text-generation-inference/backends/v2/src/queue.rs

679 lines
22 KiB
Rust
Raw Normal View History

use crate::client::{
Batch, GrammarType, NextTokenChooserParameters, Request, StoppingCriteriaParameters,
};
use nohash_hasher::{BuildNoHashHasher, IntMap};
2023-09-28 07:55:47 +00:00
use std::cmp::min;
use std::collections::VecDeque;
use text_generation_router::infer::InferError;
use text_generation_router::infer::InferStreamResponse;
use text_generation_router::validation::{
ChunksToString, ValidGenerateRequest, ValidGrammar, ValidParameters, ValidStoppingParameters,
};
2023-10-23 13:51:12 +00:00
use tokio::sync::{mpsc, oneshot};
use tokio::time::Instant;
2023-02-13 12:02:45 +00:00
use tracing::{info_span, instrument, Span};
/// Queue entry
#[derive(Debug)]
pub(crate) struct Entry {
/// Request
pub request: ValidGenerateRequest,
/// Response sender to communicate between the Infer struct and the batching_task
2023-10-23 13:51:12 +00:00
pub response_tx: mpsc::UnboundedSender<Result<InferStreamResponse, InferError>>,
2023-02-13 12:02:45 +00:00
/// Span that will live as long as entry
pub span: Span,
/// Temporary span used as a guard when logging inference, wait times...
pub temp_span: Option<Span>,
/// Instant when this entry was queued
pub queue_time: Instant,
/// Instant when this entry was added to a batch
pub batch_time: Option<Instant>,
}
/// Request Queue
#[derive(Debug, Clone)]
pub(crate) struct Queue {
/// Channel to communicate with the background queue task
2023-10-23 13:51:12 +00:00
queue_sender: mpsc::UnboundedSender<QueueCommand>,
}
impl Queue {
pub(crate) fn new(
requires_padding: bool,
block_size: u32,
2023-12-11 11:46:30 +00:00
window_size: Option<u32>,
speculate: u32,
) -> Self {
// Create channel
2023-10-23 13:51:12 +00:00
let (queue_sender, queue_receiver) = mpsc::unbounded_channel();
// Launch background queue task
2023-09-28 07:55:47 +00:00
tokio::spawn(queue_task(
requires_padding,
block_size,
window_size,
2023-12-11 11:46:30 +00:00
speculate,
2023-09-28 07:55:47 +00:00
queue_receiver,
));
Self { queue_sender }
}
2023-02-13 12:02:45 +00:00
#[instrument(skip_all)]
pub(crate) fn append(&self, entry: Entry) {
// Send append command to the background task managing the state
// Unwrap is safe here
2023-02-13 12:02:45 +00:00
self.queue_sender
.send(QueueCommand::Append(Box::new(entry), Span::current()))
2023-02-13 12:02:45 +00:00
.unwrap();
}
// Get the next batch
2023-02-13 12:02:45 +00:00
#[instrument(skip(self))]
pub(crate) async fn next_batch(
&self,
min_size: Option<usize>,
max_size: Option<usize>,
prefill_token_budget: u32,
token_budget: u32,
) -> Option<NextBatch> {
// Create response channel
let (response_sender, response_receiver) = oneshot::channel();
// Send next batch command to the background task managing the state
// Unwrap is safe here
self.queue_sender
.send(QueueCommand::NextBatch {
min_size,
max_size,
prefill_token_budget,
token_budget,
response_sender,
2023-02-13 12:02:45 +00:00
span: Span::current(),
})
.unwrap();
// Await on response channel
// Unwrap is safe here
response_receiver.await.unwrap()
}
}
// Background task responsible of the queue state
async fn queue_task(
requires_padding: bool,
block_size: u32,
2023-09-28 07:55:47 +00:00
window_size: Option<u32>,
2023-12-11 11:46:30 +00:00
speculate: u32,
2023-10-23 13:51:12 +00:00
mut receiver: mpsc::UnboundedReceiver<QueueCommand>,
) {
let mut state = State::new(requires_padding, block_size, window_size, speculate);
2023-10-23 13:51:12 +00:00
while let Some(cmd) = receiver.recv().await {
match cmd {
QueueCommand::Append(entry, span) => {
span.in_scope(|| state.append(*entry));
metrics::gauge!("tgi_queue_size").increment(1.0);
}
QueueCommand::NextBatch {
min_size,
max_size,
prefill_token_budget,
token_budget,
response_sender,
2023-02-13 12:02:45 +00:00
span,
} => span.in_scope(|| {
