequest ,
responses (
( status = 200 , description = " Tokenized ids " , body = TokenizeResponse ) ,
( status = 404 , description = " No tokenizer found " , body = ErrorResponse ,
example = json ! ( { " error " : " No fast tokenizer available " } ) ) ,
)
) ]
Add a new `/tokenize` route to get the tokenized input (#1471)
# What does this PR do?
Ideally this is done client side, but this is a recurring request,
therefore we implemented it.
- Runs only if rust tokenizer is present (not encumbering the main
inference pipeline is important).
- Returns simple results, ID, text (gotten with offsets from the
original string) and offsets (so users can do things like highlighting
text).
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
2024-01-25 13:19:03 +00:00
#[ instrument(skip_all) ]
async fn tokenize (
Extension ( infer ) : Extension < Infer > ,
Json ( req ) : Json < GenerateRequest > ,
2024-01-26 15:07:31 +00:00
) -> Result < Json < TokenizeResponse > , ( StatusCode , Json < ErrorResponse > ) > {
Add a new `/tokenize` route to get the tokenized input (#1471)
# What does this PR do?
Ideally this is done client side, but this is a recurring request,
therefore we implemented it.
- Runs only if rust tokenizer is present (not encumbering the main
inference pipeline is important).
- Returns simple results, ID, text (gotten with offsets from the
original string) and offsets (so users can do things like highlighting
text).
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
2024-01-25 13:19:03 +00:00
let input = req . inputs . clone ( ) ;
let encoding = infer . tokenize ( req ) . await ? ;
if let Some ( encoding ) = encoding {
let tokens : Vec < SimpleToken > = encoding
. get_ids ( )
. iter ( )
. zip ( encoding . get_offsets ( ) )
. map ( | ( & id , & ( start , stop ) ) | {
2024-05-28 14:55:36 +00:00
let text : String =
String ::from_utf8_lossy ( & input . as_bytes ( ) [ start .. stop ] ) . to_string ( ) ;
Add a new `/tokenize` route to get the tokenized input (#1471)
# What does this PR do?
Ideally this is done client side, but this is a recurring request,
therefore we implemented it.
- Runs only if rust tokenizer is present (not encumbering the main
inference pipeline is important).
- Returns simple results, ID, text (gotten with offsets from the
original string) and offsets (so users can do things like highlighting
text).
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
2024-01-25 13:19:03 +00:00
SimpleToken {
id ,
text ,
start ,
stop ,
}
} )
. collect ( ) ;
2024-01-26 15:07:31 +00:00
Ok ( Json ( TokenizeResponse ( tokens ) ) )
Add a new `/tokenize` route to get the tokenized input (#1471)
# What does this PR do?
Ideally this is done client side, but this is a recurring request,
therefore we implemented it.
- Runs only if rust tokenizer is present (not encumbering the main
inference pipeline is important).
- Returns simple results, ID, text (gotten with offsets from the
original string) and offsets (so users can do things like highlighting
text).
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
2024-01-25 13:19:03 +00:00
} else {
Err ( (
StatusCode ::NOT_FOUND ,
Json ( ErrorResponse {
error : " No fast tokenizer or tokenizer.json for this model " . to_string ( ) ,
error_type : " no fast tokenizer " . to_string ( ) ,
} ) ,
) )
}
}
2023-02-16 16:18:53 +00:00
/// Prometheus metrics scrape endpoint
#[ utoipa::path(
2024-07-03 07:53:35 +00:00
get ,
tag = " Text Generation Inference " ,
path = " /metrics " ,
responses ( ( status = 200 , description = " Prometheus Metrics " , body = String ) )
2023-02-16 16:18:53 +00:00
) ]
async fn metrics ( prom_handle : Extension < PrometheusHandle > ) -> String {
prom_handle . render ( )
}
2024-01-29 10:20:08 +00:00
#[ derive(Clone, Debug) ]
pub ( crate ) struct ComputeType ( String ) ;
2024-07-31 08:33:10 +00:00
// OpenAPI documentation
#[ derive(OpenApi) ]
#[ openapi(
paths (
health ,
get_model_info ,
compat_generate ,
generate ,
generate_stream ,
chat_completions ,
completions ,
tokenize ,
metrics ,
) ,
components (
schemas (
Info ,
CompatGenerateRequest ,
GenerateRequest ,
GrammarType ,
ChatRequest ,
Message ,
MessageContent ,
MessageChunk ,
Url ,
FunctionName ,
OutputMessage ,
TextMessage ,
ToolCallMessage ,
ToolCallDelta ,
ChatCompletionComplete ,
ChatCompletionChoice ,
ChatCompletionDelta ,
ChatCompletionChunk ,
ChatCompletionLogprob ,
ChatCompletionLogprobs ,
ChatCompletionTopLogprob ,
ChatCompletion ,
CompletionRequest ,
CompletionComplete ,
Chunk ,
Completion ,
CompletionFinal ,
Prompt ,
GenerateParameters ,
