The easiest way of getting started is using the official Docker container. Install Docker following [their installation instructions](https://docs.docker.com/get-docker/).
Let's say you want to deploy [Falcon-7B Instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) model with TGI. Here is an example on how to do that:
To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html) . We also recommend using NVIDIA drivers with CUDA version 11.8 or higher.
To use TGI on RoCm-enabled AMD GPUs (only MI210 and MI250 are tested), please use the image `ghcr.io/huggingface/text-generation-inference:1.1.1+rocm` instead. For details about the usage on RoCm, please refer to the [Supported Hardware section](./supported_models#supported-hardware) and [AMD documentation](https://rocm.docs.amd.com/en/latest/deploy/docker.html).
Once TGI is running, you can use the `generate` endpoint by doing requests. To learn more about how to query the endpoints, check the [Consuming TGI](./basic_tutorials/consuming_tgi) section, where we show examples with utility libraries and UIs. Below you can see a simple snippet to query the endpoint.
To see all possible deploy flags and options, you can use the `--help` flag. It's possible to configure the number of shards, quantization, generation parameters, and more.