let next_batch =
state.next_batch(min_size, max_size, prefill_token_budget, token_budget);
response_sender.send(next_batch).unwrap();
metrics::gauge!("tgi_queue_size").set(state.entries.len() as f64);
2023-02-13 12:02:45 +00:00
}),
}
}
}
/// Queue State
#[derive(Debug)]
struct State {
/// Queue entries organized in a Vec
entries: VecDeque<(u64, Entry)>,
/// Id of the next entry
next_id: u64,
/// Id of the next batch
next_batch_id: u64,
/// Whether the model is using padding
requires_padding: bool,
/// Paged Attention block size
block_size: u32,
2023-09-28 07:55:47 +00:00
/// Sliding window
window_size: Option<u32>,
2023-12-11 11:46:30 +00:00
/// Speculation amount
speculate: u32,
}
impl State {
fn new(
requires_padding: bool,
block_size: u32,
window_size: Option<u32>,
2023-12-11 11:46:30 +00:00
speculate: u32,
) -> Self {
Self {
entries: VecDeque::with_capacity(128),
next_id: 0,
next_batch_id: 0,
requires_padding,
block_size,
2023-09-28 07:55:47 +00:00
window_size,
2023-12-11 11:46:30 +00:00
speculate,
}
}
/// Append an entry to the queue
2023-02-13 12:02:45 +00:00
fn append(&mut self, mut entry: Entry) {
// Create a span that will live as long as the entry is in the queue waiting to be batched
let queue_span = info_span!(parent: &entry.span, "queued");
entry.temp_span = Some(queue_span);
// Push entry in the queue
self.entries.push_back((self.next_id, entry));
self.next_id += 1;
}
// Get the next batch
fn next_batch(
&mut self,
min_size: Option<usize>,
max_size: Option<usize>,
prefill_token_budget: u32,
token_budget: u32,
) -> Option<NextBatch> {
if self.entries.is_empty() {
Improve the defaults for the launcher (#1727) - Renamed `max_input_length` into `max_input_tokens` for consistency (backward compatible change, will yell if both are set.) - Will now use the config for `max_input_tokens` `max_total_token` and `max_batch_total_tokens`. - Capping the values to 16k in order to save VRAM on behalf of users (overriddable by simply setting the values). <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-12 12:20:31 +00:00
tracing::debug!("No queue");
return None;
}
// Check if we have enough entries
if let Some(min_size) = min_size {
if self.entries.len() < min_size {
Improve the defaults for the launcher (#1727) - Renamed `max_input_length` into `max_input_tokens` for consistency (backward compatible change, will yell if both are set.) - Will now use the config for `max_input_tokens` `max_total_token` and `max_batch_total_tokens`. - Capping the values to 16k in order to save VRAM on behalf of users (overriddable by simply setting the values). <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-12 12:20:31 +00:00
tracing::debug!("Not enough entries");
return None;
}
}
if let Some(max_size) = max_size {
if max_size == 0 {
tracing::debug!("No capacity");
return None;
}
}
// Pad prefill_token_budget to be a multiple of block size
let prefill_token_budget =
((prefill_token_budget + self.block_size - 1) / self.block_size) * self.block_size;
2023-02-13 12:02:45 +00:00
// Create span for this batch to add context to inference calls
let next_batch_span = info_span!(parent: None, "batch", batch_size = tracing::field::Empty);
next_batch_span.follows_from(Span::current());
2023-02-13 12:02:45 +00:00
let mut batch_requests = Vec::with_capacity(self.entries.len());
let mut batch_entries =
IntMap::with_capacity_and_hasher(self.entries.len(), BuildNoHashHasher::default());
let mut max_input_length = 0;
let mut prefill_tokens: u32 = 0;
let mut decode_tokens: u32 = 0;
// Pop entries starting from the front of the queue
while let Some((id, mut entry)) = self.entries.pop_front() {
// Filter entries where the response receiver was dropped (== entries where the request
// was dropped by the client)
2023-10-23 13:51:12 +00:00
if entry.response_tx.is_closed() {
metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1);
Improve the defaults for the launcher (#1727) - Renamed `max_input_length` into `max_input_tokens` for consistency (backward compatible change, will yell if both are set.) - Will now use the config for `max_input_tokens` `max_total_token` and `max_batch_total_tokens`. - Capping the values to 16k in order to save VRAM on behalf of users (overriddable by simply setting the values). <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-12 12:20:31 +00:00
tracing::debug!("Dropping entry");
continue;
}
if self.requires_padding {
// We pad to max input length in the Python shards
// We need to take these padding tokens into the equation
max_input_length = max_input_length.max(entry.request.input_length);
prefill_tokens = (batch_requests.len() + 1) as u32 * max_input_length
} else {
// pad to block size
prefill_tokens += ((entry.request.input_length + self.block_size - 1)
/ self.block_size)
* self.block_size;
}
if self.requires_padding {
decode_tokens += entry.request.stopping_parameters.max_new_tokens;
} else {
2023-09-28 07:55:47 +00:00
let max_new_tokens = match self.window_size {
None => entry.request.stopping_parameters.max_new_tokens,
Some(window_size) => min(
window_size.saturating_sub(entry.request.input_length),
entry.request.stopping_parameters.max_new_tokens,
),
};
// pad to block size
decode_tokens +=
2023-09-28 07:55:47 +00:00
((max_new_tokens + self.block_size - 1) / self.block_size) * self.block_size;
}
if prefill_tokens > prefill_token_budget
2023-12-11 11:46:30 +00:00
|| (prefill_tokens + decode_tokens + self.speculate) > token_budget
{
// Entry is over budget
// Add it back to the front
Improve the defaults for the launcher (#1727) - Renamed `max_input_length` into `max_input_tokens` for consistency (backward compatible change, will yell if both are set.) - Will now use the config for `max_input_tokens` `max_total_token` and `max_batch_total_tokens`. - Capping the values to 16k in order to save VRAM on behalf of users (overriddable by simply setting the values). <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-12 12:20:31 +00:00
tracing::debug!("Over budget: prefill_tokens={prefill_tokens} > {prefill_token_budget} || {prefill_tokens} + {decode_tokens} + {} > {token_budget}", self.speculate);
self.entries.push_front((id, entry));
break;
}
Improve the defaults for the launcher (#1727) - Renamed `max_input_length` into `max_input_tokens` for consistency (backward compatible change, will yell if both are set.) - Will now use the config for `max_input_tokens` `max_total_token` and `max_batch_total_tokens`. - Capping the values to 16k in order to save VRAM on behalf of users (overriddable by simply setting the values). <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-12 12:20:31 +00:00
tracing::debug!("Accepting entry");
// Create a new span to link the batch back to this entry
let entry_batch_span = info_span!(parent: &entry.span, "infer");
// Add relationships
next_batch_span.follows_from(&entry_batch_span);
entry_batch_span.follows_from(&next_batch_span);
// Update entry
entry.temp_span = Some(entry_batch_span);
batch_requests.push(Request {
id,
prefill_logprobs: entry.request.decoder_input_details,
inputs: entry.request.inputs.chunks_to_string(),
truncate: entry.request.truncate,
parameters: Some(NextTokenChooserParameters::from(
entry.request.parameters.clone(),
)),
stopping_parameters: Some(StoppingCriteriaParameters::from(
entry.request.stopping_parameters.clone(),
)),
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
top_n_tokens: entry.request.top_n_tokens,
});
// Set batch_time
entry.batch_time = Some(Instant::now());
// Insert in batch_entries IntMap
batch_entries.insert(id, entry);
// Check if max_size
if Some(batch_requests.len()) == max_size {
break;
}
}
