2023-12-05 10:12:16 +00:00
|
|
|
import os
|
|
|
|
import tempfile
|
|
|
|
|
2023-08-28 09:43:47 +00:00
|
|
|
from text_generation_server.utils.tokens import batch_top_tokens
|
2022-11-04 13:22:47 +00:00
|
|
|
import torch
|
|
|
|
|
2022-11-04 17:03:04 +00:00
|
|
|
from dataclasses import dataclass
|
2023-02-13 12:02:45 +00:00
|
|
|
from opentelemetry import trace
|
2023-12-05 10:12:16 +00:00
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerBase, AutoConfig
|
2023-04-20 09:07:40 +00:00
|
|
|
from typing import Optional, Tuple, List, Type, Dict
|
2023-12-05 10:12:16 +00:00
|
|
|
from habana_frameworks.torch.hpu import wrap_in_hpu_graph
|
|
|
|
import habana_frameworks.torch as htorch
|
|
|
|
from contextlib import nullcontext
|
|
|
|
from optimum.habana.utils import HabanaProfile
|
|
|
|
|
|
|
|
from optimum.habana.transformers.generation import MODELS_OPTIMIZED_WITH_STATIC_SHAPES
|
|
|
|
from optimum.habana.checkpoint_utils import (
|
|
|
|
get_repo_root,
|
|
|
|
model_on_meta,
|
|
|
|
write_checkpoints_json,
|
|
|
|
)
|
2022-11-04 13:22:47 +00:00
|
|
|
|
2023-03-07 17:52:22 +00:00
|
|
|
from text_generation_server.models import Model
|
|
|
|
from text_generation_server.models.types import (
|
|
|
|
Batch,
|
|
|
|
PrefillTokens,
|
|
|
|
Generation,
|
|
|
|
GeneratedText,
|
2023-08-28 09:43:47 +00:00
|
|
|
TopTokens,
|
2023-03-07 17:52:22 +00:00
|
|
|
)
|
|
|
|
from text_generation_server.pb import generate_pb2
|
2023-12-05 10:12:16 +00:00
|
|
|
from text_generation_server.utils import HeterogeneousNextTokenChooser, StoppingCriteria, Sampling
|
|
|
|
from loguru import logger
|
2022-11-04 17:03:04 +00:00
|
|
|
|
2023-02-13 12:02:45 +00:00
|
|
|
tracer = trace.get_tracer(__name__)
|
|
|
|
|
2022-11-04 17:03:04 +00:00
|
|
|
@dataclass
|
2023-01-17 08:10:22 +00:00
|
|
|
class CausalLMBatch(Batch):
|
2022-11-04 17:03:04 +00:00
|
|
|
batch_id: int
|
|
|
|
requests: List[generate_pb2.Request]
|
2023-04-20 09:07:40 +00:00
|
|
|
requests_idx_mapping: Dict[int, int]
|
2022-11-07 11:53:56 +00:00
|
|
|
|
|
|
|
# Decoder values
|
|
|
|
input_ids: torch.Tensor
|
|
|
|
attention_mask: torch.Tensor
|
2023-01-20 14:35:22 +00:00
|
|
|
position_ids: torch.Tensor
|
2022-11-07 11:53:56 +00:00
|
|
|
past_key_values: Optional[List[Tuple]]
|
|
|
|
|
|
|
|
# All tokens
|
2022-11-04 17:03:04 +00:00
|
|
|
all_input_ids: List[torch.Tensor]
|
2022-11-07 11:53:56 +00:00
|
|
|
|
|
|
|
# Lengths of all generations present in the batch
|
|
|
|
input_lengths: List[int]
|
2023-05-16 21:23:27 +00:00
|
|
|
prefix_offsets: List[int]
|
|
|
|
read_offsets: List[int]
|
2022-11-07 11:53:56 +00:00
|
|
|
|
|
|
|
# Generation helpers
|
2023-12-05 10:12:16 +00:00
|
|
|
next_token_chooser: HeterogeneousNextTokenChooser
|
2022-11-04 17:03:04 +00:00
|
|
|
stopping_criterias: List[StoppingCriteria]
|
2023-08-28 09:43:47 +00:00
|
|
|
top_n_tokens: List[int]
|
|
|
|
top_n_tokens_tensor: torch.Tensor
|
2022-11-07 11:53:56 +00:00
|
|
|
|
|
|
|
# Metadata used for padding
|
2023-03-16 11:12:26 +00:00
|
|
|
max_input_length: int
|
2023-02-24 11:49:21 +00:00
|
|
|
padding_right_offset: int
|
2022-11-04 17:03:04 +00:00
|
|
|
|
2023-04-24 15:59:00 +00:00
|
|
|
# Maximum number of tokens this batch will grow to
|
|
|
|
max_tokens: int
|
|
|
|
|
2022-12-08 17:49:33 +00:00
|
|
|
# Past metadata
|
|
|
|
keys_head_dim_last: bool = True
|
|
|
|
|
2023-05-24 17:19:57 +00:00
|
|
|
def to_pb(self) -> generate_pb2.CachedBatch:
|
|
|
|
return generate_pb2.CachedBatch(
|
2022-11-04 17:03:04 +00:00
|
|
|
id=self.batch_id,
|
2023-05-24 17:19:57 +00:00
|
|
|
request_ids=[r.id for r in self.requests],
|
2023-04-20 09:07:40 +00:00
|
|
|
size=len(self),
|
2023-04-24 15:59:00 +00:00
|
|
|
max_tokens=self.max_tokens,
|
2022-11-04 17:03:04 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_pb(
|
2023-01-20 11:24:39 +00:00
|
|
|
cls,
|
|
|
|
pb: generate_pb2.Batch,
|
|
|
|
tokenizer: PreTrainedTokenizerBase,
|
2023-05-26 10:30:27 +00:00
|
|
|
dtype: torch.dtype,
|
2023-01-20 11:24:39 +00:00
|
|
|
device: torch.device,
|
2023-12-05 10:12:16 +00:00
|
|
|
is_optimized_for_gaudi: bool = False,
|
2022-11-04 17:03:04 +00:00
|
|
|
) -> "CausalLMBatch":
|
|
|
|
inputs = []
|
2023-12-05 10:12:16 +00:00
|
|
|
next_token_chooser_parameters = []
|
2022-11-04 17:03:04 +00:00
|
|
|
stopping_criterias = []
|
2023-08-28 09:43:47 +00:00
|
|
|
top_n_tokens = []
|
2023-05-16 21:23:27 +00:00
|
|
|
prefix_offsets = []
|
|
|
|
read_offsets = []
|
2023-04-20 09:07:40 +00:00
|
|
|
requests_idx_mapping = {}
|
2023-12-05 10:12:16 +00:00
|
|
|
input_lengths = []
