mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-20 14:22:08 +00:00
138 lines
4.7 KiB
Python
138 lines
4.7 KiB
Python
|
import inspect
|
|||
|
from loguru import logger
|
|||
|
import torch
|
|||
|
|
|||
|
from abc import ABC, abstractmethod
|
|||
|
from typing import List, Tuple, Optional, TypeVar, Type, Dict
|
|||
|
from collections import defaultdict
|
|||
|
from transformers import PreTrainedTokenizerBase
|
|||
|
|
|||
|
from text_generation_server.models.types import Batch, Generation
|
|||
|
from text_generation_server.utils.speculate import get_speculate
|
|||
|
from text_generation_server.pb.generate_pb2 import InfoResponse
|
|||
|
from text_generation_server.adapters.weights import LayerAdapterWeights
|
|||
|
import time
|
|||
|
BASE_MODEL_ADAPTER_ID = "__base_model__"
|
|||
|
|
|||
|
|
|||
|
B = TypeVar("B", bound=Batch)
|
|||
|
|
|||
|
|
|||
|
class Model(ABC):
|
|||
|
def __init__(
|
|||
|
self,
|
|||
|
model_id: str,
|
|||
|
model: torch.nn.Module,
|
|||
|
tokenizer: PreTrainedTokenizerBase,
|
|||
|
requires_padding: bool,
|
|||
|
dtype: torch.dtype,
|
|||
|
device: torch.device,
|
|||
|
rank: int = 0,
|
|||
|
world_size: int = 1,
|
|||
|
sliding_window: Optional[int] = None,
|
|||
|
speculate: Optional[int] = None,
|
|||
|
adapter_id: str = BASE_MODEL_ADAPTER_ID,
|
|||
|
):
|
|||
|
self.model_id = model_id
|
|||
|
self.model = model.eval()
|
|||
|
self.tokenizer = tokenizer
|
|||
|
|
|||
|
# all_special_ids is not set correctly if the rust tokenizer is unpacked
|
|||
|
# TODO report this to transformers.
|
|||
|
other_special_ids = {
|
|||
|
id for id, token in tokenizer.added_tokens_decoder.items() if token.special
|
|||
|
}
|
|||
|
self.all_special_ids = set(tokenizer.all_special_ids)
|
|||
|
self.all_special_ids.update(other_special_ids)
|
|||
|
self.requires_padding = requires_padding
|
|||
|
self.dtype = dtype
|
|||
|
self.device = device
|
|||
|
self.rank = rank
|
|||
|
self.world_size = world_size
|
|||
|
self.sliding_window = sliding_window if sliding_window != -1 else None
|
|||
|
|
|||
|
self.layer_to_adapter_weights: Dict[str, LayerAdapterWeights] = defaultdict(
|
|||
|
LayerAdapterWeights
|
|||
|
)
|
|||
|
self.loaded_adapters = set()
|
|||
|
self.static_adapter_id = adapter_id
|
|||
|
|
|||
|
if speculate is None:
|
|||
|
speculate = get_speculate()
|
|||
|
self.speculate = speculate
|
|||
|
|
|||
|
self.has_position_ids = (
|
|||
|
inspect.signature(model.forward).parameters.get("position_ids", None)
|
|||
|
is not None
|
|||
|
)
|
|||
|
|
|||
|
self.check_initialized()
|
|||
|
|
|||
|
@property
|
|||
|
def info(self) -> InfoResponse:
|
|||
|
if self.requires_padding and self.sliding_window is not None:
|
|||
|
raise NotImplementedError("sliding_window is not implemented with padding")
|
|||
|
|
|||
|
return InfoResponse(
|
|||
|
requires_padding=self.requires_padding,
|
|||
|
dtype=str(self.dtype),
|
|||
|
device_type=self.device.type,
|
|||
|
window_size=self.sliding_window,
|
|||
|
speculate=self.speculate,
|
|||
|
)
|
|||
|
|
|||
|
@property
|
|||
|
@abstractmethod
|
|||
|
def batch_type(self) -> Type[B]:
|
|||
|
raise NotImplementedError
|
|||
|
|
|||
|
@abstractmethod
|
|||
|
def generate_token(
|
|||
|
self, batch: B
|
|||
|
) -> Tuple[List[Generation], Optional[B], Tuple[int, int]]:
|
|||
|
raise NotImplementedError
|
|||
|
|
|||
|
def warmup(self, batch: B) -> Optional[int]:
|
|||
|
self.generate_token(batch)
|
|||
|
return None
|
|||
|
|
|||
|
def decode_token(
|
|||
|
self,
|
|||
|
all_input_ids: List[int],
|
|||
|
prefix_offset: int = 0,
|
|||
|
read_offset: int = 0,
|
|||
|
skip_special_tokens: bool = False,
|
|||
|
) -> Tuple[str, int, int]:
|
|||
|
"""Hack to hopefully support generate_stream for the maximum number of tokenizers"""
|
|||
|
|
|||
|
# The prefix text is necessary only to defeat cleanup algorithms in the decode
|
|||
|
# which decide to add a space or not depending on the surrounding ids.
|
|||
|
prefix_text = self.tokenizer.decode(
|
|||
|
all_input_ids[prefix_offset:read_offset],
|
|||
|
skip_special_tokens=skip_special_tokens,
|
|||
|
)
|
|||
|
|
|||
|
new_text = self.tokenizer.decode(
|
|||
|
all_input_ids[prefix_offset:], skip_special_tokens=skip_special_tokens
|
|||
|
)
|
|||
|
|
|||
|
if len(new_text) > len(prefix_text) and not new_text.endswith("<EFBFBD>"):
|
|||
|
# utf-8 char at the end means it's a potential unfinished byte sequence
|
|||
|
# from byte fallback tokenization.
|
|||
|
# If it's in the middle, it's probably a real invalid id generated
|
|||
|
# by the model
|
|||
|
new_text = new_text[len(prefix_text) :]
|
|||
|
return new_text, read_offset, len(all_input_ids)
|
|||
|
else:
|
|||
|
return "", prefix_offset, read_offset
|
|||
|
|
|||
|
def check_initialized(self):
|
|||
|
uninitialized_parameters = []
|
|||
|
for n, p in self.model.named_parameters():
|
|||
|
if p.data.device == torch.device("meta"):
|
|||
|
uninitialized_parameters.append(n)
|
|||
|
if uninitialized_parameters:
|
|||
|
raise RuntimeError(
|
|||
|
f"found uninitialized parameters in model {self.__class__.__name__}: {uninitialized_parameters}"
|
|||
|
)
|