// Empty batch
if batch_requests.is_empty() {
tracing::debug!("Filtered out all entries");
return None;
}
// Check if our batch is big enough
if let Some(min_size) = min_size {
// Batch is too small
if batch_requests.len() < min_size {
// Add back entries to the queue in the correct order
for r in batch_requests.into_iter().rev() {
let id = r.id;
let entry = batch_entries.remove(&id).unwrap();
self.entries.push_front((id, entry));
}
return None;
}
}
// Final batch size
let size = batch_requests.len() as u32;
next_batch_span.record("batch_size", size);
let batch = Batch {
id: self.next_batch_id,
requests: batch_requests,
size,
max_tokens: (prefill_tokens + decode_tokens),
};
// Increment batch id
self.next_batch_id += 1;
metrics::histogram!("tgi_batch_next_size").record(batch.size as f64);
2023-02-13 12:02:45 +00:00
Some((batch_entries, batch, next_batch_span))
}
}
2023-02-13 12:02:45 +00:00
type NextBatch = (IntMap<u64, Entry>, Batch, Span);
#[derive(Debug)]
enum QueueCommand {
Append(Box<Entry>, Span),
NextBatch {
min_size: Option<usize>,
max_size: Option<usize>,
prefill_token_budget: u32,
token_budget: u32,
response_sender: oneshot::Sender<Option<NextBatch>>,
2023-02-13 12:02:45 +00:00
span: Span,
},
}
impl From<ValidParameters> for NextTokenChooserParameters {
fn from(value: ValidParameters) -> Self {
let (grammar, grammar_type) = match value.grammar {
None => (String::new(), GrammarType::None),
Some(grammar) => match grammar {
ValidGrammar::Json(grammar_string) => (grammar_string, GrammarType::Json),
ValidGrammar::Regex(grammar_string) => (grammar_string, GrammarType::Regex),
},
};
Self {
temperature: value.temperature,
top_k: value.top_k,
top_p: value.top_p,
typical_p: value.typical_p,
do_sample: value.do_sample,
seed: value.seed,
repetition_penalty: value.repetition_penalty,
frequency_penalty: value.frequency_penalty,
watermark: value.watermark,
grammar,
grammar_type: grammar_type.into(),
}
}
}
impl From<ValidStoppingParameters> for StoppingCriteriaParameters {
fn from(value: ValidStoppingParameters) -> Self {
Self {
max_new_tokens: value.max_new_tokens,
stop_sequences: value.stop_sequences,
ignore_eos_token: value.ignore_eos_token,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::sync::Arc;
2023-02-13 12:02:45 +00:00
use tracing::info_span;
fn default_entry() -> (
Entry,
2023-10-23 13:51:12 +00:00
mpsc::UnboundedReceiver<Result<InferStreamResponse, InferError>>,
) {
2023-10-23 13:51:12 +00:00
let (response_tx, receiver_tx) = mpsc::unbounded_channel();
let entry = Entry {
request: ValidGenerateRequest {
inputs: vec![],
input_ids: Some(Arc::new(vec![])),
input_length: 0,
add_special_tokens: true,
truncate: 0,
decoder_input_details: false,
parameters: ValidParameters {
temperature: 0.0,
top_k: 0,
top_p: 0.0,
typical_p: 0.0,
do_sample: false,
seed: 0,
repetition_penalty: 0.0,
frequency_penalty: 0.0,
watermark: false,
grammar: None,
},
stopping_parameters: ValidStoppingParameters {
ignore_eos_token: false,
max_new_tokens: 1,
stop_sequences: vec![],
},
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
top_n_tokens: 0,
Enable multiple LoRa adapters (#2010) * feat: first draft load multiple lora * feat: load weights within layer and refactor lora pass * fix: refactor and reduce lora math * feat: baseline impl single request multi lora support * feat: prefer lorax implementation and port loading logic * fix: prefer adapter_data and refactors * feat: perfer loraxs custom punica kernels and add mlp loras * fix: adjust batch for bgmv * fix: adjust adapter_segments logic when in batch * fix: refactor and move changes to v3 proto * fix: pass model_id for all flash causal lms * fix: pass model_id for all causal and seq2seq lms * fix: add model_id to model test * feat: add lora support to mistral and refactors * feat: prefer model id in request * fix: include rust