mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-22 07:22:07 +00:00
189 lines
6.8 KiB
Python
189 lines
6.8 KiB
Python
|
import torch
|
||
|
from torch.nn import functional as F
|
||
|
from typing import List
|
||
|
from text_generation_server.layers.linear import get_linear, FastLinear
|
||
|
|
||
|
|
||
|
class SuperLayer(torch.nn.Module):
|
||
|
def __init__(self, linear):
|
||
|
super().__init__()
|
||
|
self.linear = linear
|
||
|
|
||
|
def forward(self, x):
|
||
|
return self.linear.forward(x)
|
||
|
|
||
|
|
||
|
class TensorParallelHead(SuperLayer):
|
||
|
def __init__(self, linear, process_group, should_gather: bool):
|
||
|
super().__init__(linear)
|
||
|
self.process_group = process_group
|
||
|
self.should_gather = should_gather
|
||
|
|
||
|
@staticmethod
|
||
|
def load(config, prefix: str, weights):
|
||
|
if weights.process_group.size() > 1:
|
||
|
try:
|
||
|
weight = weights.get_sharded(f"{prefix}.weight", dim=0)
|
||
|
should_gather = True
|
||
|
except AssertionError:
|
||
|
# If the vocab size is not divisible by number of shards
|
||
|
# just load the entire thing.
|
||
|
weight = weights.get_tensor(f"{prefix}.weight")
|
||
|
should_gather = False
|
||
|
else:
|
||
|
weight = weights.get_tensor(f"{prefix}.weight")
|
||
|
should_gather = False
|
||
|
|
||
|
# GPTQ,AWQ,EETQ don't quantize heads (nor embeddings)
|
||
|
if config.quantize in ["gptq", "awq", "eetq"]:
|
||
|
quantize = None
|
||
|
else:
|
||
|
quantize = config.quantize
|
||
|
return TensorParallelHead(
|
||
|
get_linear(weight, bias=None, quantize=quantize),
|
||
|
process_group=weights.process_group,
|
||
|
should_gather=should_gather,
|
||
|
)
|
||
|
|
||
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||
|
if not self.should_gather:
|
||
|
return super().forward(input)
|
||
|
|
||
|
world_size = self.process_group.size()
|
||
|
if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
|
||
|
out_dim = self.linear.weight.shape[0]
|
||
|
|
||
|
if input.shape[0] == 1:
|
||
|
world_out = input.new_empty(1, out_dim * world_size)
|
||
|
local_out = input.new_empty(1, out_dim)
|
||
|
gather_input = local_out
|
||
|
else:
|
||
|
world_out = input.new_empty(out_dim * world_size, input.shape[0])
|
||
|
gather_input = input.new_empty(out_dim, input.shape[0])
|
||
|
local_out = gather_input.T
|
||
|
|
||
|
torch.mm(input, self.linear.weight.T, out=local_out)
|
||
|
|
||
|
torch.distributed.all_gather_into_tensor(
|
||
|
world_out, gather_input, group=self.process_group
|
||
|
)
|
||
|
|
||
|
if input.shape[0] == 1:
|
||
|
return world_out
|
||
|
return world_out.T
|
||
|
|
||
|
output = super().forward(input)
|
||
|
world_output = [
|
||
|
torch.empty_like(output) for _ in range(self.process_group.size())
|
||
|
]
|
||
|
torch.distributed.all_gather(world_output, output, group=self.process_group)
|
||
|
world_output = torch.cat(world_output, dim=-1)
|
||
|
return world_output
|
||
|
|
||
|
|
||
|
class TensorParallelColumnLinear(SuperLayer):
|
||
|
@classmethod
|
||
|
def load_gate_up(cls, config, prefix: str, weights, bias: bool):
|
||
|
"""Specific method when the QKV was joined after the fact"""
|
||
|
weight = weights.get_weights_col_packed_gate_up(
|
||
|
prefix, quantize=config.quantize
|
||
|
)
|
||
|
if bias:
|
||
|
raise NotImplementedError("packed_gate_up only implemented without bias")
|
||
|
else:
|
||
|
bias = None
|
||
|
linear = get_linear(weight, bias, config.quantize)
|
||
|
return cls(linear)