|
2022-11-04 17:03:04 +00:00
|
|
|
|
|
|
|
# Parse batch
|
2023-04-09 18:22:27 +00:00
|
|
|
max_truncation = 0
|
2023-02-24 11:49:21 +00:00
|
|
|
padding_right_offset = 0
|
2023-04-24 15:59:00 +00:00
|
|
|
max_decode_tokens = 0
|
2023-12-05 10:12:16 +00:00
|
|
|
|
|
|
|
# TODO: this should be set to rust side `max_total_tokens`,
|
|
|
|
# (see https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs#L177)
|
|
|
|
# but TGI does not offer an API to expose this variable to python, as this variable
|
|
|
|
# is handled by the client but it appears the model is initialized by the server.
|
|
|
|
# An alternative could be to initialize the buffers during warmup.
|
|
|
|
# Dummy
|
|
|
|
max_total_tokens = int(os.getenv("MAX_TOTAL_TOKENS", "0"))
|
|
|
|
logger.info("MAX_TOTAL_TOKENS = {}".format(max_total_tokens))
|
|
|
|
|
2023-04-20 09:07:40 +00:00
|
|
|
for i, r in enumerate(pb.requests):
|
|
|
|
requests_idx_mapping[r.id] = i
|
2022-11-04 17:03:04 +00:00
|
|
|
inputs.append(r.inputs)
|
2023-12-05 10:12:16 +00:00
|
|
|
next_token_chooser_parameters.append(r.parameters)
|
|
|
|
stopping_criteria = StoppingCriteria.from_pb(r.stopping_parameters, tokenizer)
|
2023-02-24 11:49:21 +00:00
|
|
|
stopping_criterias.append(stopping_criteria)
|
2023-08-28 09:43:47 +00:00
|
|
|
top_n_tokens.append(r.top_n_tokens)
|
2023-04-09 18:22:27 +00:00
|
|
|
max_truncation = max(max_truncation, r.truncate)
|
2023-04-24 15:59:00 +00:00
|
|
|
max_decode_tokens += stopping_criteria.max_new_tokens
|
2023-12-05 10:12:16 +00:00
|
|
|
padding_right_offset = max(padding_right_offset, stopping_criteria.max_new_tokens)
|
|
|
|
|
|
|
|
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
|
|
|
|
next_token_chooser_parameters, dtype, device
|
|
|
|
)
|
2022-11-04 17:03:04 +00:00
|
|
|
|
2022-11-07 11:53:56 +00:00
|
|
|
tokenized_inputs = tokenizer(
|
2022-12-12 17:25:22 +00:00
|
|
|
inputs,
|
|
|
|
return_tensors="pt",
|
2023-12-05 10:12:16 +00:00
|
|
|
padding="max_length",
|
2023-01-20 11:24:39 +00:00
|
|
|
return_token_type_ids=False,
|
2023-04-09 18:22:27 +00:00
|
|
|
truncation=True,
|
|
|
|
max_length=max_truncation,
|
2023-12-05 10:12:16 +00:00
|
|
|
)
|
|
|
|
|
2023-05-16 21:23:27 +00:00
|
|
|
for _ in pb.requests:
|
|
|
|
input_len = tokenized_inputs["input_ids"].shape[1]
|
2023-12-05 10:12:16 +00:00
|
|
|
input_lengths.append(input_len)
|
2023-06-02 15:12:30 +00:00
|
|
|
prefix_offsets.append(input_len - 5)
|
2023-05-16 21:23:27 +00:00
|
|
|
read_offsets.append(input_len)
|
2023-02-24 11:49:21 +00:00
|
|
|
|
2023-12-05 10:12:16 +00:00
|
|
|
max_input_length = max(input_lengths)
|
|
|
|
if max_total_tokens == 0:
|
|
|
|
max_total_tokens = max_input_length
|
|
|
|
max_tokens = len(inputs) * max_input_length + max_decode_tokens
|
|
|
|
if is_optimized_for_gaudi and max_total_tokens > max_input_length:
|
|
|
|
# pad to max_total_tokens in case max_new_token changes per request and triggers new hpu graph generation
|
|
|
|
padding_right_offset = max_total_tokens - max_input_length
|
2023-03-16 11:12:26 +00:00
|
|
|
|
2023-02-24 11:49:21 +00:00
|
|
|
input_ids = tokenized_inputs["input_ids"]
|
2023-12-05 10:12:16 +00:00
|
|
|
attention_mask = tokenized_inputs["attention_mask"]
|
|
|
|
# only move model inputs to device
|
|
|
|
attention_mask = attention_mask.to(device)
|
|
|
|
|
|
|
|
if is_optimized_for_gaudi:
|
|
|
|
input_ids_cpu = torch.nn.functional.pad(
|
|
|
|
input_ids, (0, padding_right_offset), value=tokenizer.pad_token_id
|
|
|
|
)
|
|
|
|
input_ids = input_ids_cpu.to(device)
|
|
|
|
attention_mask = torch.nn.functional.pad(attention_mask, (0, padding_right_offset), value=0)
|
|
|
|
all_input_ids = input_ids_cpu.T.split(1, dim=1)
|
|
|
|
else:
|
|
|
|
all_input_ids = input_ids.clone().T.split(1, dim=1)
|
|
|
|
input_ids = input_ids.to(device)
|
|
|
|
|
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
|
|
htorch.core.mark_step()
|
2022-11-04 17:03:04 +00:00
|
|
|
|
2023-12-05 10:12:16 +00:00
|
|
|
top_n_tokens_tensor = torch.tensor(top_n_tokens, device=device, dtype=torch.int64)
|
2023-04-24 15:59:00 +00:00
|
|
|
|
2022-11-04 17:03:04 +00:00
|
|
|
return cls(
|
|
|
|
batch_id=pb.id,
|
|
|
|
requests=pb.requests,
|
2023-04-20 09:07:40 +00:00
|
|
|
requests_idx_mapping=requests_idx_mapping,
|
2023-02-24 11:49:21 +00:00
|
|
|
input_ids=input_ids,
|
|
|
|
attention_mask=attention_mask,
|
2023-01-20 14:35:22 +00:00
|
|
|
position_ids=position_ids,
|
2022-11-07 11:53:56 +00:00
|
|
|
past_key_values=None,
|
2023-04-20 09:07:40 +00:00
|
|
|
all_input_ids=list(all_input_ids),
|
2023-12-05 10:12:16 +00:00
|
|
|
input_lengths=input_lengths,
|
2023-05-16 21:23:27 +00:00
|
|
|
prefix_offsets=prefix_offsets,
|
|
|
|
read_offsets=read_offsets,
|
2023-12-05 10:12:16 +00:00
|
|
|
next_token_chooser=next_token_chooser,
|
2022-11-04 17:03:04 +00:00
|
|
|
stopping_criterias=stopping_criterias,
|
2023-08-28 09:43:47 +00:00
|
|
|
top_n_tokens=top_n_tokens,
|
|
|
|
top_n_tokens_tensor=top_n_tokens_tensor,
|
2023-12-05 10:12:16 +00:00
|
|
|
max_input_length=max_input_length,
|
2023-02-24 11:49:21 +00:00
|
|
|
padding_right_offset=padding_right_offset,
|
2023-04-24 15:59:00 +00:00
|
|
|
max_tokens=max_tokens,
|
2022-11-04 17:03:04 +00:00
|
|
|
)
|
|
|
|
|
2023-04-20 09:07:40 +00:00
|
|
|
@tracer.start_as_current_span("filter")
|
2023-12-05 10:12:16 +00:00
|
|
|
def filter(self, request_ids: List[int], is_optimized_for_gaudi: bool = False) -> Optional["CausalLMBatch"]:
|
2023-05-24 17:19:57 +00:00
|
|
|
if len(request_ids) == 0:
|
2023-04-20 09:07:40 +00:00
|
|
|
raise ValueError("Batch must have at least one request")
|
2023-05-24 17:19:57 +00:00
|
|
|
if len(request_ids) == len(self):
|
2023-04-20 09:07:40 +00:00
|
|
|
return self
|
|
|
|
|
|
|
|
keep_indices = []
|
|
|
|
|
|
|
|
# New values after filtering
|
|
|
|
requests_idx_mapping = {}
|
2023-05-24 17:19:57 +00:00
|
|
|
requests = []
|
2023-04-20 09:07:40 +00:00
|
|
|
input_lengths = []
|
