text-generation-inference/server/text_generation_server/models/causal_lm.py

932 lines
36 KiB
Python
Raw Normal View History

import os
import tempfile
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
from text_generation_server.utils.tokens import batch_top_tokens
import torch
from dataclasses import dataclass
2023-02-13 12:02:45 +00:00
from opentelemetry import trace
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerBase, AutoConfig
from typing import Optional, Tuple, List, Type, Dict
from habana_frameworks.torch.hpu import wrap_in_hpu_graph
import habana_frameworks.torch as htorch
from contextlib import nullcontext
from optimum.habana.utils import HabanaProfile
from optimum.habana.transformers.generation import MODELS_OPTIMIZED_WITH_STATIC_SHAPES
from optimum.habana.checkpoint_utils import (
get_repo_root,
model_on_meta,
write_checkpoints_json,
)
2023-03-07 17:52:22 +00:00
from text_generation_server.models import Model
from text_generation_server.models.types import (
Batch,
PrefillTokens,
Generation,
GeneratedText,
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
TopTokens,
2023-03-07 17:52:22 +00:00
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import HeterogeneousNextTokenChooser, StoppingCriteria, Sampling
from loguru import logger
2023-02-13 12:02:45 +00:00
tracer = trace.get_tracer(__name__)
@dataclass
class CausalLMBatch(Batch):
batch_id: int
requests: List[generate_pb2.Request]
requests_idx_mapping: Dict[int, int]
2022-11-07 11:53:56 +00:00
# Decoder values
input_ids: torch.Tensor
attention_mask: torch.Tensor
2023-01-20 14:35:22 +00:00
position_ids: torch.Tensor
2022-11-07 11:53:56 +00:00
past_key_values: Optional[List[Tuple]]
# All tokens
all_input_ids: List[torch.Tensor]
2022-11-07 11:53:56 +00:00
# Lengths of all generations present in the batch
input_lengths: List[int]
prefix_offsets: List[int]
read_offsets: List[int]
2022-11-07 11:53:56 +00:00
# Generation helpers
next_token_chooser: HeterogeneousNextTokenChooser
stopping_criterias: List[StoppingCriteria]
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
top_n_tokens: List[int]
top_n_tokens_tensor: torch.Tensor
2022-11-07 11:53:56 +00:00
# Metadata used for padding
max_input_length: int
padding_right_offset: int
# Maximum number of tokens this batch will grow to
max_tokens: int
2022-12-08 17:49:33 +00:00
# Past metadata
keys_head_dim_last: bool = True
def to_pb(self) -> generate_pb2.CachedBatch:
return generate_pb2.CachedBatch(
id=self.batch_id,
request_ids=[r.id for r in self.requests],
size=len(self),
max_tokens=self.max_tokens,
)
@classmethod
def from_pb(
2023-01-20 11:24:39 +00:00
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
dtype: torch.dtype,
2023-01-20 11:24:39 +00:00
device: torch.device,
is_optimized_for_gaudi: bool = False,
) -> "CausalLMBatch":
inputs = []
next_token_chooser_parameters = []
stopping_criterias = []
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
top_n_tokens = []
prefix_offsets = []
read_offsets = []
requests_idx_mapping = {}
input_lengths = []
