text-generation-inference/backends/llamacpp/src/backend.rs

188 lines
6.2 KiB
Rust
Raw Normal View History

use crate::ffi::{
create_single_worker_backend, GenerationParams, LlamaCppBackendImpl, SamplingParams,
};
use async_trait::async_trait;
use cxx::UniquePtr;
use std::path::{Path, PathBuf};
use std::sync::mpsc::{channel, Receiver, SendError, Sender};
use std::sync::Arc;
use std::thread::{spawn, JoinHandle};
2024-10-04 08:42:31 +00:00
use text_generation_router::infer::{Backend, InferError, InferStreamResponse};
use text_generation_router::validation::{
ValidGenerateRequest, ValidParameters, ValidStoppingParameters,
};
use text_generation_router::Token;
use thiserror::Error;
use tokio::sync::mpsc::{unbounded_channel, UnboundedSender};
use tokio::sync::TryAcquireError;
2024-10-04 08:42:31 +00:00
use tokio_stream::wrappers::UnboundedReceiverStream;
use tracing::{error, info};
2024-10-04 08:42:31 +00:00
unsafe impl Send for LlamaCppBackendImpl {}
impl From<&ValidParameters> for SamplingParams {
fn from(v: &ValidParameters) -> Self {
Self {
top_k: v.top_k,
top_p: v.top_p,
frequency_penalty: v.frequency_penalty,
repetition_penalty: v.repetition_penalty,
seed: v.seed,
}
}
}
impl From<&ValidStoppingParameters> for GenerationParams {
fn from(v: &ValidStoppingParameters) -> Self {
Self {
max_new_tokens: v.max_new_tokens,
ignore_eos_token: v.ignore_eos_token,
}
}
}
#[cfg_attr(debug_assertions, derive(Debug))]
struct InferContext {
pub(crate) stream: UnboundedSender<Result<InferStreamResponse, InferError>>,
pub(crate) input_tokens: Arc<Vec<u32>>,
pub(crate) generated_tokens: Vec<u32>,
pub(crate) generation_params: GenerationParams,
pub(crate) sampling_params: SamplingParams,
}
#[derive(Debug, Error)]
pub enum LlamaCppBackendError {
#[error("Provided GGUF model path {0} doesn't exist")]
ModelFileDoesntExist(String),
#[error("Failed to initialize model from GGUF file {0}: {1}")]
ModelInitializationFailed(PathBuf, String),
2024-10-24 07:56:40 +00:00
}
pub struct LlamaCppBackend {
backlog: Sender<InferContext>,
scheduler_handle: JoinHandle<()>,
}
impl LlamaCppBackend {
pub fn new<P: AsRef<Path> + Send>(model_path: P) -> Result<Self, LlamaCppBackendError> {
let path = Arc::new(model_path.as_ref());
if !path.exists() {
return Err(LlamaCppBackendError::ModelFileDoesntExist(
path.display().to_string(),
));
}
let backend = create_single_worker_backend(path.to_str().unwrap()).map_err(|err| {
LlamaCppBackendError::ModelInitializationFailed(
path.to_path_buf(),
err.what().to_string(),
)
})?;
info!(
"Successfully initialized llama.cpp backend from {}",
path.display()
);
let (submitter, receiver) = channel();
let handle = spawn(|| scheduler_loop(backend, receiver));
Ok(Self {
backlog: submitter,
scheduler_handle: handle,
})
2024-10-24 07:56:40 +00:00
}
}
2024-10-04 08:42:31 +00:00
fn scheduler_loop(
mut backend: UniquePtr<LlamaCppBackendImpl>,
mut backlog: Receiver<InferContext>,
) {
loop {
println!("Looping");
if let Ok(mut ctx) = backlog.recv() {
println!("{ctx:?}, {}", &ctx.generated_tokens.capacity());
match backend.pin_mut().generate(
&ctx.input_tokens,
&mut ctx.generated_tokens,
&ctx.generation_params,
&ctx.sampling_params,
|new_token_id: u32, new_token_logit: f32, is_eos: bool| {
let response = InferStreamResponse::Intermediate {
token: Token {
id: new_token_id,
text: "".to_string(),
logprob: new_token_logit,
special: false,
},
top_tokens: vec![],
};
println!("Generated token: {response:?}");
// let _ = tokio::spawn(async {
// match ctx.stream.send(Ok(response)) {
// Ok(_) => {}
// Err(ref err) => {
// error!(
// "Failed to send back token to the client: {}",
// err.to_string()
// );
// }
// }
// });
},
) {
Ok(n_tokens) => {
unsafe {
ctx.generated_tokens.set_len(n_tokens);
}
println!(
"Generated {} tokens -> {:?}",
n_tokens, &ctx.generated_tokens
);
}
Err(err) => println!("Error: {}", err),
}
} else {
info!("IPC channel is closed, exiting the scheduler loop");
break;
}
}
}
#[async_trait]
impl Backend for LlamaCppBackend {
2024-10-04 08:42:31 +00:00
fn schedule(
&self,
request: ValidGenerateRequest,
2024-10-04 08:42:31 +00:00
) -> Result<UnboundedReceiverStream<Result<InferStreamResponse, InferError>>, InferError> {
if let Some(input_ids) = request.input_ids {
let (sx, rx) = unbounded_channel();
let sampling_params = SamplingParams::from(&request.parameters);
let generation_params = GenerationParams::from(&request.stopping_parameters);
let ctx = InferContext {
stream: sx,
input_tokens: Arc::clone(&input_ids),
generated_tokens: Vec::with_capacity(generation_params.max_new_tokens as usize),
generation_params,
sampling_params,
};
match self.backlog.send(ctx) {
Ok(_) => Ok(UnboundedReceiverStream::new(rx)),
Err(_) => Err(InferError::GenerationError(
"Failed to sent the request".to_string(),
)),
}
} else {
Err(InferError::GenerationError(
"Unsupported modalities".to_string(),
))
}
2024-10-04 08:42:31 +00:00
}
async fn health(&self, _: bool) -> bool {
true
2024-10-04 08:42:31 +00:00
}
}