text-generation-inference/router/src/main.rs

498 lines
17 KiB
Rust
Raw Normal View History

/// Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
use axum::http::HeaderValue;
2022-10-18 13:19:03 +00:00
use clap::Parser;
use hf_hub::api::tokio::{Api, ApiBuilder, ApiRepo};
use hf_hub::{Repo, RepoType};
2023-02-13 12:02:45 +00:00
use opentelemetry::sdk::propagation::TraceContextPropagator;
use opentelemetry::sdk::trace;
use opentelemetry::sdk::trace::Sampler;
use opentelemetry::sdk::Resource;
use opentelemetry::{global, KeyValue};
use opentelemetry_otlp::WithExportConfig;
2024-01-19 14:12:04 +00:00
use std::env;
use std::fs::File;
use std::io::BufReader;
2022-10-17 16:27:33 +00:00
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use std::path::Path;
use text_generation_client::{ClientError, ShardedClient};
feat: supports openai chat completions API (#1427) This PR adds support to make TGI a drop in replacement for OpenAI clients by exposing the same HTTP interface. Notes - TGI inits a single model at startup so the `model` field is unused in HTTP requests. - `max_tokens` and `stream` should work as expected but other params may be (unimplemented or not supported) General approach - fetch the `tokenizer_config` at startup from the hub - pass `tokenizer_config` into `Infer` so we have it at request time - use the `chat_template` on the config to format chat request - parse jinja template and render chat string - pass inputs into existing generate function - wrap generation output in expected structure before returning ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "tgi", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is deep learning?" } ], "stream": true, "max_tokens": 20 }' \ -H 'Content-Type: application/json' ``` It is also possible to use the `openai` python library and change the base url ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=True ) for message in chat_completion: print(message) ``` ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=False ) print(chat_completion) ``` ```bash cd text-generation-inference/server MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2 ``` ***note many of the existing `chat_templates` use non standard `jinja` (ie. adding a `raise` to the template) which will throw an error when parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a valid template ```bash cd text-generation-inference/router cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0 ``` trigger ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \ -H 'Content-Type: application/json' ``` ^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
use text_generation_router::{server, HubModelInfo, HubTokenizerConfig};
use thiserror::Error;
use tokenizers::Tokenizer;
use tower_http::cors::AllowOrigin;
2023-02-13 12:02:45 +00:00
use tracing_subscriber::layer::SubscriberExt;
use tracing_subscriber::util::SubscriberInitExt;
use tracing_subscriber::{EnvFilter, Layer};
2022-10-17 16:27:33 +00:00
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
2022-10-18 13:19:03 +00:00
#[clap(default_value = "128", long, env)]
max_concurrent_requests: usize,
#[clap(default_value = "2", long, env)]
max_best_of: usize,
#[clap(default_value = "4", long, env)]
max_stop_sequences: usize,
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
#[clap(default_value = "5", long, env)]
max_top_n_tokens: u32,
2023-06-30 18:07:49 +00:00
#[clap(default_value = "1024", long, env)]
2022-10-18 13:19:03 +00:00
max_input_length: usize,
2023-06-30 18:07:49 +00:00
#[clap(default_value = "2048", long, env)]
max_total_tokens: usize,
#[clap(default_value = "1.2", long, env)]
waiting_served_ratio: f32,
#[clap(default_value = "4096", long, env)]
max_batch_prefill_tokens: u32,
#[clap(long, env)]
max_batch_total_tokens: Option<u32>,
2022-10-21 14:40:05 +00:00
#[clap(default_value = "20", long, env)]
max_waiting_tokens: usize,
#[clap(default_value = "0.0.0.0", long, env)]
hostname: String,
2022-10-17 16:27:33 +00:00
#[clap(default_value = "3000", long, short, env)]
port: u16,
#[clap(default_value = "/tmp/text-generation-server-0", long, env)]
2022-10-18 13:19:03 +00:00
master_shard_uds_path: String,
2022-10-17 16:27:33 +00:00
#[clap(default_value = "bigscience/bloom", long, env)]
tokenizer_name: String,
#[clap(long, env)]
feat: supports openai chat completions API (#1427) This PR adds support to make TGI a drop in replacement for OpenAI clients by exposing the same HTTP interface. Notes - TGI inits a single model at startup so the `model` field is unused in HTTP requests. - `max_tokens` and `stream` should work as expected but other params may be (unimplemented or not supported) General approach - fetch the `tokenizer_config` at startup from the hub - pass `tokenizer_config` into `Infer` so we have it at request time - use the `chat_template` on the config to format chat request - parse jinja template and render chat string - pass inputs into existing generate function - wrap generation output in expected structure before returning ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "tgi", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is deep learning?" } ], "stream": true, "max_tokens": 20 }' \ -H 'Content-Type: application/json' ``` It is also possible to use the `openai` python library and change the base url ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=True ) for message in chat_completion: print(message) ``` ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=False ) print(chat_completion) ``` ```bash cd text-generation-inference/server MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2 ``` ***note many of the existing `chat_templates` use non standard `jinja` (ie. adding a `raise` to the template) which will throw an error when parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a valid template ```bash cd text-generation-inference/router cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0 ``` trigger ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \ -H 'Content-Type: application/json' ``` ^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