# Parse batch
max_truncation = 0
padding_right_offset = 0
max_decode_tokens = 0
# TODO: this should be set to rust side `max_total_tokens`,
# (see https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs#L177)
# but TGI does not offer an API to expose this variable to python, as this variable
# is handled by the client but it appears the model is initialized by the server.
# An alternative could be to initialize the buffers during warmup.
# Dummy
max_total_tokens = int(os.getenv("MAX_TOTAL_TOKENS", "0"))
logger.info("MAX_TOTAL_TOKENS = {}".format(max_total_tokens))
for i, r in enumerate(pb.requests):
requests_idx_mapping[r.id] = i
inputs.append(r.inputs)
next_token_chooser_parameters.append(r.parameters)
stopping_criteria = StoppingCriteria.from_pb(r.stopping_parameters, tokenizer)
stopping_criterias.append(stopping_criteria)
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
top_n_tokens.append(r.top_n_tokens)
max_truncation = max(max_truncation, r.truncate)
max_decode_tokens += stopping_criteria.max_new_tokens
padding_right_offset = max(padding_right_offset, stopping_criteria.max_new_tokens)
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
next_token_chooser_parameters, dtype, device
)
2022-11-07 11:53:56 +00:00
tokenized_inputs = tokenizer(
2022-12-12 17:25:22 +00:00
inputs,
return_tensors="pt",
padding="max_length",
2023-01-20 11:24:39 +00:00
return_token_type_ids=False,
truncation=True,
max_length=max_truncation,
)
for _ in pb.requests:
input_len = tokenized_inputs["input_ids"].shape[1]
input_lengths.append(input_len)
prefix_offsets.append(input_len - 5)
read_offsets.append(input_len)
max_input_length = max(input_lengths)
if max_total_tokens == 0:
max_total_tokens = max_input_length
max_tokens = len(inputs) * max_input_length + max_decode_tokens
if is_optimized_for_gaudi and max_total_tokens > max_input_length:
# pad to max_total_tokens in case max_new_token changes per request and triggers new hpu graph generation
padding_right_offset = max_total_tokens - max_input_length
input_ids = tokenized_inputs["input_ids"]
attention_mask = tokenized_inputs["attention_mask"]
# only move model inputs to device
attention_mask = attention_mask.to(device)
if is_optimized_for_gaudi:
input_ids_cpu = torch.nn.functional.pad(
input_ids, (0, padding_right_offset), value=tokenizer.pad_token_id
)
input_ids = input_ids_cpu.to(device)
attention_mask = torch.nn.functional.pad(attention_mask, (0, padding_right_offset), value=0)
all_input_ids = input_ids_cpu.T.split(1, dim=1)
else:
all_input_ids = input_ids.clone().T.split(1, dim=1)
input_ids = input_ids.to(device)
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
htorch.core.mark_step()
top_n_tokens_tensor = torch.tensor(top_n_tokens, device=device, dtype=torch.int64)
return cls(
batch_id=pb.id,
requests=pb.requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
attention_mask=attention_mask,
2023-01-20 14:35:22 +00:00
position_ids=position_ids,
2022-11-07 11:53:56 +00:00
past_key_values=None,
all_input_ids=list(all_input_ids),
input_lengths=input_lengths,
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
next_token_chooser=next_token_chooser,
stopping_criterias=stopping_criterias,
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
top_n_tokens=top_n_tokens,
top_n_tokens_tensor=top_n_tokens_tensor,
max_input_length=max_input_length,
padding_right_offset=padding_right_offset,
max_tokens=max_tokens,
)
@tracer.start_as_current_span("filter")
def filter(self, request_ids: List[int], is_optimized_for_gaudi: bool = False) -> Optional["CausalLMBatch"]:
if len(request_ids) == 0:
raise ValueError("Batch must have at least one request")
if len(request_ids) == len(self):
return self
keep_indices = []
# New values after filtering
requests_idx_mapping = {}
requests = []
input_lengths = []
prefix_offsets = []
read_offsets = []
all_input_ids = []
max_input_length = 0