PrefillToken ,
Token ,
GenerateResponse ,
TokenizeResponse ,
SimpleToken ,
BestOfSequence ,
Details ,
FinishReason ,
StreamResponse ,
StreamDetails ,
ErrorResponse ,
GrammarType ,
Usage ,
DeltaToolCall ,
ToolType ,
Tool ,
ToolCall ,
Function ,
FunctionDefinition ,
ToolChoice ,
)
) ,
tags (
( name = " Text Generation Inference " , description = " Hugging Face Text Generation Inference API " )
) ,
info (
title = " Text Generation Inference " ,
license (
name = " Apache 2.0 " ,
url = " https://www.apache.org/licenses/LICENSE-2.0 "
)
)
) ]
pub struct ApiDoc ;
pub fn schema ( ) -> ApiDoc {
ApiDoc
}
2022-10-18 13:19:03 +00:00
/// Serving method
#[ allow(clippy::too_many_arguments) ]
pub async fn run (
2024-07-31 08:33:10 +00:00
backend : impl Backend + Send + Sync + 'static ,
2022-10-18 13:19:03 +00:00
max_concurrent_requests : usize ,
2023-03-09 14:30:54 +00:00
max_best_of : usize ,
2023-02-15 20:56:59 +00:00
max_stop_sequences : usize ,
2023-08-28 09:43:47 +00:00
max_top_n_tokens : u32 ,
2024-06-04 13:56:56 +00:00
max_input_tokens : usize ,
2023-02-15 20:56:59 +00:00
max_total_tokens : usize ,
2022-10-18 13:19:03 +00:00
validation_workers : usize ,
2024-07-29 09:14:17 +00:00
api_key : Option < String > ,
2024-07-31 08:33:10 +00:00
tokenizer_name : String ,
tokenizer_config_path : Option < String > ,
revision : Option < String > ,
hostname : String ,
port : u16 ,
cors_allow_origin : Option < Vec < String > > ,
2023-06-16 14:25:11 +00:00
ngrok : bool ,
2024-05-28 12:52:17 +00:00
_ngrok_authtoken : Option < String > ,
_ngrok_edge : Option < String > ,
2024-01-24 16:41:28 +00:00
messages_api_enabled : bool ,
2024-07-31 08:33:10 +00:00
disable_grammar_support : bool ,
2024-04-17 08:41:12 +00:00
max_client_batch_size : usize ,
2024-07-31 08:33:10 +00:00
disable_usage_stats : bool ,
disable_crash_reports : bool ,
2024-06-04 13:56:56 +00:00
) -> Result < ( ) , WebServerError > {
2024-07-31 08:33:10 +00:00
// CORS allowed origins
// map to go inside the option and then map to parse from String to HeaderValue
// Finally, convert to AllowOrigin
let allow_origin : Option < AllowOrigin > = cors_allow_origin . map ( | cors_allow_origin | {
AllowOrigin ::list (
cors_allow_origin
. iter ( )
. map ( | origin | origin . parse ::< HeaderValue > ( ) . unwrap ( ) ) ,
)
} ) ;
2023-02-03 11:43:37 +00:00
2024-07-31 08:33:10 +00:00
// Parse Huggingface hub token
let authorization_token = std ::env ::var ( " HF_TOKEN " )
. or_else ( | _ | std ::env ::var ( " HUGGING_FACE_HUB_TOKEN " ) )
. ok ( ) ;
2024-06-04 13:56:56 +00:00
2024-07-31 08:33:10 +00:00
// Tokenizer instance
// This will only be used to validate payloads
let local_path = Path ::new ( & tokenizer_name ) ;
// Shared API builder initialization
let api_builder = | | {
let mut builder = ApiBuilder ::new ( )
. with_progress ( false )
. with_token ( authorization_token ) ;
if let Ok ( cache_dir ) = std ::env ::var ( " HUGGINGFACE_HUB_CACHE " ) {
builder = builder . with_cache_dir ( cache_dir . into ( ) ) ;
}
builder
} ;
// Decide if we need to use the API based on the revision and local path
let use_api = revision . is_some ( ) | | ! local_path . exists ( ) | | ! local_path . is_dir ( ) ;
// Initialize API if needed
#[ derive(Clone) ]
enum Type {
Api ( Api ) ,
Cache ( Cache ) ,
None ,
}
let api = if use_api {
if std ::env ::var ( " HF_HUB_OFFLINE " ) = = Ok ( " 1 " . to_string ( ) ) {
let cache = std ::env ::var ( " HUGGINGFACE_HUB_CACHE " )
. map_err ( | _ | ( ) )
. map ( | cache_dir | Cache ::new ( cache_dir . into ( ) ) )
. unwrap_or_else ( | _ | Cache ::default ( ) ) ;
tracing ::warn! ( " Offline mode active using cache defaults " ) ;
Type ::Cache ( cache )
} else {
tracing ::info! ( " Using the Hugging Face API " ) ;
match api_builder ( ) . build ( ) {
Ok ( api ) = > Type ::Api ( api ) ,
Err ( _ ) = > {
tracing ::warn! ( " Unable to build the Hugging Face API " ) ;
Type ::None
2024-06-04 13:56:56 +00:00
}
2024-07-31 08:33:10 +00:00
}
}
} else {
Type ::None
} ;
// Load tokenizer and model info
let (
tokenizer_filename ,
config_filename ,
tokenizer_config_filename ,
preprocessor_config_filename ,
processor_config_filename ,
model_info ,
) = match api {
Type ::None = > (
Some ( local_path . join ( " tokenizer.json " ) ) ,
Some ( local_path . join ( " config.json " ) ) ,
Some ( local_path . join ( " tokenizer_config.json " ) ) ,
Some ( local_path . join ( " preprocessor_config.json " ) ) ,
Some ( local_path . join ( " processor_config.json " ) ) ,
None ,
) ,
Type ::Api ( api ) = > {
let api_repo = api . repo ( Repo ::with_revision (