tokenizer_config_path: Option<String>,
#[clap(long, env)]
revision: Option<String>,
2022-10-18 13:19:03 +00:00
#[clap(default_value = "2", long, env)]
validation_workers: usize,
#[clap(long, env)]
json_output: bool,
2023-02-13 12:02:45 +00:00
#[clap(long, env)]
otlp_endpoint: Option<String>,
#[clap(long, env)]
cors_allow_origin: Option<Vec<String>>,
#[clap(long, env)]
ngrok: bool,
#[clap(long, env)]
ngrok_authtoken: Option<String>,
#[clap(long, env)]
2023-07-19 09:59:58 +00:00
ngrok_edge: Option<String>,
#[clap(long, env, default_value_t = false)]
messages_api_enabled: bool,
2022-10-17 16:27:33 +00:00
}
2022-10-08 10:30:12 +00:00
#[tokio::main]
async fn main() -> Result<(), RouterError> {
2022-10-17 16:27:33 +00:00
// Get args
let args = Args::parse();
2022-10-18 13:19:03 +00:00
// Pattern match configuration
2022-10-17 16:27:33 +00:00
let Args {
2022-10-18 13:19:03 +00:00
max_concurrent_requests,
max_best_of,
max_stop_sequences,
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
max_top_n_tokens,
2022-10-18 13:19:03 +00:00
max_input_length,
max_total_tokens,
waiting_served_ratio,
max_batch_prefill_tokens,
max_batch_total_tokens,
2022-10-21 14:40:05 +00:00
max_waiting_tokens,
hostname,
2022-10-17 16:27:33 +00:00
port,
2022-10-18 13:19:03 +00:00
master_shard_uds_path,
2022-10-17 16:27:33 +00:00
tokenizer_name,
feat: supports openai chat completions API (#1427) This PR adds support to make TGI a drop in replacement for OpenAI clients by exposing the same HTTP interface. Notes - TGI inits a single model at startup so the `model` field is unused in HTTP requests. - `max_tokens` and `stream` should work as expected but other params may be (unimplemented or not supported) General approach - fetch the `tokenizer_config` at startup from the hub - pass `tokenizer_config` into `Infer` so we have it at request time - use the `chat_template` on the config to format chat request - parse jinja template and render chat string - pass inputs into existing generate function - wrap generation output in expected structure before returning ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "tgi", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is deep learning?" } ], "stream": true, "max_tokens": 20 }' \ -H 'Content-Type: application/json' ``` It is also possible to use the `openai` python library and change the base url ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=True ) for message in chat_completion: print(message) ``` ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=False ) print(chat_completion) ``` ```bash cd text-generation-inference/server MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2 ``` ***note many of the existing `chat_templates` use non standard `jinja` (ie. adding a `raise` to the template) which will throw an error when parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a valid template ```bash cd text-generation-inference/router cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0 ``` trigger ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \ -H 'Content-Type: application/json' ``` ^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
tokenizer_config_path,
revision,
2022-10-18 13:19:03 +00:00
validation_workers,
json_output,
2023-02-13 12:02:45 +00:00
otlp_endpoint,
cors_allow_origin,
ngrok,
ngrok_authtoken,
2023-07-19 09:59:58 +00:00
ngrok_edge,
messages_api_enabled,
2022-10-17 16:27:33 +00:00
} = args;
// Launch Tokio runtime
init_logging(otlp_endpoint, json_output);
2023-06-30 18:07:49 +00:00
// Validate args
if max_input_length >= max_total_tokens {
return Err(RouterError::ArgumentValidation(
"`max_input_length` must be < `max_total_tokens`".to_string(),
));
}
2023-06-30 18:07:49 +00:00
if max_input_length as u32 > max_batch_prefill_tokens {
return Err(RouterError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be >= `max_input_length`. Given: {max_batch_prefill_tokens} and {max_input_length}")));
2023-06-30 18:07:49 +00:00
}
if validation_workers == 0 {
return Err(RouterError::ArgumentValidation(
"`validation_workers` must be > 0".to_string(),
));
2022-10-18 13:19:03 +00:00
}
if let Some(ref max_batch_total_tokens) = max_batch_total_tokens {
if max_batch_prefill_tokens > *max_batch_total_tokens {
return Err(RouterError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {max_batch_prefill_tokens} and {max_batch_total_tokens}")));
}
if max_total_tokens as u32 > *max_batch_total_tokens {
return Err(RouterError::ArgumentValidation(format!("`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {max_total_tokens} and {max_batch_total_tokens}")));
}
}
// CORS allowed origins
// map to go inside the option and then map to parse from String to HeaderValue
// Finally, convert to AllowOrigin
let cors_allow_origin: Option<AllowOrigin> = cors_allow_origin.map(|cors_allow_origin| {
AllowOrigin::list(
cors_allow_origin
.iter()
.map(|origin| origin.parse::<HeaderValue>().unwrap()),
)
});
// Parse Huggingface hub token
let authorization_token = std::env::var("HUGGING_FACE_HUB_TOKEN").ok();
// Tokenizer instance