stopping_criterias = []
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
top_n_tokens = []
total_remaining_decode_tokens = 0
new_padding_right_offset = 0
for i, request_id in enumerate(request_ids):
idx = self.requests_idx_mapping[request_id]
requests_idx_mapping[request_id] = i
keep_indices.append(idx)
requests.append(self.requests[idx])
prefix_offsets.append(self.prefix_offsets[idx])
read_offsets.append(self.read_offsets[idx])
all_input_ids.append(self.all_input_ids[idx])
request_input_length = self.input_lengths[idx]
input_lengths.append(request_input_length)
max_input_length = max(max_input_length, request_input_length)
stopping_criteria = self.stopping_criterias[idx]
stopping_criterias.append(stopping_criteria)
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
top_n_tokens.append(self.top_n_tokens[idx])
remaining_decode_tokens = stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
total_remaining_decode_tokens += remaining_decode_tokens
new_padding_right_offset = max(new_padding_right_offset, remaining_decode_tokens)
# Apply indices to input_ids, attention mask, past key values and other items that need to be cached
input_ids = self.input_ids[keep_indices]
position_ids = self.position_ids[keep_indices]
next_token_chooser = self.next_token_chooser.filter(keep_indices)
if is_optimized_for_gaudi:
self.attention_mask = self.attention_mask[keep_indices]
else:
self.attention_mask = self.attention_mask[
keep_indices,
-(self.padding_right_offset + max_input_length) : (
self.attention_mask.shape[1] - self.padding_right_offset
)
+ new_padding_right_offset,
]
# Ensure that past_key_values tensors can be updated in-place
kv_tuple = False
if type(self.past_key_values[0]) == tuple:
self.past_key_values = [list(layer) for layer in self.past_key_values]
kv_tuple = True
# Update tensors in-place to allow incremental garbage collection
past_kv_length = max_input_length - 1
for layer in self.past_key_values:
past_keys, past_values = layer
past_keys_dims = len(past_keys.shape)
if past_keys_dims == 3:
# Force past to be of dim [self_size, num_heads, ...] for easy indexing
past_keys = past_keys.view(len(self), -1, *past_keys.shape[-2:])
past_values = past_values.view(len(self), -1, *past_values.shape[-2:])
if is_optimized_for_gaudi:
layer[0] = past_keys[keep_indices]
del past_keys
layer[1] = past_values[keep_indices]
del past_values
else:
if self.keys_head_dim_last:
layer[0] = past_keys[keep_indices, :, -past_kv_length:, :]
else:
layer[0] = past_keys[keep_indices, :, :, -past_kv_length:]
del past_keys
layer[1] = past_values[keep_indices, :, -past_kv_length:, :]
del past_values
if past_keys_dims == 3:
layer[0] = layer[0].view(layer[0].shape[0] * layer[0].shape[1], *layer[0].shape[-2:])
layer[1] = layer[1].view(layer[1].shape[0] * layer[1].shape[1], *layer[1].shape[-2:])
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
top_n_tokens_tensor = self.top_n_tokens_tensor[keep_indices]
max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens
if kv_tuple:
2023-12-11 08:24:09 +00:00
self.past_key_values = tuple([tuple(layer) for layer in self.past_key_values])
self.requests = requests
self.requests_idx_mapping = requests_idx_mapping
self.input_ids = input_ids
self.position_ids = position_ids
self.all_input_ids = all_input_ids
self.input_lengths = input_lengths
self.prefix_offsets = prefix_offsets
self.read_offsets = read_offsets
self.next_token_chooser = next_token_chooser
self.stopping_criterias = stopping_criterias
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
self.top_n_tokens = top_n_tokens
self.top_n_tokens_tensor = top_n_tokens_tensor
self.max_input_length = max_input_length
self.padding_right_offset = new_padding_right_offset
self.max_tokens = max_tokens
return self
@classmethod
2023-02-13 12:02:45 +00:00
@tracer.start_as_current_span("concatenate")
