text-generation-inference/backends/trtllm/src/looper.rs

227 lines
8.6 KiB
Rust
Raw Normal View History

use std::hint;
use std::ops::Deref;
use std::path::Path;
use std::sync::OnceLock;
use async_trait::async_trait;
use cxx::UniquePtr;
use hashbrown::HashMap;
use tokenizers::{Encoding, Tokenizer};
use tokio::sync::mpsc::{unbounded_channel, UnboundedReceiver, UnboundedSender};
use tokio::task::JoinHandle;
use tokio_stream::wrappers::UnboundedReceiverStream;
use tracing::{error, info, Level, span};
use text_generation_router::infer::{Backend, InferError, InferStreamResponse};
use text_generation_router::infer::InferError::GenerationError;
use text_generation_router::validation::{Chunk, ValidationError, ValidGenerateRequest};
use text_generation_router::validation::ValidationError::UnsupportedModality;
use crate::errors::TensorRtLlmBackendError;
use crate::ffi::{create_tensorrt_llm_backend, TensorRtLlmBackendImpl};
use crate::utils::first_line;
// Value used to poll the state of the generation stream
static POLLING_INTERVAL_US: OnceLock<u64> = OnceLock::new();
// It's safe to send the backend between threads
unsafe impl Send for TensorRtLlmBackendImpl {}
type InferResult<T> = Result<T, InferError>;
struct ValidGenerateRequestWithTokens {
encoding: Encoding,
inner: ValidGenerateRequest,
}
fn executor_status_poller(
mut backend: UniquePtr<TensorRtLlmBackendImpl>,
mut waiting_requests: UnboundedReceiver<GenerationContext>,
) {
// Track the tuple (request_id, stream) for each request
let mut in_flights = HashMap::<u64, GenerationContext>::with_capacity(128);
// TODO: Does it need a spin-loop?
loop {
span!(Level::DEBUG, "in-flight submit").in_scope(|| {
// Is there any request pending to be scheduled?
let awaiting_requests = waiting_requests.len();
if awaiting_requests > 0 {
// Retrieve all the requests
let mut requests = Vec::with_capacity(awaiting_requests);
let _ = waiting_requests.recv_many(&mut requests, awaiting_requests);
// Submit all the request to the executor and move the context to the in-flight tracker
for ctx in requests {
let request = &ctx.request;
let generation_params = &request.inner.parameters;
let stopping_params = &request.inner.stopping_parameters;
// Submit to the TensorRT-LLM executor for scheduling
match backend.pin_mut().submit(
request.encoding.get_ids(),
stopping_params.max_new_tokens,
generation_params.top_k as i32,
generation_params.top_p,
generation_params.temperature,
generation_params.repetition_penalty,
generation_params.frequency_penalty,
generation_params.seed,
) {
Ok(request_id) => {
// Insert the context linked to the generated request id in the tracker
in_flights.insert(request_id, ctx);
}
Err(e) => {
// Return to the caller
let what = Err(InferError::SchedulingError(e.to_string()));
if let Err(e) = ctx.streamer.send(what) {
error!("Failed to send back through the channel: {}", e);
}
}
};
}
}
});
span!(Level::DEBUG, "in-flight poll").in_scope(|| {
if backend.num_responses_ready() > 0 {
match backend.pin_mut().pull_tokens() {
Ok(responses) => {
for step in responses.deref() {
let request_id = step.request_id;
match in_flights.get(&request_id) {
Some(ctx) => {
info!("New token for {} -> {}", request_id, step.token_id);
if step.is_final {
let _ = in_flights.remove(&step.request_id);
}
}
None => {
error!("Got step for untracked request {}", request_id);
}
}
}
}
Err(err) => {
error!("Failed to retrieve tokens from the executor: {}", err);
}
}
}
});
// Hint the CPU we are spin-locking
hint::spin_loop();
}
}
struct GenerationContext {
request: ValidGenerateRequestWithTokens,
streamer: UnboundedSender<InferResult<InferStreamResponse>>,
}
pub struct TensorRtLlmBackendV2 {
tokenizer: Tokenizer,
looper: JoinHandle<()>,
queue: UnboundedSender<GenerationContext>,
}
impl TensorRtLlmBackendV2 {
pub fn new<P: AsRef<Path> + Send, PP: AsRef<Path> + Send>(
tokenizer: Tokenizer,
engine_folder: P,
executor_worker_path: PP,
) -> Result<Self, TensorRtLlmBackendError> {
// Retrieve paths as &str for the backend creation
let engine_folder = engine_folder.as_ref();
let executor_worker_path = executor_worker_path.as_ref();
let engine_folder = String::from(
engine_folder
.to_str()
.expect("Failed to convert engine_folder to valid UTF-8"),
);
let executor_worker_path = String::from(
executor_worker_path
.to_str()
.expect("Failed to convert executor_worker_path to valid UTF-8"),
);
// Allocate the IPC layer to communicate with the backend
let (requests_sender, requests_receiver) = unbounded_channel::<GenerationContext>();
// Create the FFI backend
let backend = create_tensorrt_llm_backend(&engine_folder, &executor_worker_path)
.map_err(|e| TensorRtLlmBackendError::Runtime(first_line(e.what(), "Unknown error")))?;
// Looper is responsible for scheduling and pulling requests state at regular interval
let looper =
tokio::task::spawn_blocking(move || executor_status_poller(backend, requests_receiver));
Ok(TensorRtLlmBackendV2 {
tokenizer,
looper,
queue: requests_sender,
})
}
fn validate(request: &ValidGenerateRequest) -> InferResult<&String> {
if request.top_n_tokens > 1 {
return Err(InferError::ValidationError(
ValidationError::TopNTokensDisabled,
));
}
// TODO: Is it really needed? How can it be validated before?
if request.parameters.grammar.is_some() {
return Err(InferError::ValidationError(ValidationError::Grammar));
}
match request.inputs.len() {
0 => Err(InferError::ValidationError(ValidationError::EmptyInput)),
2.. => Err(InferError::GenerationError(
"TensorRT-LLM backend don't support multi-chunk".into(),
)),
1 => match request.inputs.first().expect("Single item-chunk") {
Chunk::Text(text) => Ok(text),
Chunk::Image(_) => Err(InferError::ValidationError(UnsupportedModality("image"))),
},
}
}
}
#[async_trait]
impl Backend for TensorRtLlmBackendV2 {
fn schedule(
&self,
inner: ValidGenerateRequest,
) -> Result<UnboundedReceiverStream<Result<InferStreamResponse, InferError>>, InferError> {
let prompt = Self::validate(&inner)?;
// We encode the prompt in every request context/thread
let encoding = self
.tokenizer
.encode(prompt.as_str(), true)
.map_err(|e| GenerationError(format!("Tokenization failed {}", e.to_string())))?;
let request = ValidGenerateRequestWithTokens { encoding, inner };
// Open-up the stream to send tokens
let (streamer, receiver) = unbounded_channel::<InferResult<InferStreamResponse>>();
// Send the context to the executor for scheduling
match self.queue.send(GenerationContext { request, streamer }) {
Ok(_) => Ok(UnboundedReceiverStream::new(receiver)),
Err(_) => Err(GenerationError(
"Failed to submit request to the backend".into(),
)),
}
}
async fn health(&self, current_health: bool) -> bool {
current_health & !self.looper.is_finished()
}
}