2022-10-18 13:19:03 +00:00
// This will only be used to validate payloads
let local_path = Path::new(&tokenizer_name);
let local_model = local_path.exists() && local_path.is_dir();
feat: supports openai chat completions API (#1427) This PR adds support to make TGI a drop in replacement for OpenAI clients by exposing the same HTTP interface. Notes - TGI inits a single model at startup so the `model` field is unused in HTTP requests. - `max_tokens` and `stream` should work as expected but other params may be (unimplemented or not supported) General approach - fetch the `tokenizer_config` at startup from the hub - pass `tokenizer_config` into `Infer` so we have it at request time - use the `chat_template` on the config to format chat request - parse jinja template and render chat string - pass inputs into existing generate function - wrap generation output in expected structure before returning ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "tgi", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is deep learning?" } ], "stream": true, "max_tokens": 20 }' \ -H 'Content-Type: application/json' ``` It is also possible to use the `openai` python library and change the base url ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=True ) for message in chat_completion: print(message) ``` ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=False ) print(chat_completion) ``` ```bash cd text-generation-inference/server MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2 ``` ***note many of the existing `chat_templates` use non standard `jinja` (ie. adding a `raise` to the template) which will throw an error when parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a valid template ```bash cd text-generation-inference/router cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0 ``` trigger ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \ -H 'Content-Type: application/json' ``` ^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
// Load tokenizer config
// This will be used to format the chat template
let local_tokenizer_config_path =
tokenizer_config_path.unwrap_or("tokenizer_config.json".to_string());
let local_tokenizer_config = Path::new(&local_tokenizer_config_path).exists();
feat: supports openai chat completions API (#1427) This PR adds support to make TGI a drop in replacement for OpenAI clients by exposing the same HTTP interface. Notes - TGI inits a single model at startup so the `model` field is unused in HTTP requests. - `max_tokens` and `stream` should work as expected but other params may be (unimplemented or not supported) General approach - fetch the `tokenizer_config` at startup from the hub - pass `tokenizer_config` into `Infer` so we have it at request time - use the `chat_template` on the config to format chat request - parse jinja template and render chat string - pass inputs into existing generate function - wrap generation output in expected structure before returning ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "tgi", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is deep learning?" } ], "stream": true, "max_tokens": 20 }' \ -H 'Content-Type: application/json' ``` It is also possible to use the `openai` python library and change the base url ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=True ) for message in chat_completion: print(message) ``` ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=False ) print(chat_completion) ``` ```bash cd text-generation-inference/server MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2 ``` ***note many of the existing `chat_templates` use non standard `jinja` (ie. adding a `raise` to the template) which will throw an error when parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a valid template ```bash cd text-generation-inference/router cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0 ``` trigger ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \ -H 'Content-Type: application/json' ``` ^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
// Shared API builder initialization
let api_builder = || {
let mut builder = ApiBuilder::new()
.with_progress(false)
.with_token(authorization_token);
feat: supports openai chat completions API (#1427) This PR adds support to make TGI a drop in replacement for OpenAI clients by exposing the same HTTP interface. Notes - TGI inits a single model at startup so the `model` field is unused in HTTP requests. - `max_tokens` and `stream` should work as expected but other params may be (unimplemented or not supported) General approach - fetch the `tokenizer_config` at startup from the hub - pass `tokenizer_config` into `Infer` so we have it at request time - use the `chat_template` on the config to format chat request - parse jinja template and render chat string - pass inputs into existing generate function - wrap generation output in expected structure before returning ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "tgi", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is deep learning?" } ], "stream": true, "max_tokens": 20 }' \ -H 'Content-Type: application/json' ``` It is also possible to use the `openai` python library and change the base url ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=True ) for message in chat_completion: print(message) ``` ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=False ) print(chat_completion) ``` ```bash cd text-generation-inference/server MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2 ``` ***note many of the existing `chat_templates` use non standard `jinja` (ie. adding a `raise` to the template) which will throw an error when parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a valid template ```bash cd text-generation-inference/router cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0 ``` trigger ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \ -H 'Content-Type: application/json' ``` ^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