tokenizer_name . to_string ( ) ,
RepoType ::Model ,
revision . clone ( ) . unwrap_or_else ( | | " main " . to_string ( ) ) ,
) ) ;
let tokenizer_filename = match api_repo . get ( " tokenizer.json " ) . await {
Ok ( tokenizer_filename ) = > Some ( tokenizer_filename ) ,
Err ( _ ) = > get_base_tokenizer ( & api , & api_repo ) . await ,
} ;
let config_filename = api_repo . get ( " config.json " ) . await . ok ( ) ;
let tokenizer_config_filename = api_repo . get ( " tokenizer_config.json " ) . await . ok ( ) ;
let preprocessor_config_filename = api_repo . get ( " preprocessor_config.json " ) . await . ok ( ) ;
let processor_config_filename = api_repo . get ( " processor_config.json " ) . await . ok ( ) ;
2024-06-04 13:56:56 +00:00
2024-07-31 08:33:10 +00:00
let model_info = if let Some ( model_info ) = get_hub_model_info ( & api_repo ) . await {
Some ( model_info )
} else {
tracing ::warn! ( " Could not retrieve model info from the Hugging Face hub. " ) ;
None
} ;
(
tokenizer_filename ,
config_filename ,
tokenizer_config_filename ,
preprocessor_config_filename ,
processor_config_filename ,
model_info ,
)
}
Type ::Cache ( cache ) = > {
let repo = cache . repo ( Repo ::with_revision (
tokenizer_name . to_string ( ) ,
RepoType ::Model ,
revision . clone ( ) . unwrap_or_else ( | | " main " . to_string ( ) ) ,
) ) ;
(
repo . get ( " tokenizer.json " ) ,
repo . get ( " config.json " ) ,
repo . get ( " tokenizer_config.json " ) ,
repo . get ( " preprocessor_config.json " ) ,
repo . get ( " processor_config.json " ) ,
None ,
)
}
} ;
// Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
let tokenizer_config : Option < HubTokenizerConfig > = if let Some ( filename ) = tokenizer_config_path
{
HubTokenizerConfig ::from_file ( filename )
} else {
tokenizer_config_filename . and_then ( HubTokenizerConfig ::from_file )
} ;
let tokenizer_config = tokenizer_config . unwrap_or_else ( | | {
tracing ::warn! ( " Could not find tokenizer config locally and no API specified " ) ;
HubTokenizerConfig ::default ( )
} ) ;
let tokenizer : Option < Tokenizer > = tokenizer_filename . and_then ( | filename | {
let mut tokenizer = Tokenizer ::from_file ( filename ) . ok ( ) ;
if let Some ( tokenizer ) = & mut tokenizer {
if let Some ( class ) = & tokenizer_config . tokenizer_class {
if class = = " LlamaTokenizer " | | class = = " LlamaTokenizerFast " {
if let Ok ( post_processor ) = create_post_processor ( tokenizer , & tokenizer_config ) {
tracing ::info! ( " Overriding LlamaTokenizer with TemplateProcessing to follow python override defined in https://github.com/huggingface/transformers/blob/4aa17d00690b7f82c95bb2949ea57e22c35b4336/src/transformers/models/llama/tokenization_llama_fast.py#L203-L205 " ) ;
tokenizer . with_post_processor ( post_processor ) ;
}
2024-06-04 13:56:56 +00:00
}
}
2024-07-31 08:33:10 +00:00
}
tokenizer
} ) ;
let config : Option < Config > = config_filename . and_then ( | filename | {
std ::fs ::read_to_string ( filename )
. ok ( )
. as_ref ( )
. and_then ( | c | {
let config : Result < Config , _ > = serde_json ::from_str ( c ) ;
if let Err ( err ) = & config {
tracing ::warn! ( " Could not parse config {err:?} " ) ;
}
config . ok ( )
} )
} ) ;
let model_info = model_info . unwrap_or_else ( | | HubModelInfo {
model_id : tokenizer_name . to_string ( ) ,
sha : None ,
pipeline_tag : None ,
} ) ;
let processor_config = processor_config_filename
. and_then ( HubProcessorConfig ::from_file )
. unwrap_or_default ( ) ;
let preprocessor_config : Option < HubPreprocessorConfig > =
preprocessor_config_filename . and_then ( HubPreprocessorConfig ::from_file ) ;
tracing ::info! ( " Using config {config:?} " ) ;
if tokenizer . is_none ( ) {
tracing ::warn! ( " Could not find a fast tokenizer implementation for {tokenizer_name} " ) ;
tracing ::warn! ( " Rust input length validation and truncation is disabled " ) ;
}
2024-06-04 13:56:56 +00:00
2024-07-31 08:33:10 +00:00
// Only send usage stats when TGI is run in container and the function returns Some
let is_container = matches! ( usage_stats ::is_container ( ) , Ok ( true ) ) ;
let user_agent = if ! disable_usage_stats & & is_container {
let reduced_args = usage_stats ::Args ::new (
config . clone ( ) ,
tokenizer_config . tokenizer_class . clone ( ) ,
max_concurrent_requests ,
max_best_of ,
max_stop_sequences ,
max_top_n_tokens ,
max_input_tokens ,
max_total_tokens ,
// waiting_served_ratio,
// max_batch_prefill_tokens,
// max_batch_total_tokens,
// max_waiting_tokens,
// max_batch_size,
revision . clone ( ) ,
validation_workers ,
