mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-21 23:12:07 +00:00
192 lines
6.9 KiB
Python
192 lines
6.9 KiB
Python
|
# Adapted from turboderp exllama: https://github.com/turboderp/exllamav2
|
||
|
|
||
|
from logging import getLogger
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import math
|
||
|
|
||
|
logger = getLogger(__name__)
|
||
|
|
||
|
try:
|
||
|
from exllamav2_kernels import make_q_matrix, gemm_half_q_half
|
||
|
except ImportError:
|
||
|
logger.error('exllamav2_kernels not installed.')
|
||
|
raise
|
||
|
|
||
|
# Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension
|
||
|
none_tensor = torch.empty((1, 1), device="meta")
|
||
|
|
||
|
def ext_gemm_half_q_half(x, q_handle, q4_width, force_cuda):
|
||
|
"""Matrix multiplication, returns x @ q4"""
|
||
|
output_shape = x.shape[:-1] + (q4_width,)
|
||
|
x = x.view(-1, x.shape[-1])
|
||
|
output = torch.empty((x.shape[0], q4_width), dtype = torch.half, device = x.device)
|
||
|
gemm_half_q_half(x, q_handle, output, force_cuda)
|
||
|
return output.view(output_shape)
|
||
|
|
||
|
def ext_make_q_matrix(w: dict, temp_dq, key: str = None):
|
||
|
"""
|
||
|
Create Q matrix
|
||
|
"""
|
||
|
# EXL2
|
||
|
# won't work as the moment because the tensors are not the same.
|
||
|
if "q_weight" in w:
|
||
|
w["q_scale_max"] /= 256
|
||
|
w["q_perm"] = w["q_perm"].short()
|
||
|
w["q_invperm"] = w["q_invperm"].short()
|
||
|
return make_q_matrix(w["q_weight"],
|
||
|
w["q_perm"],
|
||
|
w["q_invperm"],
|
||
|
w["q_scale"],
|
||
|
w["q_scale_max"],
|
||
|
w["q_groups"],
|
||
|
none_tensor,
|
||
|
none_tensor,
|
||
|
none_tensor,
|
||
|
temp_dq)
|
||
|
# GPTQ
|
||
|
elif "qweight" in w:
|
||
|
if w["scales"].dtype == torch.float:
|
||
|
w["scales"] = w["scales"].half()
|
||
|
|
||
|
# GPTQ with g_idx (act_order)
|
||
|
if w.get("g_idx", None) is not None and not (w["g_idx"] == 0).all().item():
|
||
|
w["q_perm"] = torch.empty((w["qweight"].shape[0] * 8,), dtype = torch.short, device = w["qweight"].device)
|
||
|
w["q_invperm"] = torch.empty_like(w["q_perm"])
|
||
|
# make_q4 segfaults if g_idx is not on cpu in the act-order case. In the non act-order case, None needs to be passed for g_idx.
|
||
|
return make_q_matrix(w["qweight"],
|
||
|
w["q_perm"],
|
||
|
w["q_invperm"],
|
||
|
none_tensor,
|
||
|
none_tensor,
|
||
|
none_tensor,
|
||
|
w["qzeros"],
|
||
|
w["scales"],
|
||
|
w["g_idx"].cpu(),
|
||
|
temp_dq)
|
||
|
# GPTQ without g_idx
|
||
|
else:
|
||
|
return make_q_matrix(w["qweight"],
|
||
|
none_tensor,
|
||
|
none_tensor,
|
||
|
none_tensor,
|
||
|
none_tensor,
|
||
|
none_tensor,
|
||
|
w["qzeros"],
|
||
|
w["scales"],
|
||
|
none_tensor,
|
||
|
temp_dq)
|
||
|
|
||
|
DEVICE = None
|
||
|
FIXED_BYTES = 0
|
||
|
LAYERS = []
|
||
|
|
||
|
|
||
|
def set_device(device):
|
||
|
global DEVICE
|
||
|
DEVICE = device
|
||
|
|
||
|
|
||
|
def create_exllama_buffers():
|
||
|
global FIXED_BYTES, LAYERS, DEVICE
|
||
|
temp_dq = ExLlamaV2DeviceTensors(DEVICE, FIXED_BYTES)
|
||
|
|
||
|
for layer in LAYERS:
|
||
|
layer.post_init(temp_dq)
|
||
|
|
||
|
|
||
|
class QuantLinear(nn.Module):
|
||
|
QUANT_TYPE = "exllamav2"
|
||
|
|
||
|
"""Linear layer implementation with per-group 4-bit quantization of the weights"""
|
||
|
|
||
|
# def __init__(self, bits, group_size, infeatures, outfeatures, bias, trainable=False, **kwargs):
|
||
|
def __init__(self, qweight, qzeros, scales, g_idx, bias, bits, groupsize):
|
||
|
super().__init__()
|
||
|
if bits != 4:
|
||
|
raise ValueError(
|
||
|
f"Exllamav2 kernel supports only bits=4, requested bits={bits}. Something is wrong in the model initialization.")