def concatenate(cls, batches: List["CausalLMBatch"], is_optimized_for_gaudi: bool = False) -> "CausalLMBatch":
# Used for padding
total_batch_size = 0
max_input_length = 0
padding_right_offset = 0
max_total_tokens = 0
for batch in batches:
total_batch_size += len(batch)
max_input_length = max(max_input_length, batch.max_input_length)
padding_right_offset = max(padding_right_offset, batch.padding_right_offset)
max_total_tokens = max(max_total_tokens, batch.max_input_length + batch.padding_right_offset)
if is_optimized_for_gaudi and max_total_tokens > max_input_length:
padding_right_offset = max_total_tokens - max_input_length
# Batch attributes
requests = []
requests_idx_mapping = {}
2022-11-07 11:53:56 +00:00
input_lengths = []
prefix_offsets = []
read_offsets = []
all_input_ids = []
next_token_chooser_parameters = []
stopping_criterias = []
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
top_n_tokens = []
max_tokens = 0
2022-11-07 11:53:56 +00:00
# Batch tensors
input_ids = None
attention_mask = None
2023-01-20 14:35:22 +00:00
position_ids = None
2022-11-07 11:53:56 +00:00
past_key_values = []
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
top_n_tokens_tensor = None
2022-11-07 11:53:56 +00:00
# Used for slicing correctly inside the tensors
# Equivalent to a cumsum on batch sizes
start_index = 0
for i, batch in enumerate(batches):
requests.extend(batch.requests)
2022-11-07 11:53:56 +00:00
input_lengths.extend(batch.input_lengths)
prefix_offsets.extend(batch.prefix_offsets)
read_offsets.extend(batch.read_offsets)
all_input_ids.extend(batch.all_input_ids)
next_token_chooser_parameters.extend([r.parameters for r in batch.requests])
stopping_criterias.extend(batch.stopping_criterias)
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
top_n_tokens.extend(batch.top_n_tokens)
if i == 0:
requests_idx_mapping = batch.requests_idx_mapping
else:
# We need to offset the mapping for each batch by the cumulative batch size
for k, v in batch.requests_idx_mapping.items():
requests_idx_mapping[k] = v + start_index
# Slicing end index for this batch
end_index = start_index + len(batch)
# We only concatenate batches that did at least one step
2022-12-12 17:25:22 +00:00
if batch.past_key_values is None:
raise ValueError("only concatenate prefilled batches")
2022-11-07 11:53:56 +00:00
# Create empty tensor
# input_ids is always of shape [batch_size, 1]
# We do not need to pad it
if input_ids is None:
2023-12-11 08:24:09 +00:00
input_ids = batch.input_ids.new_empty((total_batch_size, max_total_tokens))
2022-11-07 11:53:56 +00:00
# Copy to correct indices
input_ids[start_index:end_index] = batch.input_ids
# Create padded tensor
if attention_mask is None:
attention_mask = batch.attention_mask.new_zeros(
(total_batch_size, max_input_length + padding_right_offset),
)
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
if top_n_tokens_tensor is None:
top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
total_batch_size,
)
top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor
# We need to slice the attention mask to remove padding from previous steps
# and to remove unused allocated space
left_offset = max_input_length - batch.max_input_length
batch_left_offset = batch.attention_mask.shape[1] - batch.max_input_length - batch.padding_right_offset
attention_mask[start_index:end_index, left_offset:-padding_right_offset] = batch.attention_mask[
:,
batch_left_offset : -batch.padding_right_offset,
]
2023-01-20 14:35:22 +00:00
# Create empty tensor
# position_ids is always of shape [batch_size, 1]
if position_ids is None:
position_ids = batch.position_ids.new_empty((total_batch_size, 1))
position_ids[start_index:end_index] = batch.position_ids
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape
# BLOOM Keys: [batch_size * num_heads, head_dim, seq_length]
# BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
# And ensure that we can update tensors in-place
kv_tuple = False
