text-generation-inference/server/text_generation_server/layers/gptq/custom_autotune.py

262 lines
9.8 KiB
Python
Raw Normal View History

feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 10:27:01 +00:00
# https://github.com/fpgaminer/GPTQ-triton
"""
Mostly the same as the autotuner in Triton, but with a few changes like using 40 runs instead of 100.
"""
import builtins
import math
import time
from typing import Dict
import triton
class Autotuner(triton.KernelInterface):
def __init__(
self,
fn,
arg_names,
configs,
key,
reset_to_zero,
prune_configs_by: Dict = None,
nearest_power_of_two: bool = False,
):
"""
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
'perf_model': performance model used to predicate running time with different configs, returns running time
'top_k': number of configs to bench
'prune_num_stages_by'(optional): a function used to prune num_stages. It take configs:List[Config] as its input, and returns pruned configs.
'nearest_power_of_two'(optional): whether to round key arguments to the nearest power of two when caching tuning results
"""
if not configs:
self.configs = [triton.Config({}, num_warps=4, num_stages=2)]
else:
self.configs = configs
self.key_idx = [arg_names.index(k) for k in key]
self.nearest_power_of_two = nearest_power_of_two
self.cache = {}
# hook to reset all required tensor to zeros before relaunching a kernel
self.hook = lambda args: 0
if reset_to_zero is not None:
self.reset_idx = [arg_names.index(k) for k in reset_to_zero]
def _hook(args):
for i in self.reset_idx:
args[i].zero_()
self.hook = _hook
self.arg_names = arg_names
# prune configs
if prune_configs_by:
perf_model, top_k = (
prune_configs_by["perf_model"],
prune_configs_by["top_k"],
)
if "early_config_prune" in prune_configs_by:
early_config_prune = prune_configs_by["early_config_prune"]
else:
perf_model, top_k, early_config_prune = None, None, None
self.perf_model, self.configs_top_k = perf_model, top_k
self.early_config_prune = early_config_prune
self.fn = fn
def _bench(self, *args, config, **meta):
# check for conflicts, i.e. meta-parameters both provided
# as kwargs and by the autotuner
conflicts = meta.keys() & config.kwargs.keys()
if conflicts:
raise ValueError(
f"Conflicting meta-parameters: {', '.join(conflicts)}."
" Make sure that you don't re-define auto-tuned symbols."
)
# augment meta-parameters with tunable ones
current = dict(meta, **config.kwargs)
def kernel_call():
if config.pre_hook:
config.pre_hook(self.nargs)
self.hook(args)
self.fn.run(
*args,
num_warps=config.num_warps,
num_stages=config.num_stages,
**current,
)
try:
# In testings using only 40 reps seems to be close enough and it appears to be what PyTorch uses
# PyTorch also sets fast_flush to True, but I didn't see any speedup so I'll leave the default
return triton.testing.do_bench(
2023-12-14 15:45:47 +00:00
kernel_call, quantiles=(0.5, 0.2, 0.8), rep=40
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 10:27:01 +00:00
)
2023-12-14 15:04:26 +00:00
except triton.OutOfResources:
return [float("inf"), float("inf"), float("inf")]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 10:27:01 +00:00
def run(self, *args, **kwargs):
self.nargs = dict(zip(self.arg_names, args))
if len(self.configs) > 1:
key = tuple(args[i] for i in self.key_idx)
# This reduces the amount of autotuning by rounding the keys to the nearest power of two
# In my testing this gives decent results, and greatly reduces the amount of tuning required
if self.nearest_power_of_two:
key = tuple([2 ** int(math.log2(x) + 0.5) for x in key])
if key not in self.cache:
# prune configs
pruned_configs = self.prune_configs(kwargs)
bench_start = time.time()
timings = {
config: self._bench(*args, config=config, **kwargs)
for config in pruned_configs
}
bench_end = time.time()
self.bench_time = bench_end - bench_start
self.cache[key] = builtins.min(timings, key=timings.get)