messages_api_enabled ,
disable_grammar_support ,
max_client_batch_size ,
disable_usage_stats ,
disable_crash_reports ,
) ;
Some ( usage_stats ::UserAgent ::new ( reduced_args ) )
} else {
None
} ;
if let Some ( ref ua ) = user_agent {
let start_event =
usage_stats ::UsageStatsEvent ::new ( ua . clone ( ) , usage_stats ::EventType ::Start , None ) ;
tokio ::spawn ( async move {
start_event . send ( ) . await ;
} ) ;
} ;
let compat_return_full_text = match & model_info . pipeline_tag {
None = > {
tracing ::warn! ( " no pipeline tag found for model {tokenizer_name} " ) ;
true
}
Some ( pipeline_tag ) = > pipeline_tag . as_str ( ) = = " text-generation " ,
} ;
let result = start (
backend ,
max_concurrent_requests ,
max_best_of ,
max_stop_sequences ,
max_top_n_tokens ,
max_input_tokens ,
max_total_tokens ,
validation_workers ,
api_key ,
config ,
( tokenizer , tokenizer_config ) ,
( preprocessor_config , processor_config ) ,
hostname ,
port ,
ngrok ,
_ngrok_authtoken ,
_ngrok_edge ,
messages_api_enabled ,
disable_grammar_support ,
max_client_batch_size ,
model_info ,
compat_return_full_text ,
allow_origin ,
)
. await ;
if let Some ( ua ) = user_agent {
match result {
Ok ( _ ) = > {
let stop_event = usage_stats ::UsageStatsEvent ::new (
ua . clone ( ) ,
usage_stats ::EventType ::Stop ,
None ,
) ;
stop_event . send ( ) . await ;
Ok ( ( ) )
2024-06-04 13:56:56 +00:00
}
2024-07-31 08:33:10 +00:00
Err ( e ) = > {
if ! disable_crash_reports {
let error_event = usage_stats ::UsageStatsEvent ::new (
ua . clone ( ) ,
usage_stats ::EventType ::Error ,
Some ( e . to_string ( ) ) ,
) ;
error_event . send ( ) . await ;
} else {
let unknow_error_event = usage_stats ::UsageStatsEvent ::new (
ua . clone ( ) ,
usage_stats ::EventType ::Error ,
Some ( " unknow_error " . to_string ( ) ) ,
) ;
unknow_error_event . send ( ) . await ;
}
Err ( e )
2024-06-04 13:56:56 +00:00
}
}
2024-07-31 08:33:10 +00:00
} else {
result
}
}
#[ allow(clippy::too_many_arguments) ]
async fn start (
backend : impl Backend + Send + Sync + 'static ,
max_concurrent_requests : usize ,
max_best_of : usize ,
max_stop_sequences : usize ,
max_top_n_tokens : u32 ,
max_input_tokens : usize ,
max_total_tokens : usize ,
validation_workers : usize ,
api_key : Option < String > ,
config : Option < Config > ,
( tokenizer , tokenizer_config ) : ( Option < Tokenizer > , HubTokenizerConfig ) ,
( preprocessor_config , processor_config ) : ( Option < HubPreprocessorConfig > , HubProcessorConfig ) ,
hostname : String ,
port : u16 ,
ngrok : bool ,
_ngrok_authtoken : Option < String > ,
_ngrok_edge : Option < String > ,
messages_api_enabled : bool ,
disable_grammar_support : bool ,
max_client_batch_size : usize ,
model_info : HubModelInfo ,
compat_return_full_text : bool ,
allow_origin : Option < AllowOrigin > ,
) -> Result < ( ) , WebServerError > {
// Determine the server port based on the feature and environment variable.
let port = if cfg! ( feature = " google " ) {
std ::env ::var ( " AIP_HTTP_PORT " )
. map ( | aip_http_port | aip_http_port . parse ::< u16 > ( ) . unwrap_or ( port ) )
. unwrap_or ( port )
} else {
port
} ;
let addr = match hostname . parse ( ) {
Ok ( ip ) = > SocketAddr ::new ( ip , port ) ,
Err ( _ ) = > {
tracing ::warn! ( " Invalid hostname, defaulting to 0.0.0.0 " ) ;
SocketAddr ::new ( IpAddr ::V4 ( Ipv4Addr ::new ( 0 , 0 , 0 , 0 ) ) , port )
}
2024-06-04 13:56:56 +00:00
} ;
2024-07-31 08:33:10 +00:00
// Create state
2023-02-15 20:56:59 +00:00
let validation = Validation ::new (
validation_workers ,
tokenizer ,
Adding Llava-Next (Llava 1.6) with full support. (#1709)
# What does this PR do?
- Changed all models to extract `embed_tokens` in order to enable llava
to separately call the embeddings and the core model layers.
- Added VlmCausalLM to inherit from FlashMistral in order to be
maximally supported. The only added logics sits on top and parses images
into pixel values, preallocates input_ids space for the image
embeddings, and passes them for the model.
- Added Clip for the vision tower.
- Didn't add flash for the vision tower since there's no padding anyway.
- Added heuristic (potentially incomplete) to calculate number of
features *before* calculating the clip patches (allows for easier logic
reuse of the LLM under the hood).
Still needs to be done:
- [x] Implement the image parsing in the controller side, to avoid
downloading n times per TP shard and also refusing requests too large
early and avoid issues where the truncation actually truncates the
image.
- [ ] Make sure it works with quantization properly.
