text-generation-inference/backends/trtllm/csrc/backend.hpp

232 lines
8.4 KiB
C++
Raw Normal View History

TensorRT-LLM backend bump to latest version + misc fixes (#2791) * misc(cmake) update dependencies * feat(hardware) enable new hardware.hpp and unittests * test(ctest) enable address sanitizer * feat(backend): initial rewrite of the backend for simplicity * feat(backend): remove all the logs from hardware.hpp * feat(backend): added some logging * feat(backend): enable compiler warning if support for RVO not applying * feat(backend): missing return statement * feat(backend): introduce backend_workspace_t to store precomputed information from the engine folder * feat(backend): delete previous backend impl * feat(backend): more impl * feat(backend): use latest trtllm main version to have g++ >= 13 compatibility * feat(backend): allow overriding which Python to use * feat(backend): fix backend_exception_t -> backend_error_t naming * feat(backend): impl missing generation_step_t as return value of pull_tokens * feat(backend): make backend_workspace_t::engines_folder constexpr * feat(backend): fix main.rs retrieving the tokenizer * feat(backend): add guard to multiple header definitions * test(backend): add more unittest * feat(backend): remove constexpr from par * feat(backend): remove constexpig * test(backend): more test coverage * chore(trtllm): update dependency towards 0.15.0 * effectively cancel the request on the executor * feat(backend) fix moving backend when pulling * feat(backend): make sure we can easily cancel request on the executor * feat(backend): fix missing "0" field access * misc(backend): fix reborrowing Pin<&mut T> as described in the doc https://doc.rust-lang.org/stable/std/pin/struct.Pin.html#method.as_mut * chore: Add doc and CI for TRTLLM (#2799) * chore: Add doc and CI for TRTLLM * chore: Add doc and CI for TRTLLM * chore: Add doc and CI for TRTLLM * chore: Add doc and CI for TRTLLM * doc: Formatting * misc(backend): indent --------- Co-authored-by: Hugo Larcher <hugo.larcher@huggingface.co>
2024-12-13 14:50:59 +00:00
#ifndef TGI_BACKEND_TRTLLM
#define TGI_BACKEND_TRTLLM
#include <cmath>
#include <cstdint>
#include <expected>
#include <fstream>
#include <list>
#include <span>
#include <nlohmann/json.hpp>
#include <spdlog/spdlog.h>
#include <spdlog/fmt/fmt.h>
#include <tensorrt_llm/executor/executor.h>
namespace huggingface::tgi::backends::trtllm {
namespace tle = tensorrt_llm::executor;
using json = nlohmann::json;
using request_id_t = uint64_t;
using token_id_t = tle::TokenIdType;
/**
* Represent the parameters used for generation
*/
struct generation_params_t {
uint32_t max_new_tokens;
};
/**
* Represent the parameters used to sample tokens from the logit distribution
*/
struct sampling_params_t {
uint32_t top_k;
float_t top_p;
float_t repetition_penalty;
float_t frequency_penalty;
float_t temperature;
uint64_t seed;
constexpr explicit operator tle::SamplingConfig() const {
return tle::SamplingConfig{
1,
top_k,
top_p,
std::nullopt,
std::nullopt,
std::nullopt,
seed,
temperature,
std::nullopt,
std::nullopt,
repetition_penalty,
std::nullopt,
frequency_penalty,
std::nullopt
};
}
};
/**
* Represent possible values from transformers generation `generation_config.json`.
* It usually stores default sampling parameters to use, such as top_p, temperature, etc.
*/
struct generation_config_t {
float_t top_p;
float_t temperature;
std::list<std::vector<int32_t>> stop_words;
constexpr explicit generation_config_t(const json &config) :
top_p(config.value("top_p", 1.0f)), temperature(config.value("temperature", 1.0f)), stop_words(0) {
if (config.contains("/eos_token_id"_json_pointer) && config["/eos_token_id"_json_pointer].is_array()) {
const auto &eos_token_id = config["/eos_token_id"_json_pointer];
std::for_each(eos_token_id.begin(), eos_token_id.end(), [this](const auto token_id) {
stop_words.emplace_back(1, token_id.template get<int32_t>());
});
SPDLOG_DEBUG("Detected {:d} predefined stop_words from generation_config.json", stop_words.size());
}
}
};
/**
* Helper class representing various items which are stored within the TensorRT-LLM engines folder and
* can be retrieved at runtime
*/
class backend_workspace_t {
private:
constexpr static auto as_json = [](const std::filesystem::path &path) -> json {
std::ifstream config_f(path);
return json::parse(config_f);
};
std::filesystem::path engines_folder_;
std::filesystem::path executor_worker_path_;
json config_;
generation_config_t generation_config_;
public:
backend_workspace_t(std::filesystem::path &engines_folder, std::filesystem::path &executor_worker_path) :
engines_folder_(engines_folder),
executor_worker_path_(executor_worker_path),
config_(as_json(engines_folder / "config.json")),
generation_config_(as_json(engines_folder / "generation_config.json")) {};
backend_workspace_t(std::filesystem::path &&engines_folder, std::filesystem::path &&executor_worker_path) :
engines_folder_(engines_folder),
executor_worker_path_(executor_worker_path),
config_(as_json(engines_folder / "config.json")),
generation_config_(as_json(engines_folder / "generation_config.json")) {};
/**
* Path to the folder containing the TensorRT-LLM engines
* @return local filesystem path to the folder
*/
[[nodiscard]] constexpr std::filesystem::path engines_folder() const { return engines_folder_; }
/**
* Hugging Face transformers' generated `generation_config_t` mapping information stored in the
* `generation_config.json` holding default generation parameters.