2023-05-16 21:23:27 +00:00
|
|
|
prefix_offsets = []
|
|
|
|
read_offsets = []
|
2023-04-20 09:07:40 +00:00
|
|
|
all_input_ids = []
|
|
|
|
max_input_length = 0
|
|
|
|
|
|
|
|
stopping_criterias = []
|
2023-08-28 09:43:47 +00:00
|
|
|
top_n_tokens = []
|
2023-04-20 09:07:40 +00:00
|
|
|
|
2023-04-24 15:59:00 +00:00
|
|
|
total_remaining_decode_tokens = 0
|
2023-04-24 12:15:42 +00:00
|
|
|
new_padding_right_offset = 0
|
|
|
|
|
2023-05-24 17:19:57 +00:00
|
|
|
for i, request_id in enumerate(request_ids):
|
|
|
|
idx = self.requests_idx_mapping[request_id]
|
|
|
|
requests_idx_mapping[request_id] = i
|
2023-04-20 09:07:40 +00:00
|
|
|
keep_indices.append(idx)
|
|
|
|
|
2023-05-24 17:19:57 +00:00
|
|
|
requests.append(self.requests[idx])
|
2023-05-16 21:23:27 +00:00
|
|
|
prefix_offsets.append(self.prefix_offsets[idx])
|
|
|
|
read_offsets.append(self.read_offsets[idx])
|
2023-04-20 09:07:40 +00:00
|
|
|
all_input_ids.append(self.all_input_ids[idx])
|
|
|
|
|
|
|
|
request_input_length = self.input_lengths[idx]
|
|
|
|
input_lengths.append(request_input_length)
|
|
|
|
max_input_length = max(max_input_length, request_input_length)
|
|
|
|
|
2023-04-24 12:15:42 +00:00
|
|
|
stopping_criteria = self.stopping_criterias[idx]
|
|
|
|
stopping_criterias.append(stopping_criteria)
|
2023-08-28 09:43:47 +00:00
|
|
|
top_n_tokens.append(self.top_n_tokens[idx])
|
2023-12-05 10:12:16 +00:00
|
|
|
remaining_decode_tokens = stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
|
2023-04-24 15:59:00 +00:00
|
|
|
total_remaining_decode_tokens += remaining_decode_tokens
|
2023-12-05 10:12:16 +00:00
|
|
|
new_padding_right_offset = max(new_padding_right_offset, remaining_decode_tokens)
|
2023-04-20 09:07:40 +00:00
|
|
|
|
|
|
|
# Apply indices to input_ids, attention mask, past key values and other items that need to be cached
|
|
|
|
input_ids = self.input_ids[keep_indices]
|
|
|
|
position_ids = self.position_ids[keep_indices]
|
2023-12-05 10:12:16 +00:00
|
|
|
next_token_chooser = self.next_token_chooser.filter(keep_indices)
|
|
|
|
if is_optimized_for_gaudi:
|
|
|
|
self.attention_mask = self.attention_mask[keep_indices]
|
|
|
|
else:
|
|
|
|
self.attention_mask = self.attention_mask[
|
|
|
|
keep_indices,
|
|
|
|
-(self.padding_right_offset + max_input_length) : (
|
|
|
|
self.attention_mask.shape[1] - self.padding_right_offset
|
|
|
|
)
|
|
|
|
+ new_padding_right_offset,
|
|
|
|
]
|
2023-04-20 09:07:40 +00:00
|
|
|
|
2023-04-24 12:15:42 +00:00
|
|
|
# Ensure that past_key_values tensors can be updated in-place
|
2023-12-05 10:12:16 +00:00
|
|
|
kv_tuple = False
|
2023-04-24 12:15:42 +00:00
|
|
|
if type(self.past_key_values[0]) == tuple:
|
|
|
|
self.past_key_values = [list(layer) for layer in self.past_key_values]
|
2023-12-05 10:12:16 +00:00
|
|
|
kv_tuple = True
|
2023-04-24 12:15:42 +00:00
|
|
|
|
|
|
|
# Update tensors in-place to allow incremental garbage collection
|
|
|
|
past_kv_length = max_input_length - 1
|
|
|
|
for layer in self.past_key_values:
|
|
|
|
past_keys, past_values = layer
|
2023-12-05 10:12:16 +00:00
|
|
|
past_keys_dims = len(past_keys.shape)
|
|
|
|
if past_keys_dims == 3:
|
2023-04-24 12:15:42 +00:00
|
|
|
# Force past to be of dim [self_size, num_heads, ...] for easy indexing
|
|
|
|
past_keys = past_keys.view(len(self), -1, *past_keys.shape[-2:])
|
|
|
|
past_values = past_values.view(len(self), -1, *past_values.shape[-2:])
|
2023-12-05 10:12:16 +00:00
|
|
|
if is_optimized_for_gaudi:
|
|
|
|
layer[0] = past_keys[keep_indices]
|
|
|
|
del past_keys
|
|
|
|
layer[1] = past_values[keep_indices]
|
|
|
|
del past_values
|
2023-04-24 12:15:42 +00:00
|
|
|
else:
|
2023-12-05 10:12:16 +00:00
|
|
|
if self.keys_head_dim_last:
|
|
|
|
layer[0] = past_keys[keep_indices, :, -past_kv_length:, :]
|
|
|
|
else:
|
|
|
|
layer[0] = past_keys[keep_indices, :, :, -past_kv_length:]
|
|
|
|
del past_keys
|
|
|
|
layer[1] = past_values[keep_indices, :, -past_kv_length:, :]
|
|
|
|
del past_values
|
|
|
|
if past_keys_dims == 3:
|
|
|
|
layer[0] = layer[0].view(layer[0].shape[0] * layer[0].shape[1], *layer[0].shape[-2:])
|
|
|
|
layer[1] = layer[1].view(layer[1].shape[0] * layer[1].shape[1], *layer[1].shape[-2:])
|
2023-04-24 12:15:42 +00:00
|
|
|
|
2023-08-28 09:43:47 +00:00
|
|
|
top_n_tokens_tensor = self.top_n_tokens_tensor[keep_indices]
|
2023-05-24 17:19:57 +00:00
|
|
|
max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens
|
2023-04-24 15:59:00 +00:00
|
|
|
|
2023-12-05 10:12:16 +00:00
|
|
|
if kv_tuple:
|
2023-12-11 08:24:09 +00:00
|
|
|
self.past_key_values = tuple([tuple(layer) for layer in self.past_key_values])
|
2023-12-05 10:12:16 +00:00
|
|
|
|
2023-04-24 12:15:42 +00:00
|
|
|
self.requests = requests
|
|
|
|
self.requests_idx_mapping = requests_idx_mapping
|
|
|
|
self.input_ids = input_ids
|
|
|
|
self.position_ids = position_ids
|
|
|
|
self.all_input_ids = all_input_ids
|
|
|
|
self.input_lengths = input_lengths
|
2023-05-16 21:23:27 +00:00
|
|
|
self.prefix_offsets = prefix_offsets
|
|
|
|
self.read_offsets = read_offsets
|
2023-12-05 10:12:16 +00:00
|
|
|
self.next_token_chooser = next_token_chooser
|
2023-04-24 12:15:42 +00:00
|
|
|
self.stopping_criterias = stopping_criterias
|
2023-08-28 09:43:47 +00:00
|
|
|
self.top_n_tokens = top_n_tokens
|
|
|
|
self.top_n_tokens_tensor = top_n_tokens_tensor
|
2023-04-24 12:15:42 +00:00
|
|
|
self.max_input_length = max_input_length
|
|
|
|
self.padding_right_offset = new_padding_right_offset
|
2023-04-24 15:59:00 +00:00
|
|
|
self.max_tokens = max_tokens
|
2023-04-24 12:15:42 +00:00
|
|
|
|
|
|
|
return self
|
2023-04-20 09:07:40 +00:00
|
|
|
|
2022-11-04 17:03:04 +00:00
|
|
|
@classmethod
|
2023-02-13 12:02:45 +00:00
|
|
|
@tracer.start_as_current_span("concatenate")
|
2023-12-05 10:12:16 +00:00
|
|
|
def concatenate(cls, batches: List["CausalLMBatch"], is_optimized_for_gaudi: bool = False) -> "CausalLMBatch":
|
2022-11-04 17:03:04 +00:00
|
|
|
# Used for padding
|