past_key_values_dims = len(batch.past_key_values[0][0].shape)
if type(batch.past_key_values[0]) == tuple:
batch.past_key_values = [
[t.view(len(batch), -1, *t.shape[-2:]) for t in layer] for layer in batch.past_key_values
]
kv_tuple = True
elif past_key_values_dims == 3:
for layer in batch.past_key_values:
for k, t in enumerate(layer):
layer[k] = t.view(len(batch), -1, *t.shape[-2:])
# Add eventual padding tokens that were added while concatenating
max_tokens += batch.max_tokens + (max_input_length - batch.max_input_length) * len(batch)
start_index = end_index
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
next_token_chooser_parameters,
dtype=batches[0].next_token_chooser.dtype,
device=batches[0].next_token_chooser.device,
)
first_past_kvs = batches[0].past_key_values
_, num_heads, _, head_dim = first_past_kvs[0][1].shape
padded_sequence_length = (
max_input_length + padding_right_offset if is_optimized_for_gaudi else max_input_length - 1
)
padded_past_values_shape = (
total_batch_size,
num_heads,
padded_sequence_length,
head_dim,
)
if batches[0].keys_head_dim_last:
padded_past_keys_shape = padded_past_values_shape
else:
# seq_length is last for BLOOM
padded_past_keys_shape = (
total_batch_size,
num_heads,
head_dim,
padded_sequence_length,
)
# Iterate over attention layers
# Concatenate past key values layer by layer to allow incremental garbage collection
for j in range(len(first_past_kvs)):
padded_past_keys = first_past_kvs[j][0].new_zeros(padded_past_keys_shape)
start_index = 0
for batch in batches:
past_keys = batch.past_key_values[j][0]
# Clear reference to the original tensor
batch.past_key_values[j][0] = None
# Slicing end index for this batch
end_index = start_index + len(batch)
# We slice the keys to remove the padding from previous batches
past_seq_len = batch.max_input_length - 1
# recaculate the offset
left_offset = max_input_length - batch.max_input_length
batch_left_offset = batch.attention_mask.shape[1] - batch.max_input_length - batch.padding_right_offset
2022-12-08 17:49:33 +00:00
if batch.keys_head_dim_last:
padded_past_keys[
start_index:end_index, :, left_offset : left_offset + past_seq_len, :
] = past_keys[:, :, batch_left_offset : batch_left_offset + past_seq_len, :]
else:
# BLOOM case
padded_past_keys[
start_index:end_index, :, :, left_offset : left_offset + past_seq_len
] = past_keys[:, :, :, batch_left_offset : batch_left_offset + past_seq_len]
del past_keys
start_index = end_index
padded_past_values = first_past_kvs[j][1].new_zeros(padded_past_values_shape)
start_index = 0
for batch in batches:
past_values = batch.past_key_values[j][1]
# Clear reference to the original tensor
batch.past_key_values[j][1] = None
# Slicing end index for this batch
end_index = start_index + len(batch)
# We slice the past values to remove the padding from previous batches
past_seq_len = batch.max_input_length - 1
# recaculate the offset
left_offset = max_input_length - batch.max_input_length
batch_left_offset = batch.attention_mask.shape[1] - batch.max_input_length - batch.padding_right_offset
padded_past_values[
start_index:end_index, :, left_offset : left_offset + past_seq_len, :
] = past_values[:, :, batch_left_offset : batch_left_offset + past_seq_len, :]
del past_values
# Update values
start_index = end_index
if past_key_values_dims == 3:
padded_past_keys = padded_past_keys.view(
padded_past_keys.shape[0] * padded_past_keys.shape[1], *padded_past_keys.shape[-2:]
)
padded_past_values = padded_past_values.view(
padded_past_values.shape[0] * padded_past_values.shape[1], *padded_past_values.shape[-2:]
)
if kv_tuple:
past_key_values.append((padded_past_keys, padded_past_values))
else:
past_key_values.append([padded_past_keys, padded_past_values])
2023-12-11 08:24:09 +00:00
if kv_tuple:
past_key_values = tuple(past_key_values)
return cls(
batch_id=batches[0].batch_id,