- [x] Make sure it works with TP>1
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
2024-04-09 19:32:00 +00:00
config ,
2024-06-27 13:54:35 +00:00
preprocessor_config ,
2023-03-09 14:30:54 +00:00
max_best_of ,
2023-02-15 20:56:59 +00:00
max_stop_sequences ,
2023-08-28 09:43:47 +00:00
max_top_n_tokens ,
2024-06-04 13:56:56 +00:00
max_input_tokens ,
2023-02-15 20:56:59 +00:00
max_total_tokens ,
2024-07-31 08:33:10 +00:00
disable_grammar_support ,
2023-02-15 20:56:59 +00:00
) ;
2024-06-04 13:56:56 +00:00
2023-01-31 16:04:00 +00:00
let infer = Infer ::new (
2024-07-31 08:33:10 +00:00
backend ,
2022-10-18 13:19:03 +00:00
validation ,
2023-01-31 16:04:00 +00:00
max_concurrent_requests ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
tokenizer_config ,
2024-05-27 14:03:16 +00:00
processor_config ,
2023-01-31 16:04:00 +00:00
) ;
2022-10-18 13:19:03 +00:00
2023-04-09 18:13:28 +00:00
// Duration buckets
let duration_matcher = Matcher ::Suffix ( String ::from ( " duration " ) ) ;
let n_duration_buckets = 35 ;
let mut duration_buckets = Vec ::with_capacity ( n_duration_buckets ) ;
// Minimum duration in seconds
let mut value = 0.0001 ;
for _ in 0 .. n_duration_buckets {
// geometric sequence
value * = 1.5 ;
duration_buckets . push ( value ) ;
}
// Input Length buckets
let input_length_matcher = Matcher ::Full ( String ::from ( " tgi_request_input_length " ) ) ;
let input_length_buckets : Vec < f64 > = ( 0 .. 100 )
2024-06-04 13:56:56 +00:00
. map ( | x | ( max_input_tokens as f64 / 100.0 ) * ( x + 1 ) as f64 )
2023-04-09 18:13:28 +00:00
. collect ( ) ;
// Generated tokens buckets
let generated_tokens_matcher = Matcher ::Full ( String ::from ( " tgi_request_generated_tokens " ) ) ;
let generated_tokens_buckets : Vec < f64 > = ( 0 .. 100 )
. map ( | x | ( max_total_tokens as f64 / 100.0 ) * ( x + 1 ) as f64 )
. collect ( ) ;
// Input Length buckets
let max_new_tokens_matcher = Matcher ::Full ( String ::from ( " tgi_request_max_new_tokens " ) ) ;
let max_new_tokens_buckets : Vec < f64 > = ( 0 .. 100 )
. map ( | x | ( max_total_tokens as f64 / 100.0 ) * ( x + 1 ) as f64 )
. collect ( ) ;
// Batch size buckets
let batch_size_matcher = Matcher ::Full ( String ::from ( " tgi_batch_next_size " ) ) ;
2023-04-24 15:59:00 +00:00
let batch_size_buckets : Vec < f64 > = ( 0 .. 1024 ) . map ( | x | ( x + 1 ) as f64 ) . collect ( ) ;
2023-12-11 13:43:40 +00:00
// Speculated tokens buckets
2024-07-31 08:33:10 +00:00
// let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
// let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
2023-04-09 18:13:28 +00:00
2023-02-16 16:18:53 +00:00
// Prometheus handler
2023-04-09 18:13:28 +00:00
let builder = PrometheusBuilder ::new ( )
. set_buckets_for_metric ( duration_matcher , & duration_buckets )
. unwrap ( )
. set_buckets_for_metric ( input_length_matcher , & input_length_buckets )
. unwrap ( )
. set_buckets_for_metric ( generated_tokens_matcher , & generated_tokens_buckets )
. unwrap ( )
. set_buckets_for_metric ( max_new_tokens_matcher , & max_new_tokens_buckets )
. unwrap ( )
. set_buckets_for_metric ( batch_size_matcher , & batch_size_buckets )
. unwrap ( ) ;
2024-07-31 08:33:10 +00:00
// .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
// .unwrap();
2023-02-16 16:18:53 +00:00
let prom_handle = builder
. install_recorder ( )
. expect ( " failed to install metrics recorder " ) ;
2023-02-17 17:22:00 +00:00
// CORS layer
let allow_origin = allow_origin . unwrap_or ( AllowOrigin ::any ( ) ) ;
let cors_layer = CorsLayer ::new ( )
. allow_methods ( [ Method ::GET , Method ::POST ] )
. allow_headers ( [ http ::header ::CONTENT_TYPE ] )
. allow_origin ( allow_origin ) ;
2023-04-25 11:11:18 +00:00
// Endpoint info
let info = Info {
model_id : model_info . model_id ,
model_sha : model_info . sha ,
2024-07-31 08:33:10 +00:00
// model_dtype: shard_info.dtype,
// model_device_type: shard_info.device_type,
2023-04-25 11:11:18 +00:00
model_pipeline_tag : model_info . pipeline_tag ,
max_concurrent_requests ,
max_best_of ,
max_stop_sequences ,
2024-06-04 13:56:56 +00:00
max_input_tokens ,
2023-04-25 11:11:18 +00:00
max_total_tokens ,
2024-07-31 08:33:10 +00:00
// waiting_served_ratio,
// max_batch_total_tokens,
// max_waiting_tokens,
// max_batch_size,
2023-04-25 11:11:18 +00:00
validation_workers ,
2024-04-17 08:41:12 +00:00
max_client_batch_size ,
