mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-21 14:52:20 +00:00
121 lines
5.2 KiB
Markdown
121 lines
5.2 KiB
Markdown
|
# Llamacpp Backend
|
|||
|
|
|||
|
The llamacpp backend facilitates the deployment of large language models
|
|||
|
(LLMs) by integrating [llama.cpp][llama.cpp], an advanced inference engine
|
|||
|
optimized for both CPU and GPU computation. This backend is a component
|
|||
|
of Hugging Face’s **Text Generation Inference (TGI)** suite,
|
|||
|
specifically designed to streamline the deployment of LLMs in production
|
|||
|
environments.
|
|||
|
|
|||
|
## Key Capabilities
|
|||
|
|
|||
|
- Full compatibility with GGUF format and all quantization formats
|
|||
|
(GGUF-related constraints may be mitigated dynamically by on-the-fly
|
|||
|
generation in future updates)
|
|||
|
- Optimized inference on CPU and GPU architectures
|
|||
|
- Containerized deployment, eliminating dependency complexity
|
|||
|
- Seamless interoperability with the Hugging Face ecosystem
|
|||
|
|
|||
|
## Model Compatibility
|
|||
|
|
|||
|
This backend leverages models formatted in **GGUF**, providing an
|
|||
|
optimized balance between computational efficiency and model accuracy.
|
|||
|
You will find the best models on [Hugging Face][GGUF].
|
|||
|
|
|||
|
## Build Docker image
|
|||
|
|
|||
|
For optimal performance, the Docker image is compiled with native CPU
|
|||
|
instructions, thus it's highly recommended to execute the container on
|
|||
|
the host used during the build process. Efforts are ongoing to enhance
|
|||
|
portability while maintaining high computational efficiency.
|
|||
|
|
|||
|
```bash
|
|||
|
docker build \
|
|||
|
-t tgi-llamacpp \
|
|||
|
https://github.com/huggingface/text-generation-inference.git \
|
|||
|
-f Dockerfile_llamacpp
|
|||
|
```
|
|||
|
|
|||
|
### Build parameters
|
|||
|
|
|||
|
| Parameter | Description |
|
|||
|
| ------------------------------------ | --------------------------------- |
|
|||
|
| `--build-arg llamacpp_version=bXXXX` | Specific version of llama.cpp |
|
|||
|
| `--build-arg llamacpp_cuda=ON` | Enables CUDA acceleration |
|
|||
|
| `--build-arg cuda_arch=ARCH` | Defines target CUDA architecture |
|
|||
|
|
|||
|
## Model preparation
|
|||
|
|
|||
|
Retrieve a GGUF model and store it in a specific directory, for example:
|
|||
|
|
|||
|
```bash
|
|||
|
mkdir -p ~/models
|
|||
|
cd ~/models
|
|||
|
curl -LOJ "https://huggingface.co/Qwen/Qwen2.5-3B-Instruct-GGUF/resolve/main/qwen2.5-3b-instruct-q4_0.gguf?download=true"
|
|||
|
```
|
|||
|
|
|||
|
## Run Docker image
|
|||
|
|
|||
|
### CPU-based inference
|
|||
|
|
|||
|
```bash
|
|||
|
docker run \
|
|||
|
-p 3000:3000 \
|
|||
|
-e "HF_TOKEN=$HF_TOKEN" \
|
|||
|
-v "$HOME/models:/models" \
|
|||
|
tgi-llamacpp \
|
|||
|
--model-id "Qwen/Qwen2.5-3B-Instruct" \
|
|||
|
--model-gguf "/models/qwen2.5-3b-instruct-q4_0.gguf"
|
|||
|
```
|
|||
|
|
|||
|
### GPU-Accelerated inference
|
|||
|
|
|||
|
```bash
|
|||
|
docker run \
|
|||
|
--gpus all \
|
|||
|
-p 3000:3000 \
|
|||
|
-e "HF_TOKEN=$HF_TOKEN" \
|
|||
|
-v "$HOME/models:/models" \
|
|||
|
tgi-llamacpp \
|
|||
|
--n-gpu-layers 99
|
|||
|
--model-id "Qwen/Qwen2.5-3B-Instruct" \
|
|||
|
--model-gguf "/models/qwen2.5-3b-instruct-q4_0.gguf"
|
|||
|
```
|
|||
|
|
|||
|
## Advanced parameters
|
|||
|
|
|||
|
A full listing of configurable parameters is available in the `--help`:
|
|||
|
|
|||
|
```bash
|
|||
|
docker run tgi-llamacpp --help
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
The table below summarizes key options:
|
|||
|
|
|||
|
| Parameter | Description |
|
|||
|
|-------------------------------------|------------------------------------------------------------------------|
|
|||
|
| `--n-threads` | Number of threads to use for generation |
|
|||
|
| `--n-threads-batch` | Number of threads to use for batch processing |
|
|||
|
| `--n-gpu-layers` | Number of layers to store in VRAM |
|
|||
|
| `--split-mode` | Split the model across multiple GPUs |
|
|||
|
| `--defrag-threshold` | Defragment the KV cache if holes/size > threshold |
|
|||
|
| `--numa` | Enable NUMA optimizations |
|
|||
|
| `--use-mmap` | Use memory mapping for the model |
|
|||
|
| `--use-mlock` | Use memory locking to prevent swapping |
|
|||
|
| `--offload-kqv` | Enable offloading of KQV operations to the GPU |
|
|||
|
| `--flash-attention` | Enable flash attention for faster inference |
|
|||
|
| `--type-k` | Data type used for K cache |
|
|||
|
| `--type-v` | Data type used for V cache |
|
|||
|
| `--validation-workers` | Number of tokenizer workers used for payload validation and truncation |
|
|||
|
| `--max-concurrent-requests` | Maximum number of concurrent requests |
|
|||
|
| `--max-input-tokens` | Maximum number of input tokens per request |
|
|||
|
| `--max-total-tokens` | Maximum number of total tokens (input + output) per request |
|
|||
|
| `--max-batch-total-tokens` | Maximum number of tokens in a batch |
|
|||
|
| `--max-physical-batch-total-tokens` | Maximum number of tokens in a physical batch |
|
|||
|
| `--max-batch-size` | Maximum number of requests per batch |
|
|||
|
|
|||
|
---
|
|||
|
[llama.cpp]: https://github.com/ggerganov/llama.cpp
|
|||
|
[GGUF]: https://huggingface.co/models?library=gguf&sort=trending
|