requests=requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
2022-11-07 11:53:56 +00:00
attention_mask=attention_mask,
2023-01-20 14:35:22 +00:00
position_ids=position_ids,
2022-11-07 11:53:56 +00:00
past_key_values=past_key_values,
all_input_ids=all_input_ids,
2022-11-07 11:53:56 +00:00
input_lengths=input_lengths,
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
next_token_chooser=next_token_chooser,
stopping_criterias=stopping_criterias,
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
top_n_tokens=top_n_tokens,
top_n_tokens_tensor=top_n_tokens_tensor,
max_input_length=max_input_length,
padding_right_offset=padding_right_offset,
2022-12-08 17:49:33 +00:00
keys_head_dim_last=batches[0].keys_head_dim_last,
max_tokens=max_tokens,
)
def __len__(self):
return len(self.requests)
class CausalLM(Model):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
):
device = torch.device("hpu")
dtype = torch.bfloat16 if dtype is None else dtype
2022-12-08 17:49:33 +00:00
from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi
adapt_transformers_to_gaudi()
2023-01-31 17:53:56 +00:00
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
)
model_kwargs = {
"revision": revision,
}
world_size = int(os.getenv("WORLD_SIZE", "1"))
rank = int(os.getenv("RANK"), 0)
self.enable_hpu_graph = os.getenv("ENABLE_HPU_GRAPH", "true").lower() == "true"
self.limit_hpu_graph = os.getenv("LIMIT_HPU_GRAPH", "false").lower() == "true"
if world_size > 1:
import habana_frameworks.torch.hpu as torch_hpu
# Get world size, rank and local rank
from habana_frameworks.torch.distributed.hccl import initialize_distributed_hpu
world_size, rank, local_rank = initialize_distributed_hpu()
import deepspeed
# Initialize process(es) for DeepSpeed
deepspeed.init_distributed(dist_backend="hccl")
logger.info(
"DeepSpeed is enabled. world_size {} rank {} local_rank {}".format(world_size, rank, local_rank)
)
config = AutoConfig.from_pretrained(model_id, **model_kwargs)
load_to_meta = model_on_meta(config)
if load_to_meta:
# Construct model with fake meta tensors, later will be replaced on devices during ds-inference ckpt load
with deepspeed.OnDevice(dtype=dtype, device="meta"):
model = AutoModelForCausalLM.from_config(config, torch_dtype=dtype)
else:
get_repo_root(model_id, local_rank=os.getenv("LOCAL_RANK"))
# TODO: revisit placement on CPU when auto-injection is possible
with deepspeed.OnDevice(dtype=dtype, device="cpu"):
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, **model_kwargs)
model = model.eval()
# Initialize the model
ds_inference_kwargs = {"dtype": dtype}
ds_inference_kwargs["tensor_parallel"] = {"tp_size": world_size}
ds_inference_kwargs["enable_cuda_graph"] = self.enable_hpu_graph
if load_to_meta:
# model loaded to meta is managed differently
checkpoints_json = tempfile.NamedTemporaryFile(suffix=".json", mode="+w")
write_checkpoints_json(model_id, local_rank, checkpoints_json)
ds_inference_kwargs["checkpoint"] = checkpoints_json.name
model = deepspeed.init_inference(model, **ds_inference_kwargs)
model = model.module
else:
get_repo_root(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
revision=revision,
torch_dtype=dtype,
)
model = model.eval().to(device)
#wrap in hpu_graph only if self.enable_hpu_graph is set
if self.enable_hpu_graph:
model = wrap_in_hpu_graph(model)
if model.config.model_type in MODELS_OPTIMIZED_WITH_STATIC_SHAPES:
self.is_optimized_for_gaudi = True
else:
self.is_optimized_for_gaudi = False
if tokenizer.pad_token_id is None:
if model.config.pad_token_id is not None:
tokenizer.pad_token_id = model.config.pad_token_id
elif model.config.eos_token_id is not None:
tokenizer.pad_token_id = model.config.eos_token_id
elif tokenizer.eos_token_id is not None:
tokenizer.pad_token_id = tokenizer.eos_token_id
else:
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
kwargs = {
"use_cache": True,
"return_dict": True,