code for adapter id * feat: bump launcher and add new lora docs * feat: support base model generation and refactors * fix: rename doc to retry ci build * feat: support if vlm models * fix: add adapter_data param and avoid missing layers * fix: add adapter_data param to phi and neox * fix: update all models forwards to include adapter_data * fix: add model_id to IdeficsCausalLM * Update lora.md Fixed a typo * Update lora.md Fixing spam image * fix: add lora kernel to dockerfile, support running without kernels and refactors * fix: avoid dockerfile conflict * fix: refactors and adjust flash llama lora logic * fix: skip llama test due to CI issue (temp) * fix: skip llama test CI (temp) 2 * fix: revert skips and prefer updated ci token for tests * fix: refactors and helpful comments * fix: add noop in TensorParallelAdapterRowLinear too * fix: refactor and move shard_lora_weights logic * fix: exit early if no adapter_data --------- Co-authored-by: Derek <datavistics@gmail.com>
2024-06-25 18:46:27 +00:00
adapter_id: None,
},
response_tx,
2023-02-13 12:02:45 +00:00
span: info_span!("entry"),
temp_span: None,
queue_time: Instant::now(),
batch_time: None,
};
(entry, receiver_tx)
}
#[test]
fn test_append() {
let mut state = State::new(false, 1, None, 0);
let (entry, _guard) = default_entry();
assert_eq!(state.next_id, 0);
assert_eq!(state.entries.len(), 0);
state.append(entry);
assert_eq!(state.next_id, 1);
assert_eq!(state.entries.len(), 1);
let (id, _) = state.entries.remove(0).unwrap();
assert_eq!(id, 0);
}
#[test]
fn test_next_batch_empty() {
let mut state = State::new(false, 1, None, 0);
assert!(state.next_batch(None, None, 1, 1).is_none());
assert!(state.next_batch(Some(1), None, 1, 1).is_none());
}
#[test]
fn test_next_batch_min_size() {
let mut state = State::new(false, 1, None, 0);
let (entry1, _guard1) = default_entry();
let (entry2, _guard2) = default_entry();
state.append(entry1);
state.append(entry2);
let (entries, batch, _) = state.next_batch(None, None, 2, 2).unwrap();
assert_eq!(entries.len(), 2);
assert!(entries.contains_key(&0));
assert!(entries.contains_key(&1));
assert!(entries.get(&0).unwrap().batch_time.is_some());
assert!(entries.get(&1).unwrap().batch_time.is_some());
assert_eq!(batch.id, 0);
assert_eq!(batch.size, 2);
assert_eq!(state.next_id, 2);
assert_eq!(state.entries.len(), 0);
assert_eq!(state.next_batch_id, 1);
let (entry3, _guard3) = default_entry();
state.append(entry3);
assert!(state.next_batch(Some(2), None, 2, 2).is_none());
assert_eq!(state.next_id, 3);
assert_eq!(state.entries.len(), 1);
let (id, _) = state.entries.remove(0).unwrap();
assert_eq!(id, 2);
}
#[test]
fn test_next_batch_max_size() {
let mut state = State::new(false, 1, None, 0);
let (entry1, _guard1) = default_entry();
let (entry2, _guard2) = default_entry();
state.append(entry1);
state.append(entry2);
let (entries, batch, _) = state.next_batch(None, Some(1), 2, 2).unwrap();
assert_eq!(entries.len(), 1);
assert!(entries.contains_key(&0));
assert!(entries.get(&0).unwrap().batch_time.is_some());
assert_eq!(batch.id, 0);
assert_eq!(batch.size, 1);
assert_eq!(state.next_id, 2);
assert_eq!(state.entries.len(), 1);
assert_eq!(state.next_batch_id, 1);
}
#[test]
fn test_next_batch_token_budget() {
let mut state = State::new(false, 1, None, 0);
let (entry1, _guard1) = default_entry();
let (entry2, _guard2) = default_entry();
state.append(entry1);
state.append(entry2);
let (entries, batch, _) = state.next_batch(None, None, 1, 1).unwrap();
assert_eq!(entries.len(), 1);
assert!(entries.contains_key(&0));
assert_eq!(batch.id, 0);
assert_eq!(batch.size, 1);
assert_eq!(state.next_id, 2);
assert_eq!(state.entries.len(), 1);
assert_eq!(state.next_batch_id, 1);
let (entry3, _guard3) = default_entry();
state.append(entry3);
let (entries, batch, _) = state.next_batch(None, None, 3, 3).unwrap();