if let Ok(cache_dir) = std::env::var("HUGGINGFACE_HUB_CACHE") {
builder = builder.with_cache_dir(cache_dir.into());
}
feat: supports openai chat completions API (#1427) This PR adds support to make TGI a drop in replacement for OpenAI clients by exposing the same HTTP interface. Notes - TGI inits a single model at startup so the `model` field is unused in HTTP requests. - `max_tokens` and `stream` should work as expected but other params may be (unimplemented or not supported) General approach - fetch the `tokenizer_config` at startup from the hub - pass `tokenizer_config` into `Infer` so we have it at request time - use the `chat_template` on the config to format chat request - parse jinja template and render chat string - pass inputs into existing generate function - wrap generation output in expected structure before returning ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "tgi", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is deep learning?" } ], "stream": true, "max_tokens": 20 }' \ -H 'Content-Type: application/json' ``` It is also possible to use the `openai` python library and change the base url ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=True ) for message in chat_completion: print(message) ``` ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=False ) print(chat_completion) ``` ```bash cd text-generation-inference/server MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2 ``` ***note many of the existing `chat_templates` use non standard `jinja` (ie. adding a `raise` to the template) which will throw an error when parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a valid template ```bash cd text-generation-inference/router cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0 ``` trigger ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \ -H 'Content-Type: application/json' ``` ^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
builder
};
// Decide if we need to use the API based on the revision and local path
let use_api = revision.is_some() || !local_path.exists() || !local_path.is_dir();
// Initialize API if needed
let api = if use_api {
tracing::info!("Using the Hugging Face API");
match api_builder().build() {
Ok(api) => Some(api),
Err(_) => {
tracing::warn!("Unable to build the Hugging Face API");
None
}
}
feat: supports openai chat completions API (#1427) This PR adds support to make TGI a drop in replacement for OpenAI clients by exposing the same HTTP interface. Notes - TGI inits a single model at startup so the `model` field is unused in HTTP requests. - `max_tokens` and `stream` should work as expected but other params may be (unimplemented or not supported) General approach - fetch the `tokenizer_config` at startup from the hub - pass `tokenizer_config` into `Infer` so we have it at request time - use the `chat_template` on the config to format chat request - parse jinja template and render chat string - pass inputs into existing generate function - wrap generation output in expected structure before returning ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "tgi", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is deep learning?" } ], "stream": true, "max_tokens": 20 }' \ -H 'Content-Type: application/json' ``` It is also possible to use the `openai` python library and change the base url ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=True ) for message in chat_completion: print(message) ``` ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=False ) print(chat_completion) ``` ```bash cd text-generation-inference/server MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2 ``` ***note many of the existing `chat_templates` use non standard `jinja` (ie. adding a `raise` to the template) which will throw an error when parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a valid template ```bash cd text-generation-inference/router cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0 ``` trigger ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \ -H 'Content-Type: application/json' ``` ^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
} else {
None
};
// Load tokenizer and model info
let skip_tokenizer_in_tgi = env::var("SKIP_TOKENIZER_IN_TGI")
.ok()
.map_or(false, |value| value.to_lowercase() == "true");
let (tokenizer, model_info) = if local_model {
let tokenizer = if skip_tokenizer_in_tgi {
None
} else {
Tokenizer::from_file(local_path.join("tokenizer.json")).ok()
};
let model_info = HubModelInfo {
model_id: tokenizer_name.to_string(),
sha: None,
pipeline_tag: None,
};