}
if model.config.model_type == "llama":
kwargs["attn_softmax_bf16"] = True
kwargs["trim_logits"] = True
super(CausalLM, self).__init__(
model=model,
tokenizer=tokenizer,
requires_padding=True,
dtype=dtype,
device=device,
rank=rank,
kwargs=kwargs,
)
self.profiling_warmup_steps = int(os.getenv("PROF_WARMUPSTEP", "0"))
self.profiling_steps = int(os.getenv("PROF_STEP", "5"))
output_dir = os.getenv("PROF_PATH", "/tmp/hpu_profile")
self.hb_profer = HabanaProfile(
warmup=self.profiling_warmup_steps, active=self.profiling_steps, output_dir=output_dir
)
if self.profiling_warmup_steps > 0:
self.hb_profer_started = True
self.hb_profer.start()
else:
self.hb_profer = None
self.hb_profer_started = False
self.step = 0
@property
def batch_type(self) -> Type[CausalLMBatch]:
return CausalLMBatch
2023-01-20 11:24:39 +00:00
def decode(self, generated_ids: List[int]) -> str:
return self.tokenizer.decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
2023-01-20 11:24:39 +00:00
def forward(
self,
input_ids,
attention_mask,
position_ids,
token_idx: Optional = None,
past_key_values: Optional = None,
bypass_hpu_graph: Optional = None,
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
# Model Forward
kwargs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
}
if self.is_optimized_for_gaudi:
kwargs["token_idx"] = token_idx
if self.has_position_ids:
kwargs["position_ids"] = position_ids
if bypass_hpu_graph != None:
kwargs["bypass_hpu_graphs"] = bypass_hpu_graph
kwargs.update(self.kwargs)
outputs = self.model.forward(**kwargs)
return outputs.logits, outputs.past_key_values
2023-02-13 12:02:45 +00:00
@tracer.start_as_current_span("generate_token")
def generate_token(self, batch: CausalLMBatch) -> Tuple[List[Generation], Optional[CausalLMBatch]]:
self.step = self.step + 1
if self.hb_profer_started == True and self.step > self.profiling_warmup_steps + self.profiling_steps:
self.hb_profer.stop()
self.hb_profer_started = False
if self.is_optimized_for_gaudi:
token_idx = torch.tensor(batch.attention_mask.shape[-1] - batch.padding_right_offset).to(self.device)
attention_mask = batch.attention_mask
else:
token_idx = None
# slice the attention mask to the correct shape
attention_mask = batch.attention_mask[:, : -batch.padding_right_offset]
prefill = batch.past_key_values is None
if batch.past_key_values:
if token_idx is not None:
input_ids = torch.index_select(batch.input_ids, 1, token_idx - 1)
else:
input_ids = batch.input_ids
logits, past = self.forward(
input_ids,
attention_mask,
batch.position_ids,
token_idx,
batch.past_key_values,
bypass_hpu_graph = prefill and self.limit_hpu_graph if self.enable_hpu_graph else None
)
# Results
generations: List[Generation] = []
stopped = True
# Select next token
input_length = batch.input_lengths[0]
if self.is_optimized_for_gaudi and logits.shape[-2] > 1:
next_input_ids, next_token_logprobs, logprobs = batch.next_token_chooser(
batch.input_ids[:, :token_idx], logits[:, input_length - 1 : input_length, :].squeeze(-2)
)
else:
next_input_ids, next_token_logprobs, logprobs = batch.next_token_chooser(
batch.input_ids[:, :token_idx], logits.squeeze(-2)
)
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
batch.top_n_tokens,
batch.top_n_tokens_tensor,
logprobs,
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
)
htorch.core.mark_step()
logits = logits.to("cpu")
next_token_logprobs = next_token_logprobs.tolist()
next_token_ids = next_input_ids
# Zipped iterator
iterator = zip(
batch.requests,
2022-11-07 11:53:56 +00:00
batch.input_lengths,
batch.prefix_offsets,
batch.read_offsets,
logits,
batch.next_token_chooser.do_sample,
batch.next_token_chooser.seeds,
batch.stopping_criterias,
batch.all_input_ids,
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
batch.top_n_tokens,
next_token_ids,
next_token_logprobs,
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
batch_top_token_ids,