2023-02-24 11:49:21 +00:00
|
|
|
total_batch_size = 0
|
2023-03-16 11:12:26 +00:00
|
|
|
max_input_length = 0
|
2023-02-24 11:49:21 +00:00
|
|
|
padding_right_offset = 0
|
2023-12-05 10:12:16 +00:00
|
|
|
max_total_tokens = 0
|
2023-02-24 11:49:21 +00:00
|
|
|
for batch in batches:
|
2023-04-20 09:07:40 +00:00
|
|
|
total_batch_size += len(batch)
|
2023-03-16 11:12:26 +00:00
|
|
|
max_input_length = max(max_input_length, batch.max_input_length)
|
2023-02-24 11:49:21 +00:00
|
|
|
padding_right_offset = max(padding_right_offset, batch.padding_right_offset)
|
2023-12-05 10:12:16 +00:00
|
|
|
max_total_tokens = max(max_total_tokens, batch.max_input_length + batch.padding_right_offset)
|
|
|
|
|
|
|
|
if is_optimized_for_gaudi and max_total_tokens > max_input_length:
|
|
|
|
padding_right_offset = max_total_tokens - max_input_length
|
2022-11-04 17:03:04 +00:00
|
|
|
|
|
|
|
# Batch attributes
|
|
|
|
requests = []
|
2023-04-20 09:07:40 +00:00
|
|
|
requests_idx_mapping = {}
|
2022-11-07 11:53:56 +00:00
|
|
|
input_lengths = []
|
2023-05-16 21:23:27 +00:00
|
|
|
prefix_offsets = []
|
|
|
|
read_offsets = []
|
2022-11-04 17:03:04 +00:00
|
|
|
all_input_ids = []
|
2023-12-05 10:12:16 +00:00
|
|
|
next_token_chooser_parameters = []
|
2022-11-04 17:03:04 +00:00
|
|
|
stopping_criterias = []
|
2023-08-28 09:43:47 +00:00
|
|
|
top_n_tokens = []
|
2023-04-24 15:59:00 +00:00
|
|
|
max_tokens = 0
|
2022-11-04 17:03:04 +00:00
|
|
|
|
2022-11-07 11:53:56 +00:00
|
|
|
# Batch tensors
|
|
|
|
input_ids = None
|
|
|
|
attention_mask = None
|
2023-01-20 14:35:22 +00:00
|
|
|
position_ids = None
|
2022-11-07 11:53:56 +00:00
|
|
|
past_key_values = []
|
2023-08-28 09:43:47 +00:00
|
|
|
top_n_tokens_tensor = None
|
2022-11-07 11:53:56 +00:00
|
|
|
|
2022-11-04 17:03:04 +00:00
|
|
|
# Used for slicing correctly inside the tensors
|
|
|
|
# Equivalent to a cumsum on batch sizes
|
|
|
|
start_index = 0
|
|
|
|
for i, batch in enumerate(batches):
|
|
|
|
requests.extend(batch.requests)
|
2022-11-07 11:53:56 +00:00
|
|
|
input_lengths.extend(batch.input_lengths)
|
2023-05-16 21:23:27 +00:00
|
|
|
prefix_offsets.extend(batch.prefix_offsets)
|
|
|
|
read_offsets.extend(batch.read_offsets)
|
2022-11-04 17:03:04 +00:00
|
|
|
all_input_ids.extend(batch.all_input_ids)
|
2023-12-05 10:12:16 +00:00
|
|
|
next_token_chooser_parameters.extend([r.parameters for r in batch.requests])
|
2022-11-04 17:03:04 +00:00
|
|
|
stopping_criterias.extend(batch.stopping_criterias)
|
2023-08-28 09:43:47 +00:00
|
|
|
top_n_tokens.extend(batch.top_n_tokens)
|
2022-11-04 17:03:04 +00:00
|
|
|
|
2023-04-20 09:07:40 +00:00
|
|
|
if i == 0:
|
|
|
|
requests_idx_mapping = batch.requests_idx_mapping
|
|
|
|
else:
|
|
|
|
# We need to offset the mapping for each batch by the cumulative batch size
|
|
|
|
for k, v in batch.requests_idx_mapping.items():
|
|
|
|
requests_idx_mapping[k] = v + start_index
|
|
|
|
|
2022-11-04 17:03:04 +00:00
|
|
|
# Slicing end index for this batch
|
2023-04-20 09:07:40 +00:00
|
|
|
end_index = start_index + len(batch)
|
2022-11-04 17:03:04 +00:00
|
|
|
|
|
|
|
# We only concatenate batches that did at least one step
|
2022-12-12 17:25:22 +00:00
|
|
|
if batch.past_key_values is None:
|
|
|
|
raise ValueError("only concatenate prefilled batches")
|
2022-11-04 17:03:04 +00:00
|
|
|
|
2022-11-07 11:53:56 +00:00
|
|
|
# Create empty tensor
|
|
|
|
# input_ids is always of shape [batch_size, 1]
|
|
|
|
# We do not need to pad it
|
|
|
|
if input_ids is None:
|
2023-12-11 08:24:09 +00:00
|
|
|
input_ids = batch.input_ids.new_empty((total_batch_size, max_total_tokens))
|
2022-11-07 11:53:56 +00:00
|
|
|
# Copy to correct indices
|
|
|
|
input_ids[start_index:end_index] = batch.input_ids
|
|
|
|
|
|
|
|
# Create padded tensor
|
|
|
|
if attention_mask is None:
|
2023-01-17 08:10:22 +00:00
|
|
|
attention_mask = batch.attention_mask.new_zeros(
|
2023-03-16 11:12:26 +00:00
|
|
|
(total_batch_size, max_input_length + padding_right_offset),
|
2022-11-04 17:03:04 +00:00
|
|
|
)
|
|
|
|
|
2023-08-28 09:43:47 +00:00
|
|
|
if top_n_tokens_tensor is None:
|
|
|
|
top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
|
|
|
|
total_batch_size,
|
|
|
|
)
|
|
|
|
top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor
|
|
|
|
|
2022-11-04 17:03:04 +00:00
|
|
|
# We need to slice the attention mask to remove padding from previous steps
|
2023-02-24 11:49:21 +00:00
|
|
|
# and to remove unused allocated space
|
2023-03-16 11:12:26 +00:00
|
|
|
left_offset = max_input_length - batch.max_input_length
|
2023-12-05 10:12:16 +00:00
|
|
|
batch_left_offset = batch.attention_mask.shape[1] - batch.max_input_length - batch.padding_right_offset
|
|
|
|
attention_mask[start_index:end_index, left_offset:-padding_right_offset] = batch.attention_mask[
|
2023-02-24 11:49:21 +00:00
|
|
|
:,
|
|
|
|
batch_left_offset : -batch.padding_right_offset,
|
|
|
|
]
|
2022-11-04 17:03:04 +00:00
|
|
|
|
2023-01-20 14:35:22 +00:00
|
|
|
# Create empty tensor
|
|
|
|
# position_ids is always of shape [batch_size, 1]
|
|
|
|
if position_ids is None:
|
|
|
|
position_ids = batch.position_ids.new_empty((total_batch_size, 1))
|
|
|
|
position_ids[start_index:end_index] = batch.position_ids
|
|
|
|
|
2023-04-24 12:15:42 +00:00
|
|
|
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape
|
|
|
|
# BLOOM Keys: [batch_size * num_heads, head_dim, seq_length]
|
|
|
|
# BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
|
|
|
|
# And ensure that we can update tensors in-place
|
2023-12-05 10:12:16 +00:00
|
|
|
kv_tuple = False
|
|
|
|
past_key_values_dims = len(batch.past_key_values[0][0].shape)
|
2023-04-24 12:15:42 +00:00
|
|
|
if type(batch.past_key_values[0]) == tuple:
|
|
|
|
batch.past_key_values = [
|
2023-12-05 10:12:16 +00:00
|
|
|
[t.view(len(batch), -1, *t.shape[-2:]) for t in layer] for layer in batch.past_key_values
|
2023-04-24 12:15:42 +00:00
|
|
|
]
|
2023-12-05 10:12:16 +00:00