|
||
|
self.q_handle = None
|
||
|
self.q_tensors = None
|
||
|
self.bits = bits
|
||
|
self.maxq = 2 ** self.bits - 1
|
||
|
self.infeatures = qweight.shape[0] // self.bits * 32
|
||
|
self.outfeatures = qweight.shape[1]
|
||
|
self.padding = - self.outfeatures % 32
|
||
|
self.outfeatures = self.outfeatures + self.padding
|
||
|
|
||
|
self.device = qweight.device
|
||
|
self.qweight = qweight
|
||
|
self.qzeros = qzeros
|
||
|
self.scales = scales
|
||
|
self.g_idx = g_idx
|
||
|
self.bias = bias if bias is not None else None
|
||
|
self.group_size = groupsize
|
||
|
|
||
|
infeatures = self.infeatures
|
||
|
outfeatures = self.outfeatures
|
||
|
assert qweight.shape == (infeatures // 32 * self.bits, outfeatures)
|
||
|
assert infeatures % self.group_size == 0
|
||
|
assert qzeros.shape == (infeatures // self.group_size, outfeatures // 32 * self.bits)
|
||
|
assert scales.shape == (infeatures // self.group_size, outfeatures)
|
||
|
assert g_idx.shape == (infeatures, ), f"{g_idx.shape}, {infeatures}"
|
||
|
|
||
|
global FIXED_BYTES, LAYERS
|
||
|
FIXED_BYTES = max(FIXED_BYTES, self.scratch_space_fixed())
|
||
|
LAYERS.append(self)
|
||
|
|
||
|
def post_init(self, temp_dq):
|
||
|
assert self.qweight.device.type == "cuda"
|
||
|
assert self.qweight.device.index is not None
|
||
|
self.q_tensors = {
|
||
|
"qweight":self.qweight,
|
||
|
"qzeros":self.qzeros,
|
||
|
"scales":self.scales,
|
||
|
"g_idx":self.g_idx
|
||
|
}
|
||
|
temp_dq = temp_dq.get_scratch_slice(self.temp_dq_size())
|
||
|
self.q_handle = ext_make_q_matrix(
|
||
|
self.q_tensors, temp_dq
|
||
|
)
|
||
|
|
||
|
def forward(self, x, force_cuda = False):
|
||
|
output = ext_gemm_half_q_half(x, self.q_handle, self.outfeatures, force_cuda)
|
||
|
|
||
|
if self.bias is not None:
|
||
|
output.add_(self.bias)
|
||
|
return output
|
||
|
|
||
|
def temp_dq_size(self):
|
||
|
return self.infeatures * self.outfeatures * 2 + 128
|
||
|
|
||
|
def temp_fwd_size(self, max_input_len, max_batch_size):
|
||
|
return self.outfeatures * max_input_len * max_batch_size * 4 + 128
|
||
|
|
||
|
def scratch_space_fixed(self, max_input_len=4096, max_batch_size=16):
|
||
|
return self.temp_dq_size() + self.temp_fwd_size(max_input_len, max_batch_size)
|
||
|
|
||
|
|
||
|
class ExLlamaV2DeviceTensors:
|
||
|
|
||
|
device_idx: int
|
||
|
scratch_bytes: int
|
||
|
scratch_idx: int
|
||
|
scratch: torch.tensor = None
|
||
|
|
||
|
def __init__(self, device, scratch_bytes):
|
||
|
self.device = device
|
||
|
self.scratch_bytes = scratch_bytes
|
||
|
|
||
|
def prepare(self):
|
||
|
self.scratch = torch.empty((self.scratch_bytes // 2,), dtype = torch.half, device = self.device)
|
||
|
|
||
|
def get_scratch_slice(self, size_bytes):
|
||
|
|
||
|
if self.scratch is None: self.prepare()
|
||
|
|
||
|
size_bytes = ((size_bytes + 127) // 128) * 128
|
||
|
size_half = size_bytes // 2
|
||
|
scratch_slice = self.scratch.narrow(0, 0, size_half)
|
||
|
return scratch_slice
|