2024-05-03 14:39:04 +00:00
router : env ! ( " CARGO_PKG_NAME " ) ,
2023-04-25 11:11:18 +00:00
version : env ! ( " CARGO_PKG_VERSION " ) ,
sha : option_env ! ( " VERGEN_GIT_SHA " ) ,
2023-05-02 13:43:19 +00:00
docker_label : option_env ! ( " DOCKER_LABEL " ) ,
2023-04-25 11:11:18 +00:00
} ;
2024-06-13 16:51:51 +00:00
#[ allow(unused_mut) ] // mut is needed for conditional compilation
let mut doc = ApiDoc ::openapi ( ) ;
#[ cfg(feature = " google " ) ]
{
use crate ::VertexInstance ;
#[ derive(OpenApi) ]
#[ openapi(
paths ( vertex_compatibility ) ,
components ( schemas ( VertexInstance , VertexRequest , VertexResponse ) )
) ]
struct VertexApiDoc ;
doc . merge ( VertexApiDoc ::openapi ( ) ) ;
}
#[ cfg(feature = " kserve " ) ]
{
use crate ::kserve ::{
InferenceOutput , InferenceRequest , LiveResponse , MetadataServerResponse , OutputChunk ,
ReadyResponse ,
} ;
use crate ::kserve ::{
__path_kerve_server_metadata , __path_kserve_health_live , __path_kserve_health_ready ,
__path_kserve_model_infer , __path_kserve_model_metadata ,
__path_kserve_model_metadata_ready ,
} ;
#[ derive(OpenApi) ]
#[ openapi(
paths (
kserve_health_live ,
kserve_health_ready ,
kerve_server_metadata ,
kserve_model_metadata ,
kserve_model_metadata_ready ,
2024-06-25 23:30:10 +00:00
kserve_model_infer ,
2024-06-13 16:51:51 +00:00
) ,
components ( schemas (
InferenceOutput ,
InferenceRequest ,
LiveResponse ,
MetadataServerResponse ,
OutputChunk ,
ReadyResponse ,
) )
) ]
struct KServeApiDoc ;
doc . merge ( KServeApiDoc ::openapi ( ) ) ;
}
2024-02-20 13:04:51 +00:00
2024-01-22 15:29:01 +00:00
// Configure Swagger UI
2024-02-20 13:04:51 +00:00
let swagger_ui = SwaggerUi ::new ( " /docs " ) . url ( " /api-doc/openapi.json " , doc ) ;
2024-01-22 15:29:01 +00:00
// Define base and health routes
2024-07-29 09:14:17 +00:00
let mut base_routes = Router ::new ( )
2023-02-27 13:56:58 +00:00
. route ( " / " , post ( compat_generate ) )
2022-10-14 13:56:21 +00:00
. route ( " /generate " , post ( generate ) )
2023-01-31 16:04:00 +00:00
. route ( " /generate_stream " , post ( generate_stream ) )
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
. route ( " /v1/chat/completions " , post ( chat_completions ) )
2024-02-29 15:44:20 +00:00
. route ( " /v1/completions " , post ( completions ) )
2024-02-20 13:04:51 +00:00
. route ( " /vertex " , post ( vertex_compatibility ) )
2024-07-29 09:14:17 +00:00
. route ( " /tokenize " , post ( tokenize ) ) ;
if let Some ( api_key ) = api_key {
let mut prefix = " Bearer " . to_string ( ) ;
prefix . push_str ( & api_key ) ;
// Leak to allow FnMut
let api_key : & 'static str = prefix . leak ( ) ;
let auth = move | headers : HeaderMap ,
request : axum ::extract ::Request ,
next : axum ::middleware ::Next | async move {
match headers . get ( AUTHORIZATION ) {
Some ( token ) = > match token . to_str ( ) {
Ok ( token_str ) if token_str . to_lowercase ( ) = = api_key . to_lowercase ( ) = > {
let response = next . run ( request ) . await ;
Ok ( response )
}
_ = > Err ( StatusCode ::UNAUTHORIZED ) ,
} ,
None = > Err ( StatusCode ::UNAUTHORIZED ) ,
}
} ;
base_routes = base_routes . layer ( axum ::middleware ::from_fn ( auth ) )
}
let info_routes = Router ::new ( )
. route ( " / " , get ( health ) )
. route ( " /info " , get ( get_model_info ) )
2022-10-18 13:19:03 +00:00
. route ( " /health " , get ( health ) )
2023-03-29 19:38:30 +00:00
. route ( " /ping " , get ( health ) )
2024-01-22 15:29:01 +00:00
. route ( " /metrics " , get ( metrics ) ) ;
// Conditional AWS Sagemaker route
2024-01-24 16:41:28 +00:00
let aws_sagemaker_route = if messages_api_enabled {
2024-01-22 15:29:01 +00:00
Router ::new ( ) . route ( " /invocations " , post ( chat_completions ) ) // Use 'chat_completions' for OAI_ENABLED
} else {
Router ::new ( ) . route ( " /invocations " , post ( compat_generate ) ) // Use 'compat_generate' otherwise
} ;
2024-01-29 11:30:50 +00:00
let compute_type =
ComputeType ( std ::env ::var ( " COMPUTE_TYPE " ) . unwrap_or ( " gpu+optimized " . to_string ( ) ) ) ;
2024-01-29 10:20:08 +00:00
2024-01-22 15:29:01 +00:00
// Combine routes and layers
2024-02-20 13:04:51 +00:00
let mut app = Router ::new ( )
2024-01-22 15:29:01 +00:00
. merge ( swagger_ui )
. merge ( base_routes )
2024-07-29 09:14:17 +00:00
. merge ( info_routes )
2024-02-20 13:04:51 +00:00
. merge ( aws_sagemaker_route ) ;