|
|
|
kv_tuple = True
|
|
|
|
elif past_key_values_dims == 3:
|
2023-04-24 12:15:42 +00:00
|
|
|
for layer in batch.past_key_values:
|
|
|
|
for k, t in enumerate(layer):
|
|
|
|
layer[k] = t.view(len(batch), -1, *t.shape[-2:])
|
|
|
|
|
2023-04-24 15:59:00 +00:00
|
|
|
# Add eventual padding tokens that were added while concatenating
|
2023-12-05 10:12:16 +00:00
|
|
|
max_tokens += batch.max_tokens + (max_input_length - batch.max_input_length) * len(batch)
|
2023-04-24 12:15:42 +00:00
|
|
|
|
2023-04-27 07:57:28 +00:00
|
|
|
start_index = end_index
|
|
|
|
|
2023-12-05 10:12:16 +00:00
|
|
|
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
|
|
|
|
next_token_chooser_parameters,
|
|
|
|
dtype=batches[0].next_token_chooser.dtype,
|
|
|
|
device=batches[0].next_token_chooser.device,
|
|
|
|
)
|
2023-04-24 12:15:42 +00:00
|
|
|
|
2023-12-05 10:12:16 +00:00
|
|
|
first_past_kvs = batches[0].past_key_values
|
|
|
|
_, num_heads, _, head_dim = first_past_kvs[0][1].shape
|
|
|
|
padded_sequence_length = (
|
|
|
|
max_input_length + padding_right_offset if is_optimized_for_gaudi else max_input_length - 1
|
|
|
|
)
|
2023-04-24 12:15:42 +00:00
|
|
|
padded_past_values_shape = (
|
|
|
|
total_batch_size,
|
|
|
|
num_heads,
|
2023-12-05 10:12:16 +00:00
|
|
|
padded_sequence_length,
|
2023-04-24 12:15:42 +00:00
|
|
|
head_dim,
|
|
|
|
)
|
2022-11-09 17:24:07 +00:00
|
|
|
|
2023-04-24 12:15:42 +00:00
|
|
|
if batches[0].keys_head_dim_last:
|
|
|
|
padded_past_keys_shape = padded_past_values_shape
|
|
|
|
else:
|
|
|
|
# seq_length is last for BLOOM
|
|
|
|
padded_past_keys_shape = (
|
|
|
|
total_batch_size,
|
|
|
|
num_heads,
|
|
|
|
head_dim,
|
2023-12-05 10:12:16 +00:00
|
|
|
padded_sequence_length,
|
2023-04-24 12:15:42 +00:00
|
|
|
)
|
2022-11-04 17:03:04 +00:00
|
|
|
|
2023-04-24 12:15:42 +00:00
|
|
|
# Iterate over attention layers
|
|
|
|
# Concatenate past key values layer by layer to allow incremental garbage collection
|
|
|
|
for j in range(len(first_past_kvs)):
|
|
|
|
padded_past_keys = first_past_kvs[j][0].new_zeros(padded_past_keys_shape)
|
|
|
|
start_index = 0
|
|
|
|
for batch in batches:
|
|
|
|
past_keys = batch.past_key_values[j][0]
|
|
|
|
# Clear reference to the original tensor
|
|
|
|
batch.past_key_values[j][0] = None
|
|
|
|
|
|
|
|
# Slicing end index for this batch
|
|
|
|
end_index = start_index + len(batch)
|
|
|
|
# We slice the keys to remove the padding from previous batches
|
|
|
|
past_seq_len = batch.max_input_length - 1
|
2023-12-05 10:12:16 +00:00
|
|
|
# recaculate the offset
|
|
|
|
left_offset = max_input_length - batch.max_input_length
|
|
|
|
batch_left_offset = batch.attention_mask.shape[1] - batch.max_input_length - batch.padding_right_offset
|
|
|
|
|
2022-12-08 17:49:33 +00:00
|
|
|
if batch.keys_head_dim_last:
|
2023-04-24 12:15:42 +00:00
|
|
|
padded_past_keys[
|
2023-12-05 10:12:16 +00:00
|
|
|
start_index:end_index, :, left_offset : left_offset + past_seq_len, :
|
|
|
|
] = past_keys[:, :, batch_left_offset : batch_left_offset + past_seq_len, :]
|
2022-11-09 17:24:07 +00:00
|
|
|
else:
|
2023-04-24 12:15:42 +00:00
|
|
|
# BLOOM case
|
|
|
|
padded_past_keys[
|
2023-12-05 10:12:16 +00:00
|
|
|
start_index:end_index, :, :, left_offset : left_offset + past_seq_len
|
|
|
|
] = past_keys[:, :, :, batch_left_offset : batch_left_offset + past_seq_len]
|
2023-04-24 12:15:42 +00:00
|
|
|
del past_keys
|
|
|
|
|
|
|
|
start_index = end_index
|
|
|
|
|
2023-12-05 10:12:16 +00:00
|
|
|
padded_past_values = first_past_kvs[j][1].new_zeros(padded_past_values_shape)
|
2023-04-24 12:15:42 +00:00
|
|
|
start_index = 0
|
|
|
|
for batch in batches:
|
|
|
|
past_values = batch.past_key_values[j][1]
|
|
|
|
# Clear reference to the original tensor
|
|
|
|
batch.past_key_values[j][1] = None
|
|
|
|
|
|
|
|
# Slicing end index for this batch
|
|
|
|
end_index = start_index + len(batch)
|
|
|
|
# We slice the past values to remove the padding from previous batches
|
|
|
|
past_seq_len = batch.max_input_length - 1
|
2023-12-05 10:12:16 +00:00
|
|
|
# recaculate the offset
|
|
|
|
left_offset = max_input_length - batch.max_input_length
|
|
|
|
batch_left_offset = batch.attention_mask.shape[1] - batch.max_input_length - batch.padding_right_offset
|
|
|
|
|
2023-04-24 12:15:42 +00:00
|
|
|
padded_past_values[
|
2023-12-05 10:12:16 +00:00
|
|
|
start_index:end_index, :, left_offset : left_offset + past_seq_len, :
|
|
|
|
] = past_values[:, :, batch_left_offset : batch_left_offset + past_seq_len, :]
|
2023-04-24 12:15:42 +00:00
|
|
|
del past_values
|
|
|
|
|
2023-04-24 15:59:00 +00:00
|
|
|
# Update values
|
2023-04-24 12:15:42 +00:00
|
|
|
start_index = end_index
|
|
|
|
|
2023-12-05 10:12:16 +00:00
|
|
|
if past_key_values_dims == 3:
|
|
|
|
padded_past_keys = padded_past_keys.view(
|
|
|
|
padded_past_keys.shape[0] * padded_past_keys.shape[1], *padded_past_keys.shape[-2:]
|
|
|
|
)
|
|
|
|
padded_past_values = padded_past_values.view(
|
|
|
|
padded_past_values.shape[0] * padded_past_values.shape[1], *padded_past_values.shape[-2:]
|
|
|
|
)
|
|
|
|
|
|
|
|
if kv_tuple:
|
|
|
|
past_key_values.append((padded_past_keys, padded_past_values))
|
|
|
|
else:
|
|
|
|
past_key_values.append([padded_past_keys, padded_past_values])
|
2022-11-04 17:03:04 +00:00
|
|
|
|
2023-12-11 08:24:09 +00:00
|
|
|
if kv_tuple:
|
|
|
|
past_key_values = tuple(past_key_values)
|
|
|
|
|
2022-11-04 17:03:04 +00:00
|
|
|
return cls(
|
|
|
|
batch_id=batches[0].batch_id,
|
|
|
|
requests=requests,
|
2023-04-20 09:07:40 +00:00
|
|
|
requests_idx_mapping=requests_idx_mapping,
|
2022-11-04 17:03:04 +00:00
|
|
|
input_ids=input_ids,
|
2022-11-07 11:53:56 +00:00
|
|
|
attention_mask=attention_mask,
|
2023-01-20 14:35:22 +00:00
|
|
|
position_ids=position_ids,
|
2022-11-07 11:53:56 +00:00
|
|
|
past_key_values=past_key_values,
|
2022-11-04 17:03:04 +00:00
|
|
|
all_input_ids=all_input_ids,
|
2022-11-07 11:53:56 +00:00
|
|
|