self.hook(args)
self.configs_timings = timings
config = self.cache[key]
else:
config = self.configs[0]
self.best_config = config
if config.pre_hook is not None:
config.pre_hook(self.nargs)
return self.fn.run(
*args,
num_warps=config.num_warps,
num_stages=config.num_stages,
**kwargs,
**config.kwargs,
)
def prune_configs(self, kwargs):
pruned_configs = self.configs
if self.early_config_prune:
pruned_configs = self.early_config_prune(self.configs, self.nargs)
if self.perf_model:
top_k = self.configs_top_k
if isinstance(top_k, float) and top_k <= 1.0:
top_k = int(len(self.configs) * top_k)
if len(pruned_configs) > top_k:
est_timing = {
config: self.perf_model(
**self.nargs,
**kwargs,
**config.kwargs,
num_stages=config.num_stages,
num_warps=config.num_warps,
)
for config in pruned_configs
}
pruned_configs = sorted(est_timing.keys(), key=lambda x: est_timing[x])[
:top_k
]
return pruned_configs
def warmup(self, *args, **kwargs):
self.nargs = dict(zip(self.arg_names, args))
for config in self.prune_configs(kwargs):
self.fn.warmup(
*args,
num_warps=config.num_warps,
num_stages=config.num_stages,
**kwargs,
**config.kwargs,
)
self.nargs = None
def autotune(
configs, key, prune_configs_by=None, reset_to_zero=None, nearest_power_of_two=False
):
"""
Decorator for auto-tuning a :code:`triton.jit`'d function.
.. highlight:: python
.. code-block:: python
@triton.autotune(configs=[
triton.Config(meta={'BLOCK_SIZE': 128}, num_warps=4),
triton.Config(meta={'BLOCK_SIZE': 1024}, num_warps=8),
],
key=['x_size'] # the two above configs will be evaluated anytime
# the value of x_size changes
)
@triton.jit
def kernel(x_ptr, x_size, **META):
BLOCK_SIZE = META['BLOCK_SIZE']
:note: When all the configurations are evaluated, the kernel will run multiple time.
This means that whatever value the kernel updates will be updated multiple times.
To avoid this undesired behavior, you can use the `reset_to_zero` argument, which
reset the value of the provided tensor to `zero` before running any configuration.
:param configs: a list of :code:`triton.Config` objects
:type configs: list[triton.Config]
:param key: a list of argument names whose change in value will trigger the evaluation of all provided configs.
:type key: list[str]
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
'perf_model': performance model used to predicate running time with different configs, returns running time
'top_k': number of configs to bench
'early_config_prune'(optional): a function used to do early prune (eg, num_stages). It take configs:List[Config] as its input, and returns pruned configs.
:param reset_to_zero: a list of argument names whose value will be reset to zero before evaluating any configs.
:type reset_to_zero: list[str]
"""
def decorator(fn):
return Autotuner(
fn,
fn.arg_names,
configs,
key,
reset_to_zero,
prune_configs_by,
nearest_power_of_two,
)
return decorator
def matmul248_kernel_config_pruner(configs, nargs):
"""
The main purpose of this function is to shrink BLOCK_SIZE_* when the corresponding dimension is smaller.
"""
m = max(2 ** int(math.ceil(math.log2(nargs["M"]))), 16)
n = max(2 ** int(math.ceil(math.log2(nargs["N"]))), 16)
k = max(2 ** int(math.ceil(math.log2(nargs["K"]))), 16)
used = set()
for config in configs:
block_size_m = min(m, config.kwargs["BLOCK_SIZE_M"])
block_size_n = min(n, config.kwargs["BLOCK_SIZE_N"])
block_size_k = min(k, config.kwargs["BLOCK_SIZE_K"])
group_size_m = config.kwargs["GROUP_SIZE_M"]
if (
block_size_m,
block_size_n,
block_size_k,
group_size_m,
config.num_stages,
config.num_warps,
) in used:
continue
used.add(
(
block_size_m,
block_size_n,
block_size_k,
group_size_m,
config.num_stages,
config.num_warps,
)
)
yield triton.Config(
{
"BLOCK_SIZE_M": block_size_m,
"BLOCK_SIZE_N": block_size_n,
"BLOCK_SIZE_K": block_size_k,
"GROUP_SIZE_M": group_size_m,
},
num_stages=config.num_stages,
num_warps=config.num_warps,
)