assert_eq!(entries.len(), 2);
assert!(entries.contains_key(&1));
assert!(entries.contains_key(&2));
assert_eq!(batch.id, 1);
assert_eq!(batch.size, 2);
assert_eq!(state.next_id, 3);
assert_eq!(state.entries.len(), 0);
assert_eq!(state.next_batch_id, 2);
}
#[tokio::test]
async fn test_queue_append() {
let queue = Queue::new(false, 1, None, 0);
let (entry, _guard) = default_entry();
queue.append(entry);
}
#[tokio::test]
async fn test_queue_next_batch_empty() {
let queue = Queue::new(false, 1, None, 0);
assert!(queue.next_batch(None, None, 1, 1).await.is_none());
assert!(queue.next_batch(Some(1), None, 1, 1).await.is_none());
}
#[tokio::test]
async fn test_queue_next_batch_min_size() {
let queue = Queue::new(false, 1, None, 0);
let (entry1, _guard1) = default_entry();
let (entry2, _guard2) = default_entry();
queue.append(entry1);
queue.append(entry2);
let (entries, batch, _) = queue.next_batch(None, None, 2, 2).await.unwrap();
assert_eq!(entries.len(), 2);
assert!(entries.contains_key(&0));
assert!(entries.contains_key(&1));
assert!(entries.get(&0).unwrap().batch_time.is_some());
assert!(entries.get(&1).unwrap().batch_time.is_some());
assert_eq!(batch.id, 0);
assert_eq!(batch.size, 2);
let (entry3, _guard3) = default_entry();
queue.append(entry3);
// Not enough requests pending
assert!(queue.next_batch(Some(2), None, 2, 2).await.is_none());
// Not enough token budget
assert!(queue.next_batch(Some(1), None, 0, 0).await.is_none());
// Ok
let (entries2, batch2, _) = queue.next_batch(Some(1), None, 2, 2).await.unwrap();
assert_eq!(entries2.len(), 1);
assert!(entries2.contains_key(&2));
assert!(entries2.get(&2).unwrap().batch_time.is_some());
assert_eq!(batch2.id, 1);
assert_eq!(batch2.size, 1);
}
#[tokio::test]
async fn test_queue_next_batch_max_size() {
let queue = Queue::new(false, 1, None, 0);
let (entry1, _guard1) = default_entry();
let (entry2, _guard2) = default_entry();
queue.append(entry1);
queue.append(entry2);
let (entries, batch, _) = queue.next_batch(None, Some(1), 2, 2).await.unwrap();
assert_eq!(entries.len(), 1);
assert!(entries.contains_key(&0));
assert!(entries.get(&0).unwrap().batch_time.is_some());
assert_eq!(batch.id, 0);
assert_eq!(batch.size, 1);
}
#[tokio::test]
async fn test_queue_next_batch_token_budget() {
let queue = Queue::new(false, 1, None, 0);
let (entry1, _guard1) = default_entry();
let (entry2, _guard2) = default_entry();
queue.append(entry1);
queue.append(entry2);
let (entries, batch, _) = queue.next_batch(None, None, 1, 1).await.unwrap();
assert_eq!(entries.len(), 1);
assert!(entries.contains_key(&0));
assert_eq!(batch.id, 0);
assert_eq!(batch.size, 1);
let (entry3, _guard3) = default_entry();
queue.append(entry3);
let (entries, batch, _) = queue.next_batch(None, None, 3, 3).await.unwrap();
assert_eq!(entries.len(), 2);
assert!(entries.contains_key(&1));
assert!(entries.contains_key(&2));
assert_eq!(batch.id, 1);
assert_eq!(batch.size, 2);
}
2023-12-11 11:46:30 +00:00
#[tokio::test]
async fn test_queue_next_batch_token_speculate() {
let queue = Queue::new(false, 1, None, 2);
2023-12-11 11:46:30 +00:00
let (entry1, _guard1) = default_entry();
let (entry2, _guard2) = default_entry();
queue.append(entry1);
queue.append(entry2);
// Budget of 1 is not enough
assert!(queue.next_batch(None, None, 1, 1).await.is_none());
2023-12-11 11:46:30 +00:00
let (entries, batch, _) = queue.next_batch(None, None, 6, 6).await.unwrap();
2023-12-11 11:46:30 +00:00
assert_eq!(entries.len(), 2);
assert!(entries.contains_key(&0));
assert!(entries.contains_key(&1));
assert_eq!(batch.id, 0);
assert_eq!(batch.size, 2);
}
#[tokio::test]
async fn test_queue_next_batch_dropped_receiver() {
let queue = Queue::new(false, 1, None, 0);
let (entry, _) = default_entry();
queue.append(entry);
assert!(queue.next_batch(None, None, 1, 1).await.is_none());
}
}