input_lengths=input_lengths,
|
2023-05-16 21:23:27 +00:00
|
|
|
prefix_offsets=prefix_offsets,
|
|
|
|
read_offsets=read_offsets,
|
2023-12-05 10:12:16 +00:00
|
|
|
next_token_chooser=next_token_chooser,
|
2022-11-04 17:03:04 +00:00
|
|
|
stopping_criterias=stopping_criterias,
|
2023-08-28 09:43:47 +00:00
|
|
|
top_n_tokens=top_n_tokens,
|
|
|
|
top_n_tokens_tensor=top_n_tokens_tensor,
|
2023-03-16 11:12:26 +00:00
|
|
|
max_input_length=max_input_length,
|
2023-02-24 11:49:21 +00:00
|
|
|
padding_right_offset=padding_right_offset,
|
2022-12-08 17:49:33 +00:00
|
|
|
keys_head_dim_last=batches[0].keys_head_dim_last,
|
2023-04-24 15:59:00 +00:00
|
|
|
max_tokens=max_tokens,
|
2022-11-04 17:03:04 +00:00
|
|
|
)
|
2022-11-04 13:22:47 +00:00
|
|
|
|
2023-01-31 16:04:00 +00:00
|
|
|
def __len__(self):
|
|
|
|
return len(self.requests)
|
|
|
|
|
2022-11-04 13:22:47 +00:00
|
|
|
|
|
|
|
class CausalLM(Model):
|
2023-04-12 10:03:10 +00:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
model_id: str,
|
|
|
|
revision: Optional[str] = None,
|
2023-06-30 18:30:09 +00:00
|
|
|
dtype: Optional[torch.dtype] = None,
|
2023-04-12 10:03:10 +00:00
|
|
|
):
|
2023-12-05 10:12:16 +00:00
|
|
|
device = torch.device("hpu")
|
|
|
|
|
|
|
|
dtype = torch.bfloat16 if dtype is None else dtype
|
2022-12-08 17:49:33 +00:00
|
|
|
|
2023-12-05 10:12:16 +00:00
|
|
|
from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi
|
|
|
|
|
|
|
|
adapt_transformers_to_gaudi()
|
2022-11-04 13:22:47 +00:00
|
|
|
|
2023-01-31 17:53:56 +00:00
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
2023-05-23 18:40:39 +00:00
|
|
|
model_id,
|
|
|
|
revision=revision,
|
|
|
|
padding_side="left",
|
|
|
|
truncation_side="left",
|
2023-05-16 21:23:27 +00:00
|
|
|
)
|
2023-12-05 10:12:16 +00:00
|
|
|
|
|
|
|
model_kwargs = {
|
|
|
|
"revision": revision,
|
|
|
|
}
|
|
|
|
|
|
|
|
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
|
|
|
rank = int(os.getenv("RANK"), 0)
|
|
|
|
self.enable_hpu_graph = os.getenv("ENABLE_HPU_GRAPH", "true").lower() == "true"
|
|
|
|
self.limit_hpu_graph = os.getenv("LIMIT_HPU_GRAPH", "false").lower() == "true"
|
|
|
|
|
|
|
|
if world_size > 1:
|
|
|
|
import habana_frameworks.torch.hpu as torch_hpu
|
|
|
|
|
|
|
|
# Get world size, rank and local rank
|
|
|
|
from habana_frameworks.torch.distributed.hccl import initialize_distributed_hpu
|
|
|
|
|
|
|
|
world_size, rank, local_rank = initialize_distributed_hpu()
|
|
|
|
import deepspeed
|
|
|
|
|
|
|
|
# Initialize process(es) for DeepSpeed
|
|
|
|
deepspeed.init_distributed(dist_backend="hccl")
|
|
|
|
logger.info(
|
|
|
|
"DeepSpeed is enabled. world_size {} rank {} local_rank {}".format(world_size, rank, local_rank)
|
|
|
|
)
|
|
|
|
config = AutoConfig.from_pretrained(model_id, **model_kwargs)
|
|
|
|
load_to_meta = model_on_meta(config)
|
|
|
|
|
|
|
|
if load_to_meta:
|
|
|
|
# Construct model with fake meta tensors, later will be replaced on devices during ds-inference ckpt load
|
|
|
|
with deepspeed.OnDevice(dtype=dtype, device="meta"):
|
|
|
|
model = AutoModelForCausalLM.from_config(config, torch_dtype=dtype)
|
|
|
|
else:
|
|
|
|
get_repo_root(model_id, local_rank=os.getenv("LOCAL_RANK"))
|
|
|
|
# TODO: revisit placement on CPU when auto-injection is possible
|
|
|
|
with deepspeed.OnDevice(dtype=dtype, device="cpu"):
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, **model_kwargs)
|
|
|
|
model = model.eval()
|
|
|
|
|
|
|
|
# Initialize the model
|
|
|
|
ds_inference_kwargs = {"dtype": dtype}
|
|
|
|
ds_inference_kwargs["tensor_parallel"] = {"tp_size": world_size}
|
|
|
|
ds_inference_kwargs["enable_cuda_graph"] = self.enable_hpu_graph
|
|
|
|
|
|
|
|
if load_to_meta:
|
|
|
|
# model loaded to meta is managed differently
|
|
|
|
checkpoints_json = tempfile.NamedTemporaryFile(suffix=".json", mode="+w")
|
|
|
|
write_checkpoints_json(model_id, local_rank, checkpoints_json)
|
|
|
|
ds_inference_kwargs["checkpoint"] = checkpoints_json.name
|
|
|
|
model = deepspeed.init_inference(model, **ds_inference_kwargs)
|
|
|
|
model = model.module
|
|
|
|
else:
|
|
|
|
get_repo_root(model_id)
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
model_id,
|
|
|
|
revision=revision,
|
|
|
|
torch_dtype=dtype,
|
|
|
|
)
|
|
|
|
model = model.eval().to(device)
|
|
|
|
#wrap in hpu_graph only if self.enable_hpu_graph is set
|
|
|
|
if self.enable_hpu_graph:
|
|
|
|
model = wrap_in_hpu_graph(model)
|
|
|
|
|
|
|
|
if model.config.model_type in MODELS_OPTIMIZED_WITH_STATIC_SHAPES:
|
|
|
|
self.is_optimized_for_gaudi = True
|
|
|
|
else:
|
|
|
|
self.is_optimized_for_gaudi = False
|
2023-05-23 17:12:12 +00:00
|
|
|
|
2023-05-23 18:40:39 +00:00
|
|
|
if tokenizer.pad_token_id is None:
|
|
|
|
if model.config.pad_token_id is not None:
|
|
|
|
tokenizer.pad_token_id = model.config.pad_token_id
|
|
|
|
elif model.config.eos_token_id is not None:
|
|
|
|
tokenizer.pad_token_id = model.config.eos_token_id
|
|
|
|
elif tokenizer.eos_token_id is not None:
|
|
|
|
tokenizer.pad_token_id = tokenizer.eos_token_id
|
|
|
|
else:
|
|
|
|
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
|
|
|
|
2023-12-05 10:12:16 +00:00
|
|
|
kwargs = {
|
|
|
|
"use_cache": True,
|
|
|
|
"return_dict": True,
|
|
|
|
}
|
|
|
|
|
|
|
|
if model.config.model_type == "llama":
|
|
|
|
kwargs["attn_softmax_bf16"] = True
|
|
|
|
kwargs["trim_logits"] = True
|
|
|
|
|
2022-11-04 17:03:04 +00:00
|
|
|
super(CausalLM, self).__init__(
|
2023-05-16 21:23:27 +00:00
|
|
|
model=model,
|
2023-04-21 13:36:29 +00:00
|
|
|
tokenizer=tokenizer,
|
|
|
|
requires_padding=True,
|
|
|
|
dtype=dtype,
|
|
|
|
device=device,
|
2023-12-05 10:12:16 +00:00
|
|
|
rank=rank,
|
|
|
|
kwargs=kwargs,
|
|
|
|
)
|
|
|
|
self.profiling_warmup_steps = int(os.getenv("PROF_WARMUPSTEP", "0"))
|
|
|
|
self.profiling_steps = int(os.getenv("PROF_STEP", "5"))
|
|
|
|
output_dir = os.getenv("PROF_PATH", "/tmp/hpu_profile")
|
|
|
|
self.hb_profer = HabanaProfile(