batch_top_token_logprobs,
)
# For each member of the batch
for i, (
request,
input_length,
prefix_offset,
read_offset,
logits,
do_sample,
seed,
stopping_criteria,
2022-12-15 16:03:56 +00:00
all_input_ids,
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
top_n_tokens,
next_token_id,
next_token_logprob,
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
top_token_ids,
top_token_logprobs,
) in enumerate(iterator):
# Append next token to all tokens
if self.is_optimized_for_gaudi:
all_input_ids[input_length] = next_token_id
else:
all_input_ids = torch.cat([all_input_ids, next_token_id])
2022-12-15 16:03:56 +00:00
new_input_length = input_length + 1
# Generated token
next_token_text, prefix_offset, read_offset = self.decode_token(
all_input_ids[0:new_input_length, 0], prefix_offset, read_offset
)
# Evaluate stopping criteria
2022-12-16 15:03:39 +00:00
stop, reason = stopping_criteria(
next_token_id,
next_token_text,
2022-12-16 15:03:39 +00:00
)
if not stop:
stopped = False
# Shard generations
# All generations will be appended in the rust sharded client
if i % self.world_size == self.rank:
if stop:
# Decode generated tokens
output_text = self.decode(
all_input_ids[new_input_length - stopping_criteria.current_tokens : new_input_length, 0]
)
generated_text = GeneratedText(
output_text,
stopping_criteria.current_tokens,
reason,
seed if do_sample else None,
)
else:
generated_text = None
# Prefill
if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
# Remove generated token to only have prefill and add nan for first prompt token
prefill_logprobs = [float("nan")] + next_token_logprobs
prefill_token_ids = all_input_ids[0 : new_input_length - 1]
prefill_texts = self.tokenizer.batch_decode(
prefill_token_ids,
clean_up_tokenization_spaces=False,
skip_special_tokens=False,
)
prefill_tokens = PrefillTokens(prefill_token_ids, prefill_logprobs, prefill_texts)
else:
prefill_tokens = None
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
if top_n_tokens > 0:
toptoken_texts = self.tokenizer.batch_decode(
top_token_ids,
clean_up_tokenization_spaces=False,
skip_special_tokens=False,
)
special_toptokens = [token_id in self.all_special_ids for token_id in top_token_ids]
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
top_tokens = TopTokens(
top_token_ids,
top_token_logprobs,
toptoken_texts,
special_toptokens,
)
else:
top_tokens = None
generation = Generation(
request.id,
prefill_tokens,
next_token_id,
next_token_logprob,
next_token_text,
next_token_id in self.all_special_ids,
generated_text,
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
top_tokens,
)
generations.append(generation)
batch.all_input_ids[i] = all_input_ids
batch.input_lengths[i] = new_input_length
batch.prefix_offsets[i] = prefix_offset
batch.read_offsets[i] = read_offset
batch.max_input_length = max(batch.max_input_length, new_input_length)
if token_idx is None:
2023-12-11 08:24:09 +00:00
batch.input_ids[:, 0] = next_token_ids[:, 0]
else:
2023-12-11 08:24:09 +00:00
batch.input_ids[:, token_idx] = next_token_ids
# We finished all generations in the batch; there is no next batch
if stopped:
if self.hb_profer_started == True:
self.hb_profer.step()
return generations, None
# Slice unused values from prefill, use it to store next token
if token_idx is None:
batch.input_ids = batch.input_ids[:, :1]
# Update attention_mask as we added a new token to input_ids
if self.is_optimized_for_gaudi:
batch.attention_mask.index_fill_(1, token_idx, 1)
else:
batch.attention_mask[:, -batch.padding_right_offset] = 1
# Decrease right offset
batch.padding_right_offset -= 1
2023-01-20 14:35:22 +00:00
# Update position_ids
if prefill:
batch.position_ids = batch.position_ids[:, token_idx - 1 : token_idx] + 1
else:
batch.position_ids += 1
# Update past key values
batch.past_key_values = past
if self.hb_profer_started == True:
self.hb_profer.step()
return generations, batch