text-generation-inference/load_tests/load_test.py

150 lines
6.5 KiB
Python
Raw Normal View History

2024-07-11 09:45:24 +00:00
import os
import time
import traceback
from benchmarks.engine import TGIDockerRunner
from benchmarks.k6 import K6Config, K6Benchmark, K6ConstantArrivalRateExecutor, K6ConstantVUsExecutor, ExecutorInputType
from loguru import logger
import pandas as pd
import GPUtil
from parse_load_test import TestType, parse_json_files, plot_metrics
def run_full_test(engine_name: str):
vus_concurrences = list(range(0, 1024, 40))
vus_concurrences[0] = 1
vus_concurrences.append(1024)
arrival_rates = list(range(0, 200, 10))
arrival_rates[0] = 1
arrival_rates.append(200)
for input_type in [ExecutorInputType.SHAREGPT_CONVERSATIONS, ExecutorInputType.CONSTANT_TOKENS]:
for c in arrival_rates:
logger.info(f'Running k6 with constant arrival rate for {c} req/s with input type {input_type.value}')
k6_executor = K6ConstantArrivalRateExecutor(2000, c, '60s', input_type)
k6_config = K6Config(f'{engine_name}', k6_executor, input_num_tokens=200)
benchmark = K6Benchmark(k6_config, f'results/{input_type.value}/')
benchmark.run()
for c in vus_concurrences:
logger.info(f'Running k6 with constant VUs with concurrency {c} with input type {input_type.value}')
k6_executor = K6ConstantVUsExecutor(c, '60s', input_type)
k6_config = K6Config(f'{engine_name}', k6_executor, input_num_tokens=200)
benchmark = K6Benchmark(k6_config, f'results/{input_type.value}/')
benchmark.run()
def merge_previous_results(csv_path: str, df: pd.DataFrame, version_id: str) -> pd.DataFrame:
if os.path.exists(csv_path):
previous_df = pd.read_csv(csv_path)
previous_df['name'] = previous_df['name'].str.replace('tgi', f'tgi_{version_id}')
df = pd.concat([previous_df, df])
return df
2024-07-16 09:15:29 +00:00
def percentage_diff(x):
# in case we have no value to compare
if len(x) < 2:
return 0
xsum = (x[1] + x[0])
if xsum == 0:
return 0
return abs(x[1] - x[0]) / (xsum / 2) * 100
def compute_avg_delta(df: pd.DataFrame, metric: str, test_type: TestType) -> float:
if test_type == TestType.CONSTANT_VUS:
param = 'vus'
elif test_type == TestType.CONSTANT_ARRIVAL_RATE:
param = 'rate'
else:
return 0.0
filtered = df[df[param].notna()].groupby(param)[metric]
return filtered.apply(lambda x: percentage_diff(sorted(x.values))).mean()
def compute_avg_table(df: pd.DataFrame):
# only keep the current version and semver rows for comparison
df = df[df['name'].str.startswith(('tgi', 'v'))]
# compute the average delta for each metric and test type
avg_table = pd.DataFrame()
for input_type in [ExecutorInputType.SHAREGPT_CONVERSATIONS, ExecutorInputType.CONSTANT_TOKENS]:
df_avg = df[df['input_type'] == input_type.value]
for test_type in [TestType.CONSTANT_VUS, TestType.CONSTANT_ARRIVAL_RATE]:
for metric in df.columns:
if metric in ['inter_token_latency', 'time_to_first_token', 'end_to_end_latency',
'tokens_throughput', 'requests_ok', 'error_rate']:
avg_delta = compute_avg_delta(df_avg, metric, test_type)
avg_table = pd.concat([avg_table, pd.DataFrame(
{'metric': metric, 'input_type': input_type.value, 'test_type': test_type.value,
'avg_delta': avg_delta}, index=[0])])
# write the result to a markdown formatted table in a file
path = os.path.join(os.getcwd(), 'output', f'benchmark_avg_delta.md')
avg_table.to_markdown(path, index=False, tablefmt='github',
headers=['Metric', 'Input Type', 'Test Type', 'Avg Delta (%)'])
2024-07-11 09:45:24 +00:00
def main():
model = 'Qwen/Qwen2-7B'
runner = TGIDockerRunner(model)
max_concurrent_requests = 8000
# run TGI
try:
logger.info('Running TGI')
runner.run([('max-concurrent-requests', max_concurrent_requests)])
logger.info('TGI is running')
run_full_test('tgi')
except Exception as e:
logger.error(f'Error: {e}')
# print the stack trace
print(traceback.format_exc())
finally:
runner.stop()
time.sleep(5)
2024-07-16 09:15:29 +00:00
all_dfs = pd.DataFrame()
2024-07-11 09:45:24 +00:00
for input_type in [ExecutorInputType.SHAREGPT_CONVERSATIONS, ExecutorInputType.CONSTANT_TOKENS]:
for test_type in [TestType.CONSTANT_VUS, TestType.CONSTANT_ARRIVAL_RATE]:
directory = os.path.join('results', input_type.value.lower(), test_type.value.lower())
# check if directory exists
if not os.path.exists(directory):
logger.error(f'Directory {directory} does not exist')
continue
dfs = parse_json_files(directory, test_type)
# create output directory if it does not exist
os.makedirs('output', exist_ok=True)
# save the data to a csv file
path = os.path.join(os.getcwd(), 'output', f'{input_type.value.lower()}_{test_type.value.lower()}.csv')
dfs.to_csv(path)
# check if we have previous results CSV file by listing /tmp/artifacts/<input_type> directory,
# merge them if they exist
prev_root = '/tmp/artifacts'
try:
if os.path.exists(prev_root):
directories = [item for item in os.listdir(prev_root) if
os.path.isdir(os.path.join(prev_root, item))]
for d in directories:
for f in os.listdir(f'{prev_root}/{d}'):
if f.endswith(f'{input_type.value.lower()}_{test_type.value.lower()}.csv'):
csv_path = os.path.join('/tmp/artifacts', d, f)
# only keep short commit hash
2024-07-16 09:15:29 +00:00
if len(d) > 7:
d = d[:7]
2024-07-11 09:45:24 +00:00
dfs = merge_previous_results(csv_path, dfs, d)
except Exception as e:
logger.error(f'Error while merging previous results, skipping: {e}')
plot_metrics(f'{model} {get_gpu_names()}', dfs, test_type,
f'output/{input_type.value.lower()}_{test_type.value.lower()}')
2024-07-16 09:15:29 +00:00
all_dfs = pd.concat([all_dfs, dfs])
compute_avg_table(all_dfs)
2024-07-11 09:45:24 +00:00
def get_gpu_names() -> str:
gpus = GPUtil.getGPUs()
if len(gpus) == 0:
return ''
return f'{len(gpus)}x{gpus[0].name if gpus else "No GPU available"}'
if __name__ == '__main__':
main()