|
|
|
|
warmup=self.profiling_warmup_steps, active=self.profiling_steps, output_dir=output_dir
|
2022-11-04 17:03:04 +00:00
|
|
|
)
|
2023-12-05 10:12:16 +00:00
|
|
|
if self.profiling_warmup_steps > 0:
|
|
|
|
self.hb_profer_started = True
|
|
|
|
self.hb_profer.start()
|
|
|
|
else:
|
|
|
|
self.hb_profer = None
|
|
|
|
self.hb_profer_started = False
|
|
|
|
self.step = 0
|
2022-11-04 17:03:04 +00:00
|
|
|
|
|
|
|
@property
|
|
|
|
def batch_type(self) -> Type[CausalLMBatch]:
|
|
|
|
return CausalLMBatch
|
2022-11-04 13:22:47 +00:00
|
|
|
|
2023-01-20 11:24:39 +00:00
|
|
|
def decode(self, generated_ids: List[int]) -> str:
|
2023-12-05 10:12:16 +00:00
|
|
|
return self.tokenizer.decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
2023-01-20 11:24:39 +00:00
|
|
|
|
2022-11-04 13:22:47 +00:00
|
|
|
def forward(
|
2023-12-05 10:12:16 +00:00
|
|
|
self,
|
|
|
|
input_ids,
|
|
|
|
attention_mask,
|
|
|
|
position_ids,
|
|
|
|
token_idx: Optional = None,
|
|
|
|
past_key_values: Optional = None,
|
|
|
|
bypass_hpu_graph: Optional = None,
|
2022-11-04 13:22:47 +00:00
|
|
|
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
|
|
|
|
# Model Forward
|
2023-05-23 18:40:39 +00:00
|
|
|
kwargs = {
|
|
|
|
"input_ids": input_ids,
|
|
|
|
"attention_mask": attention_mask,
|
|
|
|
"past_key_values": past_key_values,
|
|
|
|
}
|
2023-12-05 10:12:16 +00:00
|
|
|
|
|
|
|
if self.is_optimized_for_gaudi:
|
|
|
|
kwargs["token_idx"] = token_idx
|
|
|
|
|
2023-05-23 18:40:39 +00:00
|
|
|
if self.has_position_ids:
|
|
|
|
kwargs["position_ids"] = position_ids
|
|
|
|
|
2023-12-05 10:12:16 +00:00
|
|
|
if bypass_hpu_graph != None:
|
|
|
|
kwargs["bypass_hpu_graphs"] = bypass_hpu_graph
|
|
|
|
|
|
|
|
kwargs.update(self.kwargs)
|
2023-05-23 18:40:39 +00:00
|
|
|
outputs = self.model.forward(**kwargs)
|
2022-11-04 13:22:47 +00:00
|
|
|
return outputs.logits, outputs.past_key_values
|
2022-11-04 17:03:04 +00:00
|
|
|
|
2023-02-13 12:02:45 +00:00
|
|
|
@tracer.start_as_current_span("generate_token")
|
2023-12-05 10:12:16 +00:00
|
|
|
def generate_token(self, batch: CausalLMBatch) -> Tuple[List[Generation], Optional[CausalLMBatch]]:
|
|
|
|
self.step = self.step + 1
|
|
|
|
if self.hb_profer_started == True and self.step > self.profiling_warmup_steps + self.profiling_steps:
|
|
|
|
self.hb_profer.stop()
|
|
|
|
self.hb_profer_started = False
|
|
|
|
|
|
|
|
if self.is_optimized_for_gaudi:
|
|
|
|
token_idx = torch.tensor(batch.attention_mask.shape[-1] - batch.padding_right_offset).to(self.device)
|
|
|
|
attention_mask = batch.attention_mask
|
|
|
|
|
|
|
|
else:
|
|
|
|
token_idx = None
|
|
|
|
# slice the attention mask to the correct shape
|
|
|
|
attention_mask = batch.attention_mask[:, : -batch.padding_right_offset]
|
|
|
|
prefill = batch.past_key_values is None
|
|
|
|
if batch.past_key_values:
|
|
|
|
if token_idx is not None:
|
|
|
|
input_ids = torch.index_select(batch.input_ids, 1, token_idx - 1)
|
|
|
|
else:
|
|
|
|
input_ids = batch.input_ids
|
2023-02-24 11:49:21 +00:00
|
|
|
|
2023-02-07 14:38:22 +00:00
|
|
|
logits, past = self.forward(
|
2023-12-05 10:12:16 +00:00
|
|
|
input_ids,
|
2023-02-24 11:49:21 +00:00
|
|
|
attention_mask,
|
2023-02-07 14:38:22 +00:00
|
|
|
batch.position_ids,
|
2023-12-05 10:12:16 +00:00
|
|
|
token_idx,
|
2023-02-07 14:38:22 +00:00
|
|
|
batch.past_key_values,
|
2023-12-05 10:12:16 +00:00
|
|
|
bypass_hpu_graph = prefill and self.limit_hpu_graph if self.enable_hpu_graph else None
|
2022-11-04 17:03:04 +00:00
|
|
|
)
|
|
|
|
|
2023-01-31 16:04:00 +00:00
|
|
|
# Results
|
|
|
|
generations: List[Generation] = []
|
2023-04-20 09:07:40 +00:00
|
|
|
stopped = True
|
2022-11-04 17:03:04 +00:00
|
|
|
|
2023-12-05 10:12:16 +00:00
|
|
|
# Select next token
|
|
|
|
input_length = batch.input_lengths[0]
|
|
|
|
if self.is_optimized_for_gaudi and logits.shape[-2] > 1:
|
|
|
|
next_input_ids, next_token_logprobs, logprobs = batch.next_token_chooser(
|
|
|
|
batch.input_ids[:, :token_idx], logits[:, input_length - 1 : input_length, :].squeeze(-2)
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
next_input_ids, next_token_logprobs, logprobs = batch.next_token_chooser(
|
|
|
|
batch.input_ids[:, :token_idx], logits.squeeze(-2)
|
|
|
|
)
|
|
|
|
|
2023-08-28 09:43:47 +00:00
|
|
|
batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
|
|
|
|
batch.top_n_tokens,
|
|
|
|
batch.top_n_tokens_tensor,
|
2023-12-05 10:12:16 +00:00
|
|
|
logprobs,
|
2023-08-28 09:43:47 +00:00
|
|
|
)
|
|
|
|
|
2023-12-05 10:12:16 +00:00
|
|
|
htorch.core.mark_step()
|
|
|
|
logits = logits.to("cpu")
|
|
|
|
|
|
|
|
next_token_logprobs = next_token_logprobs.tolist()
|
|
|
|
next_token_ids = next_input_ids
|
|
|
|
|
2022-11-04 17:03:04 +00:00
|
|
|
# Zipped iterator
|
|
|
|
iterator = zip(
|
|
|
|
batch.requests,
|
2022-11-07 11:53:56 +00:00
|
|
|
batch.input_lengths,
|
2023-05-16 21:23:27 +00:00
|
|
|
batch.prefix_offsets,
|
|
|
|
batch.read_offsets,
|
2022-11-04 17:03:04 +00:00
|
|
|
logits,
|
2023-12-05 10:12:16 +00:00
|
|
|
batch.next_token_chooser.do_sample,
|
|
|
|
batch.next_token_chooser.seeds,
|
2022-11-04 17:03:04 +00:00
|
|
|
batch.stopping_criterias,
|
|
|
|
batch.all_input_ids,
|
2023-08-28 09:43:47 +00:00
|
|
|
batch.top_n_tokens,
|
2023-12-05 10:12:16 +00:00
|
|
|
next_token_ids,
|
|
|
|
next_token_logprobs,
|
2023-08-28 09:43:47 +00:00
|
|
|
batch_top_token_ids,
|
|
|
|
batch_top_token_logprobs,
|
2022-11-04 17:03:04 +00:00
|
|
|
)
|
|
|
|
# For each member of the batch
|
|
|
|
for i, (
|
|
|
|
request,
|
|
|
|
input_length,
|
2023-05-16 21:23:27 +00:00
|
|
|
prefix_offset,
|
|
|
|
read_offset,
|
2022-11-04 17:03:04 +00:00
|
|
|
logits,
|
2023-12-05 10:12:16 +00:00
|
|
|
do_sample,
|
|
|
|
seed,
|
2022-11-04 17:03:04 +00:00
|
|
|
stopping_criteria,
|
2022-12-15 16:03:56 +00:00
|
|
|
all_input_ids,
|
2023-08-28 09:43:47 +00:00
|
|
|
top_n_tokens,
|
2023-12-05 10:12:16 +00:00
|
|
|
next_token_id,
|
|