* @return `generation_config_t`
*/
[[nodiscard]] constexpr const generation_config_t &generation_config() const { return generation_config_; }
/**
* Factory method returning new `tensorrt_llm::executor::ParallelConfig` instance used
* to initialize `tensorrt_llm::executor::Executor` with multi-instance communication information
* @return `tensorrt_llm::executor::ParallelConfig` instance
*/
[[nodiscard]] tle::ParallelConfig parallel_config() const;
/**
* Factory method returning new `tensorrt_llm::executor::ExecutorConfig` instance used
* to initialize `tensorrt_llm::executor::Executor`
* @return `tensorrt_llm::executor::ExecutorConfig` instance
*/
[[nodiscard]] tle::ExecutorConfig executor_config() const;
};
/**
* Error raised by the underlying backend implementation
*/
enum backend_error_t {
EXECUTOR_NOT_READY = 3,
EXECUTOR_SCHEDULING_FAILED = 4,
};
/**
* Actual TensorRT-LLM backend implementation interacting with TensorRT-LLM Executor service to
* - schedule new request
* - pull status of submitted request(s)
* - cancel submitted request(s)
*/
class backend_t {
private:
backend_workspace_t workspace;
tle::Executor executor_;
public:
backend_t(std::filesystem::path &engines_folder, std::filesystem::path &executor_worker_path);
backend_t(std::filesystem::path &&engines_folder, std::filesystem::path &&executor_worker_path)
: backend_t(engines_folder, executor_worker_path) {};
/**
* Submit a new request to the executor
* @param token_ids
* @param generation_params
* @param sampling_params
* @return Either newly submitted request's id or the error why it failed to submit
*/
[[nodiscard("Discarded executor request_id needs to be assigned")]]
std::expected<request_id_t, backend_error_t>
submit(std::span<const token_id_t> token_ids, generation_params_t generation_params,
sampling_params_t sampling_params) noexcept;
/**
* Query the number of tokens available across all in-flight generations
* @return
*/
[[nodiscard("Pulling out the number of tokens")]]
size_t num_tokens_ready() const noexcept;
/**
* Pull out newly generated tokens from the executor
* @return
*/
[[nodiscard("")]]
std::vector<tle::Response> pull_tokens() noexcept;
/**
* Cancel the specified request on the executor' set
* @param request_id Request's Identifier to remove from the in-flight executor
*/
void cancel(request_id_t) noexcept;
};
/**
* Create a TensorRT-LLM executor from a workspace
*/
const auto executor_factory_initializer = [](const backend_workspace_t &workspace) -> tle::Executor {
return {workspace.engines_folder(), tensorrt_llm::executor::ModelType::kDECODER_ONLY,
workspace.executor_config()};
};
}
/**
* Helper structures to define formatting strategies for various types in the backend
*/
template<>
struct fmt::formatter<huggingface::tgi::backends::trtllm::generation_params_t> : formatter<string_view> {
auto format(huggingface::tgi::backends::trtllm::generation_params_t const &c,
format_context &ctx) const -> format_context::iterator {
return fmt::format_to(ctx.out(), "generation_params_t{{ max_new_tokens={:d} }}", c.max_new_tokens);
}
};
template<>
struct fmt::formatter<huggingface::tgi::backends::trtllm::sampling_params_t> : formatter<string_view> {
auto format(huggingface::tgi::backends::trtllm::sampling_params_t const &c,
format_context &ctx) const -> format_context::iterator {
return fmt::format_to(
ctx.out(),
"sampling_params_t{{ top_k={:d}, top_p={:.3f}, repetition_penalty={:.3f}, frequency_penalty={:.3f}, temperature={:.3f}, seed={:d} }}",
c.top_k, c.top_p, c.repetition_penalty, c.frequency_penalty, c.temperature, c.seed
);
}
};
#endif