#[ cfg(feature = " google " ) ]
{
tracing ::info! ( " Built with `google` feature " ) ;
tracing ::info! (
" Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected. "
) ;
if let Ok ( env_predict_route ) = std ::env ::var ( " AIP_PREDICT_ROUTE " ) {
app = app . route ( & env_predict_route , post ( vertex_compatibility ) ) ;
}
if let Ok ( env_health_route ) = std ::env ::var ( " AIP_HEALTH_ROUTE " ) {
app = app . route ( & env_health_route , get ( health ) ) ;
}
}
2024-06-13 16:51:51 +00:00
#[ cfg(feature = " kserve " ) ]
{
tracing ::info! ( " Built with `kserve` feature " ) ;
app = app
. route (
" /v2/models/:model_name/versions/:model_version/infer " ,
post ( kserve_model_infer ) ,
)
. route (
" /v2/models/:model_name/versions/:model_version " ,
get ( kserve_model_metadata ) ,
)
. route ( " /v2/health/ready " , get ( kserve_health_ready ) )
. route ( " /v2/health/live " , get ( kserve_health_live ) )
. route ( " /v2 " , get ( kerve_server_metadata ) )
. route (
" /v2/models/:model_name/versions/:model_version/ready " ,
get ( kserve_model_metadata_ready ) ,
) ;
}
2024-02-20 13:04:51 +00:00
// add layers after routes
app = app
2023-04-25 11:11:18 +00:00
. layer ( Extension ( info ) )
2023-02-28 09:19:32 +00:00
. layer ( Extension ( compat_return_full_text ) )
. layer ( Extension ( infer ) )
2024-01-29 10:20:08 +00:00
. layer ( Extension ( compute_type ) )
2023-07-21 14:56:30 +00:00
. layer ( Extension ( prom_handle . clone ( ) ) )
2023-09-27 08:40:18 +00:00
. layer ( OtelAxumLayer ::default ( ) )
2023-02-17 17:22:00 +00:00
. layer ( cors_layer ) ;
2022-10-11 08:36:51 +00:00
2024-06-04 13:56:56 +00:00
tracing ::info! ( " Connected " ) ;
2023-06-16 14:25:11 +00:00
if ngrok {
#[ cfg(feature = " ngrok " ) ]
{
2024-05-28 12:52:17 +00:00
panic! ( " ngrok feature is not functional with axum=0.7 and hyper=1, waiting on https://github.com/ngrok/ngrok-rust/pull/137/files to re-enable. " ) ;
2023-06-16 14:25:11 +00:00
// Run server
}
#[ cfg(not(feature = " ngrok " )) ]
{
let _ngrok_authtoken = ngrok_authtoken ;
let _ngrok_domain = ngrok_domain ;
let _ngrok_username = ngrok_username ;
let _ngrok_password = ngrok_password ;
panic! ( " `text-generation-router` was compiled without the `ngrok` feature " ) ;
}
} else {
// Run server
2024-05-28 12:52:17 +00:00
let listener = tokio ::net ::TcpListener ::bind ( & addr ) . await . unwrap ( ) ;
axum ::serve ( listener , app )
2023-06-16 14:25:11 +00:00
. with_graceful_shutdown ( shutdown_signal ( ) )
2024-06-04 13:56:56 +00:00
. await
. map_err ( | err | WebServerError ::Axum ( Box ::new ( err ) ) ) ? ;
2023-06-16 14:25:11 +00:00
}
2023-07-10 12:47:15 +00:00
Ok ( ( ) )
2022-10-11 14:50:54 +00:00
}
2022-10-18 13:19:03 +00:00
2024-07-31 08:33:10 +00:00
/// get model info from the Huggingface Hub
pub async fn get_hub_model_info ( api : & ApiRepo ) -> Option < HubModelInfo > {
let response = api . info_request ( ) . send ( ) . await . ok ( ) ? ;
if response . status ( ) . is_success ( ) {
let hub_model_info : HubModelInfo =
serde_json ::from_str ( & response . text ( ) . await . ok ( ) ? ) . ok ( ) ? ;
if let Some ( sha ) = & hub_model_info . sha {
tracing ::info! (
" Serving revision {sha} of model {} " ,
hub_model_info . model_id
) ;
}
Some ( hub_model_info )
} else {
None
}
}
/// get base tokenizer
pub async fn get_base_tokenizer ( api : & Api , api_repo : & ApiRepo ) -> Option < PathBuf > {
let config_filename = api_repo . get ( " config.json " ) . await . ok ( ) ? ;
// Open the file in read-only mode with buffer.
let file = File ::open ( config_filename ) . ok ( ) ? ;
let reader = BufReader ::new ( file ) ;
// Read the JSON contents of the file as an instance of `User`.
let config : serde_json ::Value = serde_json ::from_reader ( reader ) . ok ( ) ? ;
if let Some ( serde_json ::Value ::String ( base_model_id ) ) = config . get ( " base_model_name_or_path " ) {
let api_base_repo = api . repo ( Repo ::with_revision (
base_model_id . to_string ( ) ,
RepoType ::Model ,
" main " . to_string ( ) ,
) ) ;
api_base_repo . get ( " tokenizer.json " ) . await . ok ( )
} else {
None
}
}
/// get tokenizer_config from the Huggingface Hub
pub async fn get_tokenizer_config ( api_repo : & ApiRepo ) -> Option < HubTokenizerConfig > {
let tokenizer_config_filename = api_repo . get ( " tokenizer_config.json " ) . await . ok ( ) ? ;
// Open the file in read-only mode with buffer.