|
|
next_token_logprob,
|
2023-08-28 09:43:47 +00:00
|
|
|
top_token_ids,
|
|
|
|
top_token_logprobs,
|
2022-11-04 17:03:04 +00:00
|
|
|
) in enumerate(iterator):
|
|
|
|
# Append next token to all tokens
|
2023-12-05 10:12:16 +00:00
|
|
|
if self.is_optimized_for_gaudi:
|
|
|
|
all_input_ids[input_length] = next_token_id
|
|
|
|
else:
|
|
|
|
all_input_ids = torch.cat([all_input_ids, next_token_id])
|
2022-12-15 16:03:56 +00:00
|
|
|
new_input_length = input_length + 1
|
|
|
|
|
2023-01-31 16:04:00 +00:00
|
|
|
# Generated token
|
2023-05-16 21:23:27 +00:00
|
|
|
next_token_text, prefix_offset, read_offset = self.decode_token(
|
2023-12-05 10:12:16 +00:00
|
|
|
all_input_ids[0:new_input_length, 0], prefix_offset, read_offset
|
2023-01-31 16:04:00 +00:00
|
|
|
)
|
2022-11-04 17:03:04 +00:00
|
|
|
|
|
|
|
# Evaluate stopping criteria
|
2022-12-16 15:03:39 +00:00
|
|
|
stop, reason = stopping_criteria(
|
2023-12-05 10:12:16 +00:00
|
|
|
next_token_id,
|
2023-01-31 16:04:00 +00:00
|
|
|
next_token_text,
|
2022-12-16 15:03:39 +00:00
|
|
|
)
|
2023-01-31 16:04:00 +00:00
|
|
|
|
2023-05-10 13:48:21 +00:00
|
|
|
if not stop:
|
2023-04-20 09:07:40 +00:00
|
|
|
stopped = False
|
2022-11-04 17:03:04 +00:00
|
|
|
|
2023-05-10 13:48:21 +00:00
|
|
|
# Shard generations
|
|
|
|
# All generations will be appended in the rust sharded client
|
|
|
|
if i % self.world_size == self.rank:
|
|
|
|
if stop:
|
|
|
|
# Decode generated tokens
|
2023-12-05 10:12:16 +00:00
|
|
|
output_text = self.decode(
|
|
|
|
all_input_ids[new_input_length - stopping_criteria.current_tokens : new_input_length, 0]
|
2023-05-10 13:48:21 +00:00
|
|
|
)
|
|
|
|
generated_text = GeneratedText(
|
2023-12-05 10:12:16 +00:00
|
|
|
output_text,
|
|
|
|
stopping_criteria.current_tokens,
|
|
|
|
reason,
|
|
|
|
seed if do_sample else None,
|
2023-05-10 13:48:21 +00:00
|
|
|
)
|
|
|
|
else:
|
|
|
|
generated_text = None
|
|
|
|
|
|
|
|
# Prefill
|
2023-06-02 15:12:30 +00:00
|
|
|
if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
|
2023-05-10 13:48:21 +00:00
|
|
|
# Remove generated token to only have prefill and add nan for first prompt token
|
2023-12-05 10:12:16 +00:00
|
|
|
prefill_logprobs = [float("nan")] + next_token_logprobs
|
|
|
|
prefill_token_ids = all_input_ids[0 : new_input_length - 1]
|
2023-05-10 13:48:21 +00:00
|
|
|
prefill_texts = self.tokenizer.batch_decode(
|
|
|
|
prefill_token_ids,
|
|
|
|
clean_up_tokenization_spaces=False,
|
|
|
|
skip_special_tokens=False,
|
|
|
|
)
|
2023-12-05 10:12:16 +00:00
|
|
|
prefill_tokens = PrefillTokens(prefill_token_ids, prefill_logprobs, prefill_texts)
|
2023-05-10 13:48:21 +00:00
|
|
|
else:
|
|
|
|
prefill_tokens = None
|
|
|
|
|
2023-08-28 09:43:47 +00:00
|
|
|
if top_n_tokens > 0:
|
|
|
|
toptoken_texts = self.tokenizer.batch_decode(
|
|
|
|
top_token_ids,
|
|
|
|
clean_up_tokenization_spaces=False,
|
|
|
|
skip_special_tokens=False,
|
|
|
|
)
|
2023-12-05 10:12:16 +00:00
|
|
|
special_toptokens = [token_id in self.all_special_ids for token_id in top_token_ids]
|
2023-08-28 09:43:47 +00:00
|
|
|
top_tokens = TopTokens(
|
|
|
|
top_token_ids,
|
|
|
|
top_token_logprobs,
|
|
|
|
toptoken_texts,
|
|
|
|
special_toptokens,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
top_tokens = None
|
|
|
|
|
2023-05-10 13:48:21 +00:00
|
|
|
generation = Generation(
|
|
|
|
request.id,
|
|
|
|
prefill_tokens,
|
2023-12-05 10:12:16 +00:00
|
|
|
next_token_id,
|
2023-05-10 13:48:21 +00:00
|
|
|
next_token_logprob,
|
|
|
|
next_token_text,
|
2023-12-05 10:12:16 +00:00
|
|
|
next_token_id in self.all_special_ids,
|
2023-05-10 13:48:21 +00:00
|
|
|
generated_text,
|
2023-08-28 09:43:47 +00:00
|
|
|
top_tokens,
|
2023-01-31 16:04:00 +00:00
|
|
|
)
|
|
|
|
|
2023-05-10 13:48:21 +00:00
|
|
|
generations.append(generation)
|
2023-01-31 16:04:00 +00:00
|
|
|
|
2023-04-20 09:07:40 +00:00
|
|
|
batch.all_input_ids[i] = all_input_ids
|
|
|
|
batch.input_lengths[i] = new_input_length
|
2023-05-16 21:23:27 +00:00
|
|
|
batch.prefix_offsets[i] = prefix_offset
|
|
|
|
batch.read_offsets[i] = read_offset
|
2023-04-20 09:07:40 +00:00
|
|
|
batch.max_input_length = max(batch.max_input_length, new_input_length)
|
|
|
|
|
2023-12-05 10:12:16 +00:00
|
|
|
if token_idx is None:
|
2023-12-11 08:24:09 +00:00
|
|
|
batch.input_ids[:, 0] = next_token_ids[:, 0]
|
2023-12-05 10:12:16 +00:00
|
|
|
else:
|
2023-12-11 08:24:09 +00:00
|
|
|
batch.input_ids[:, token_idx] = next_token_ids
|
2022-11-04 17:03:04 +00:00
|
|
|
# We finished all generations in the batch; there is no next batch
|
2023-04-20 09:07:40 +00:00
|
|
|
if stopped:
|
2023-12-05 10:12:16 +00:00
|
|
|
if self.hb_profer_started == True:
|
|
|
|
self.hb_profer.step()
|
2023-01-31 16:04:00 +00:00
|
|
|
return generations, None
|
2022-11-04 17:03:04 +00:00
|
|
|
|
2023-12-05 10:12:16 +00:00
|
|
|
# Slice unused values from prefill, use it to store next token
|
|
|
|
if token_idx is None:
|
|
|
|
batch.input_ids = batch.input_ids[:, :1]
|
2022-11-04 17:03:04 +00:00
|
|
|
|
2023-02-24 11:49:21 +00:00
|
|
|
# Update attention_mask as we added a new token to input_ids
|
2023-12-05 10:12:16 +00:00
|
|
|
if self.is_optimized_for_gaudi:
|
|
|
|
batch.attention_mask.index_fill_(1, token_idx, 1)
|
|
|
|
else:
|
|
|
|
batch.attention_mask[:, -batch.padding_right_offset] = 1
|
2023-04-20 09:07:40 +00:00
|
|
|
# Decrease right offset
|
|
|
|
batch.padding_right_offset -= 1
|
2022-11-04 17:03:04 +00:00
|
|
|
|
2023-01-20 14:35:22 +00:00
|
|
|
# Update position_ids
|
2023-12-05 10:12:16 +00:00
|
|
|
if prefill:
|
|
|
|
batch.position_ids = batch.position_ids[:, token_idx - 1 : token_idx] + 1
|
|
|
|
else:
|
|
|
|
batch.position_ids += 1
|
2023-04-20 09:07:40 +00:00
|
|
|
# Update past key values
|
|
|
|
batch.past_key_values = past
|
2023-12-05 10:12:16 +00:00
|
|
|
if self.hb_profer_started == True:
|
|
|
|
self.hb_profer.step()
|
2023-04-20 09:07:40 +00:00
|
|
|
|
|
|
|
return generations, batch
|