feat: supports openai chat completions API (#1427) This PR adds support to make TGI a drop in replacement for OpenAI clients by exposing the same HTTP interface. Notes - TGI inits a single model at startup so the `model` field is unused in HTTP requests. - `max_tokens` and `stream` should work as expected but other params may be (unimplemented or not supported) General approach - fetch the `tokenizer_config` at startup from the hub - pass `tokenizer_config` into `Infer` so we have it at request time - use the `chat_template` on the config to format chat request - parse jinja template and render chat string - pass inputs into existing generate function - wrap generation output in expected structure before returning ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "tgi", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is deep learning?" } ], "stream": true, "max_tokens": 20 }' \ -H 'Content-Type: application/json' ``` It is also possible to use the `openai` python library and change the base url ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=True ) for message in chat_completion: print(message) ``` ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=False ) print(chat_completion) ``` ```bash cd text-generation-inference/server MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2 ``` ***note many of the existing `chat_templates` use non standard `jinja` (ie. adding a `raise` to the template) which will throw an error when parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a valid template ```bash cd text-generation-inference/router cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0 ``` trigger ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \ -H 'Content-Type: application/json' ``` ^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
(tokenizer, model_info)
} else if let Some(api) = api.clone() {
let api_repo = api.repo(Repo::with_revision(
feat: supports openai chat completions API (#1427) This PR adds support to make TGI a drop in replacement for OpenAI clients by exposing the same HTTP interface. Notes - TGI inits a single model at startup so the `model` field is unused in HTTP requests. - `max_tokens` and `stream` should work as expected but other params may be (unimplemented or not supported) General approach - fetch the `tokenizer_config` at startup from the hub - pass `tokenizer_config` into `Infer` so we have it at request time - use the `chat_template` on the config to format chat request - parse jinja template and render chat string - pass inputs into existing generate function - wrap generation output in expected structure before returning ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "tgi", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is deep learning?" } ], "stream": true, "max_tokens": 20 }' \ -H 'Content-Type: application/json' ``` It is also possible to use the `openai` python library and change the base url ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=True ) for message in chat_completion: print(message) ``` ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=False ) print(chat_completion) ``` ```bash cd text-generation-inference/server MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2 ``` ***note many of the existing `chat_templates` use non standard `jinja` (ie. adding a `raise` to the template) which will throw an error when parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a valid template ```bash cd text-generation-inference/router cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0 ``` trigger ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \ -H 'Content-Type: application/json' ``` ^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
tokenizer_name.to_string(),
RepoType::Model,
feat: supports openai chat completions API (#1427) This PR adds support to make TGI a drop in replacement for OpenAI clients by exposing the same HTTP interface. Notes - TGI inits a single model at startup so the `model` field is unused in HTTP requests. - `max_tokens` and `stream` should work as expected but other params may be (unimplemented or not supported) General approach - fetch the `tokenizer_config` at startup from the hub - pass `tokenizer_config` into `Infer` so we have it at request time - use the `chat_template` on the config to format chat request - parse jinja template and render chat string - pass inputs into existing generate function - wrap generation output in expected structure before returning ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "tgi", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is deep learning?" } ], "stream": true, "max_tokens": 20 }' \ -H 'Content-Type: application/json' ``` It is also possible to use the `openai` python library and change the base url ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=True ) for message in chat_completion: print(message) ``` ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=False ) print(chat_completion) ``` ```bash cd text-generation-inference/server MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2 ``` ***note many of the existing `chat_templates` use non standard `jinja` (ie. adding a `raise` to the template) which will throw an error when parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a valid template ```bash cd text-generation-inference/router cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0 ``` trigger ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \ -H 'Content-Type: application/json' ``` ^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
revision.clone().unwrap_or_else(|| "main".to_string()),
));