|
||
|
|
||
|
@classmethod
|
||
|
def load_qkv(cls, config, prefix: str, weights, bias: bool):
|
||
|
"""Specific method when the QKV was joined after the fact"""
|
||
|
weight = weights.get_weights_col_packed_qkv(prefix, quantize=config.quantize)
|
||
|
if bias:
|
||
|
raise NotImplementedError("packed_qkv only implemented for baichuan")
|
||
|
else:
|
||
|
bias = None
|
||
|
linear = get_linear(weight, bias, config.quantize)
|
||
|
return cls(linear)
|
||
|
|
||
|
@classmethod
|
||
|
def load(cls, config, prefix: str, weights, bias: bool):
|
||
|
return cls.load_multi(config, [prefix], weights, bias, dim=0)
|
||
|
|
||
|
@classmethod
|
||
|
def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
|
||
|
weight = weights.get_multi_weights_col(
|
||
|
prefixes, quantize=config.quantize, dim=dim
|
||
|
)
|
||
|
|
||
|
if bias:
|
||
|
b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
|
||
|
bias = torch.cat(b, dim=dim)
|
||
|
else:
|
||
|
bias = None
|
||
|
linear = get_linear(weight, bias, config.quantize)
|
||
|
return cls(linear)
|
||
|
|
||
|
|
||
|
class TensorParallelRowLinear(SuperLayer):
|
||
|
def __init__(self, linear, process_group):
|
||
|
super().__init__(linear)
|
||
|
self.process_group = process_group
|
||
|
|
||
|
@classmethod
|
||
|
def load(cls, config, prefix: str, weights, bias: bool):
|
||
|
weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)
|
||
|
|
||
|
if bias and weights.process_group.rank() == 0:
|
||
|
# Rank is only on the first rank process
|
||
|
bias = weights.get_tensor(f"{prefix}.bias")
|
||
|
else:
|
||
|
bias = None
|
||
|
return cls(
|
||
|
get_linear(weight, bias, config.quantize),
|
||
|
process_group=weights.process_group,
|
||
|
)
|
||
|
|
||
|
def forward(self, input: torch.Tensor, reduce: bool = True) -> torch.Tensor:
|
||
|
out = super().forward(input)
|
||
|
if self.process_group.size() > 1 and reduce:
|
||
|
torch.distributed.all_reduce(out, group=self.process_group)
|
||
|
return out
|
||
|
|
||
|
|
||
|
class TensorParallelEmbedding(torch.nn.Module):
|
||
|
def __init__(self, prefix: str, weights, reduce=True):
|
||
|
super().__init__()
|
||
|
weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
|
||
|
num_embeddings = weights.get_shape(f"{prefix}.weight")[0]
|
||
|
|
||
|
process_group = weights.process_group
|
||
|
|
||
|
world_size = process_group.size()
|
||
|
rank = process_group.rank()
|
||
|
|
||
|
block_size = (num_embeddings + world_size - 1) // world_size
|
||
|
self.min_id = rank * block_size
|
||
|
self.max_id = min(num_embeddings, (rank + 1) * block_size)
|
||
|
self.null_idx = weight.shape[
|
||
|
0
|
||
|
] # Usually block_size, might be less in non even vocab_size.
|
||
|
self.process_group = weights.process_group
|
||
|
self.reduce = reduce
|
||
|
|
||
|
"""Additional 0 entry used for masking"""
|
||
|
self.weight = torch.nn.Parameter(F.pad(weight, (0, 0, 0, 1)))
|
||
|
|
||
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||
|
# default all out of bounds values to `self.null_idx` that will then be mapped to 0
|
||
|
# translate for [0, self.max_id - self.min_id[
|
||
|
input = torch.where(
|
||
|
(self.min_id > input) | (input >= self.max_id),
|
||
|
self.null_idx,
|
||
|
input - self.min_id,
|
||
|
)
|
||
|
out = torch.nn.functional.embedding(input, self.weight)
|
||
|
if self.reduce and self.process_group.size() > 1:
|
||
|
torch.distributed.all_reduce(out, group=self.process_group)
|
||
|
return out
|