let file = File ::open ( tokenizer_config_filename ) . ok ( ) ? ;
let reader = BufReader ::new ( file ) ;
// Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
let tokenizer_config : HubTokenizerConfig = serde_json ::from_reader ( reader )
. map_err ( | e | {
tracing ::warn! ( " Unable to parse tokenizer config: {} " , e ) ;
e
} )
. ok ( ) ? ;
Some ( tokenizer_config )
}
2022-10-18 13:19:03 +00:00
/// Shutdown signal handler
async fn shutdown_signal ( ) {
let ctrl_c = async {
signal ::ctrl_c ( )
. await
. expect ( " failed to install Ctrl+C handler " ) ;
} ;
#[ cfg(unix) ]
let terminate = async {
signal ::unix ::signal ( signal ::unix ::SignalKind ::terminate ( ) )
. expect ( " failed to install signal handler " )
. recv ( )
. await ;
} ;
#[ cfg(not(unix)) ]
let terminate = std ::future ::pending ::< ( ) > ( ) ;
tokio ::select! {
_ = ctrl_c = > { } ,
_ = terminate = > { } ,
}
tracing ::info! ( " signal received, starting graceful shutdown " ) ;
2023-02-13 12:02:45 +00:00
opentelemetry ::global ::shutdown_tracer_provider ( ) ;
2022-10-18 13:19:03 +00:00
}
2023-01-31 16:04:00 +00:00
/// Convert to Axum supported formats
impl From < InferError > for ( StatusCode , Json < ErrorResponse > ) {
fn from ( err : InferError ) -> Self {
let status_code = match err {
InferError ::GenerationError ( _ ) = > StatusCode ::FAILED_DEPENDENCY ,
InferError ::Overloaded ( _ ) = > StatusCode ::TOO_MANY_REQUESTS ,
InferError ::ValidationError ( _ ) = > StatusCode ::UNPROCESSABLE_ENTITY ,
InferError ::IncompleteGeneration = > StatusCode ::INTERNAL_SERVER_ERROR ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
InferError ::TemplateError ( _ ) = > StatusCode ::UNPROCESSABLE_ENTITY ,
2024-04-16 13:02:46 +00:00
InferError ::ToolError ( _ ) = > StatusCode ::UNPROCESSABLE_ENTITY ,
2023-01-31 16:04:00 +00:00
} ;
(
status_code ,
Json ( ErrorResponse {
error : err . to_string ( ) ,
2023-03-07 17:52:22 +00:00
error_type : err . error_type ( ) . to_string ( ) ,
2023-01-31 16:04:00 +00:00
} ) ,
)
}
}
impl From < InferError > for Event {
fn from ( err : InferError ) -> Self {
Event ::default ( )
. json_data ( ErrorResponse {
error : err . to_string ( ) ,
2023-03-07 17:52:22 +00:00
error_type : err . error_type ( ) . to_string ( ) ,
2023-01-31 16:04:00 +00:00
} )
. unwrap ( )
}
}
2024-06-04 13:56:56 +00:00
#[ derive(Debug, Error) ]
pub enum WebServerError {
#[ error( " Axum error: {0} " ) ]
Axum ( #[ from ] axum ::BoxError ) ,
}
2024-07-31 08:33:10 +00:00
/// Create a post_processor for the LlamaTokenizer
fn create_post_processor (
tokenizer : & Tokenizer ,
tokenizer_config : & HubTokenizerConfig ,
) -> Result < TemplateProcessing , tokenizers ::processors ::template ::TemplateProcessingBuilderError > {
let add_bos_token = tokenizer_config . add_bos_token . unwrap_or ( true ) ;
let add_eos_token = tokenizer_config . add_eos_token . unwrap_or ( false ) ;
let bos_token = tokenizer_config . bos_token . as_ref ( ) ;
let eos_token = tokenizer_config . eos_token . as_ref ( ) ;
if add_bos_token & & bos_token . is_none ( ) {
panic! ( " add_bos_token = true but bos_token is None " ) ;
}
if add_eos_token & & eos_token . is_none ( ) {
panic! ( " add_eos_token = true but eos_token is None " ) ;
}
let mut single = Vec ::new ( ) ;
let mut pair = Vec ::new ( ) ;
let mut special_tokens = Vec ::new ( ) ;
if add_bos_token {
if let Some ( bos ) = bos_token {
let bos_token_id = tokenizer
. token_to_id ( bos . as_str ( ) )
. expect ( " Should have found the bos token id " ) ;
special_tokens . push ( ( bos . as_str ( ) , bos_token_id ) ) ;
single . push ( format! ( " {} :0 " , bos . as_str ( ) ) ) ;
pair . push ( format! ( " {} :0 " , bos . as_str ( ) ) ) ;
}
}
single . push ( " $A:0 " . to_string ( ) ) ;
pair . push ( " $A:0 " . to_string ( ) ) ;
if add_eos_token {
if let Some ( eos ) = eos_token {
let eos_token_id = tokenizer
. token_to_id ( eos . as_str ( ) )
. expect ( " Should have found the eos token id " ) ;
special_tokens . push ( ( eos . as_str ( ) , eos_token_id ) ) ;
single . push ( format! ( " {} :0 " , eos . as_str ( ) ) ) ;
pair . push ( format! ( " {} :0 " , eos . as_str ( ) ) ) ;
}
}
if add_bos_token {
if let Some ( bos ) = bos_token {
pair . push ( format! ( " {} :1 " , bos . as_str ( ) ) ) ;
}
}
pair . push ( " $B:1 " . to_string ( ) ) ;
if add_eos_token {
if let Some ( eos ) = eos_token {
pair . push ( format! ( " {} :1 " , eos . as_str ( ) ) ) ;
}
}
let post_processor = TemplateProcessing ::builder ( )
. try_single ( single ) ?
. try_pair ( pair ) ?
. special_tokens ( special_tokens )
. build ( ) ? ;
Ok ( post_processor )
}