feat: supports openai chat completions API (#1427) This PR adds support to make TGI a drop in replacement for OpenAI clients by exposing the same HTTP interface. Notes - TGI inits a single model at startup so the `model` field is unused in HTTP requests. - `max_tokens` and `stream` should work as expected but other params may be (unimplemented or not supported) General approach - fetch the `tokenizer_config` at startup from the hub - pass `tokenizer_config` into `Infer` so we have it at request time - use the `chat_template` on the config to format chat request - parse jinja template and render chat string - pass inputs into existing generate function - wrap generation output in expected structure before returning ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "tgi", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is deep learning?" } ], "stream": true, "max_tokens": 20 }' \ -H 'Content-Type: application/json' ``` It is also possible to use the `openai` python library and change the base url ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=True ) for message in chat_completion: print(message) ``` ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=False ) print(chat_completion) ``` ```bash cd text-generation-inference/server MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2 ``` ***note many of the existing `chat_templates` use non standard `jinja` (ie. adding a `raise` to the template) which will throw an error when parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a valid template ```bash cd text-generation-inference/router cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0 ``` trigger ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \ -H 'Content-Type: application/json' ``` ^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
let tokenizer = match api_repo.get("tokenizer.json").await {
Ok(tokenizer_filename) => Tokenizer::from_file(tokenizer_filename).ok(),
Err(_) => get_base_tokenizer(&api, &api_repo).await,
};
let model_info = get_model_info(&api_repo).await.unwrap_or_else(|| {
tracing::warn!("Could not retrieve model info from the Hugging Face hub.");
HubModelInfo {
model_id: tokenizer_name.to_string(),
sha: None,
pipeline_tag: None,
}
});
(tokenizer, model_info)
feat: supports openai chat completions API (#1427) This PR adds support to make TGI a drop in replacement for OpenAI clients by exposing the same HTTP interface. Notes - TGI inits a single model at startup so the `model` field is unused in HTTP requests. - `max_tokens` and `stream` should work as expected but other params may be (unimplemented or not supported) General approach - fetch the `tokenizer_config` at startup from the hub - pass `tokenizer_config` into `Infer` so we have it at request time - use the `chat_template` on the config to format chat request - parse jinja template and render chat string - pass inputs into existing generate function - wrap generation output in expected structure before returning ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "tgi", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is deep learning?" } ], "stream": true, "max_tokens": 20 }' \ -H 'Content-Type: application/json' ``` It is also possible to use the `openai` python library and change the base url ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=True ) for message in chat_completion: print(message) ``` ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=False ) print(chat_completion) ``` ```bash cd text-generation-inference/server MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2 ``` ***note many of the existing `chat_templates` use non standard `jinja` (ie. adding a `raise` to the template) which will throw an error when parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a valid template ```bash cd text-generation-inference/router cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0 ``` trigger ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \ -H 'Content-Type: application/json' ``` ^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
} else {
// No API and no local model
return Err(RouterError::ArgumentValidation(
"No local model found and no revision specified".to_string(),
));
};
// Load tokenizer config if found locally, or check if we can get it from the API if needed
let tokenizer_config = if local_tokenizer_config {
tracing::info!("Using local tokenizer config");
HubTokenizerConfig::from_file(&local_tokenizer_config_path)
} else if let Some(api) = api {
tracing::info!("Using the Hugging Face API to retrieve tokenizer config");
get_tokenizer_config(&api.repo(Repo::with_revision(
tokenizer_name.to_string(),
RepoType::Model,
revision.unwrap_or_else(|| "main".to_string()),
)))
.await
.unwrap_or_else(|| {
tracing::warn!("Could not retrieve tokenizer config from the Hugging Face hub.");
HubTokenizerConfig::default()
})
} else {
tracing::warn!("Could not find tokenizer config locally and no revision specified");
HubTokenizerConfig::default()
};
if tokenizer.is_none() {
tracing::warn!("Could not find a fast tokenizer implementation for {tokenizer_name}");
tracing::warn!("Rust input length validation and truncation is disabled");
}
// if pipeline-tag == text-generation we default to return_full_text = true
let compat_return_full_text = match &model_info.pipeline_tag {
None => {
tracing::warn!("no pipeline tag found for model {tokenizer_name}");
false
}
Some(pipeline_tag) => pipeline_tag.as_str() == "text-generation",
};
// Instantiate sharded client from the master unix socket
let mut sharded_client = ShardedClient::connect_uds(master_shard_uds_path)
.await
.map_err(RouterError::Connection)?;
// Clear the cache; useful if the webserver rebooted
sharded_client
.clear_cache(None)
.await
.map_err(RouterError::Cache)?;
// Get info from the shard
let shard_info = sharded_client.info().await.map_err(RouterError::Info)?;
// Warmup model
tracing::info!("Warming up model");
let max_supported_batch_total_tokens = match sharded_client
.warmup(
max_input_length as u32,
max_batch_prefill_tokens,
max_total_tokens as u32,
max_batch_total_tokens,
)
.await
.map_err(RouterError::Warmup)?
{
// Older models do not support automatic max-batch-total-tokens
None => {
let max_batch_total_tokens = max_batch_total_tokens
.unwrap_or(16000.max((max_total_tokens as u32).max(max_batch_prefill_tokens)));
tracing::warn!("Model does not support automatic max batch total tokens");
max_batch_total_tokens
}
// Flash attention models return their max supported total tokens
Some(max_supported_batch_total_tokens) => {
// Warn if user added his own max-batch-total-tokens as we will ignore it
if max_batch_total_tokens.is_some() {
tracing::warn!(
"`--max-batch-total-tokens` is deprecated for Flash \
Attention models."
);
tracing::warn!(
"Inferred max batch total tokens: {max_supported_batch_total_tokens}"
);
}
if max_total_tokens as u32 > max_supported_batch_total_tokens {
return Err(RouterError::ArgumentValidation(format!("`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {max_total_tokens} and {max_supported_batch_total_tokens}")));
}
max_supported_batch_total_tokens
}
};
tracing::info!("Setting max batch total tokens to {max_supported_batch_total_tokens}");
tracing::info!("Connected");
let addr = match hostname.parse() {
Ok(ip) => SocketAddr::new(ip, port),
Err(_) => {
tracing::warn!("Invalid hostname, defaulting to 0.0.0.0");
SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), port)
}
};
// Run server
server::run(
model_info,
shard_info,
compat_return_full_text,
max_concurrent_requests,
max_best_of,
max_stop_sequences,
max_top_n_tokens,
max_input_length,
max_total_tokens,
waiting_served_ratio,
max_batch_prefill_tokens,
max_supported_batch_total_tokens,
max_waiting_tokens,
sharded_client,
tokenizer,
validation_workers,
addr,
cors_allow_origin,
ngrok,
ngrok_authtoken,
ngrok_edge,
feat: supports openai chat completions API (#1427) This PR adds support to make TGI a drop in replacement for OpenAI clients by exposing the same HTTP interface. Notes - TGI inits a single model at startup so the `model` field is unused in HTTP requests. - `max_tokens` and `stream` should work as expected but other params may be (unimplemented or not supported) General approach - fetch the `tokenizer_config` at startup from the hub - pass `tokenizer_config` into `Infer` so we have it at request time - use the `chat_template` on the config to format chat request - parse jinja template and render chat string - pass inputs into existing generate function - wrap generation output in expected structure before returning ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "tgi", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is deep learning?" } ], "stream": true, "max_tokens": 20 }' \ -H 'Content-Type: application/json' ``` It is also possible to use the `openai` python library and change the base url ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=True ) for message in chat_completion: print(message) ``` ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=False ) print(chat_completion) ``` ```bash cd text-generation-inference/server MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2 ``` ***note many of the existing `chat_templates` use non standard `jinja` (ie. adding a `raise` to the template) which will throw an error when parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a valid template ```bash cd text-generation-inference/router cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0 ``` trigger ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \ -H 'Content-Type: application/json' ``` ^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
tokenizer_config,
messages_api_enabled,
)
.await?;
Ok(())
2022-10-08 10:30:12 +00:00
}
2023-02-13 12:02:45 +00:00
/// Init logging using env variables LOG_LEVEL and LOG_FORMAT:
/// - otlp_endpoint is an optional URL to an Open Telemetry collector
/// - LOG_LEVEL may be TRACE, DEBUG, INFO, WARN or ERROR (default to INFO)
/// - LOG_FORMAT may be TEXT or JSON (default to TEXT)
fn init_logging(otlp_endpoint: Option<String>, json_output: bool) {
let mut layers = Vec::new();
// STDOUT/STDERR layer
let fmt_layer = tracing_subscriber::fmt::layer()
.with_file(true)
.with_line_number(true);
let fmt_layer = match json_output {
true => fmt_layer.json().flatten_event(true).boxed(),
false => fmt_layer.boxed(),
};
layers.push(fmt_layer);
// OpenTelemetry tracing layer
if let Some(otlp_endpoint) = otlp_endpoint {
global::set_text_map_propagator(TraceContextPropagator::new());
let tracer = opentelemetry_otlp::new_pipeline()
.tracing()
.with_exporter(
opentelemetry_otlp::new_exporter()
.tonic()
.with_endpoint(otlp_endpoint),
)
.with_trace_config(
trace::config()
.with_resource(Resource::new(vec![KeyValue::new(
"service.name",
"text-generation-inference.router",
)]))
.with_sampler(Sampler::AlwaysOn),
)
.install_batch(opentelemetry::runtime::Tokio);
if let Ok(tracer) = tracer {
layers.push(tracing_opentelemetry::layer().with_tracer(tracer).boxed());
Preping 1.1.0 (#1066) # What does this PR do? Upgrade all relevant versions and dependencies. <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-09-27 08:40:18 +00:00
init_tracing_opentelemetry::init_propagator().unwrap();
2023-02-13 12:02:45 +00:00
};
}
// Filter events with LOG_LEVEL
let env_filter =
EnvFilter::try_from_env("LOG_LEVEL").unwrap_or_else(|_| EnvFilter::new("info"));
tracing_subscriber::registry()
.with(env_filter)
.with(layers)
.init();
}
/// get model info from the Huggingface Hub
pub async fn get_model_info(api: &ApiRepo) -> Option<HubModelInfo> {
let response = api.info_request().send().await.ok()?;
if response.status().is_success() {
let hub_model_info: HubModelInfo =
serde_json::from_str(&response.text().await.ok()?).ok()?;
if let Some(sha) = &hub_model_info.sha {
tracing::info!(
"Serving revision {sha} of model {}",
hub_model_info.model_id
);
}
Some(hub_model_info)
} else {
None
}
}
/// get base tokenizer
pub async fn get_base_tokenizer(api: &Api, api_repo: &ApiRepo) -> Option<Tokenizer> {
let config_filename = api_repo.get("config.json").await.ok()?;
// Open the file in read-only mode with buffer.
let file = File::open(config_filename).ok()?;
let reader = BufReader::new(file);
// Read the JSON contents of the file as an instance of `User`.
let config: serde_json::Value = serde_json::from_reader(reader).ok()?;
if let Some(serde_json::Value::String(base_model_id)) = config.get("base_model_name_or_path") {
let api_base_repo = api.repo(Repo::with_revision(
base_model_id.to_string(),
RepoType::Model,
"main".to_string(),
));
let tokenizer_filename = api_base_repo.get("tokenizer.json").await.ok()?;
Tokenizer::from_file(tokenizer_filename).ok()
} else {
None
}
}
feat: supports openai chat completions API (#1427) This PR adds support to make TGI a drop in replacement for OpenAI clients by exposing the same HTTP interface. Notes - TGI inits a single model at startup so the `model` field is unused in HTTP requests. - `max_tokens` and `stream` should work as expected but other params may be (unimplemented or not supported) General approach - fetch the `tokenizer_config` at startup from the hub - pass `tokenizer_config` into `Infer` so we have it at request time - use the `chat_template` on the config to format chat request - parse jinja template and render chat string - pass inputs into existing generate function - wrap generation output in expected structure before returning ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "tgi", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is deep learning?" } ], "stream": true, "max_tokens": 20 }' \ -H 'Content-Type: application/json' ``` It is also possible to use the `openai` python library and change the base url ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=True ) for message in chat_completion: print(message) ``` ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:3000/v1", api_key="not needed for a local LLM" ) chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "system", "content": "You are a helpful assistant." }, {"role": "user", "content": "What is deep learning?"} ], stream=False ) print(chat_completion) ``` ```bash cd text-generation-inference/server MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2 ``` ***note many of the existing `chat_templates` use non standard `jinja` (ie. adding a `raise` to the template) which will throw an error when parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a valid template ```bash cd text-generation-inference/router cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0 ``` trigger ```bash curl localhost:3000/v1/chat/completions \ -X POST \ -d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \ -H 'Content-Type: application/json' ``` ^ supports `stream: true` and `stream: false` requests
2024-01-16 10:07:41 +00:00
/// get tokenizer_config from the Huggingface Hub
pub async fn get_tokenizer_config(api_repo: &ApiRepo) -> Option<HubTokenizerConfig> {
let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok()?;
// Open the file in read-only mode with buffer.
let file = File::open(tokenizer_config_filename).ok()?;
let reader = BufReader::new(file);
// Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
let tokenizer_config: HubTokenizerConfig = serde_json::from_reader(reader).ok()?;
Some(tokenizer_config)
}
#[derive(Debug, Error)]
enum RouterError {
#[error("Argument validation error: {0}")]
ArgumentValidation(String),
#[error("Unable to connect to the Python model shards: {0}")]
Connection(ClientError),
#[error("Unable to clear the Python model shards cache: {0}")]
Cache(ClientError),
#[error("Unable to get the Python model shards info: {0}")]
Info(ClientError),
#[error("Unable to warmup the Python model shards: {0}")]
Warmup(ClientError),
#[error("Tokio runtime failed to start: {0}")]
Tokio(#[from] std::io::Error),
#[error("Axum webserver failed: {0}")]
Axum(#[from] axum::BoxError),
}