text-generation-inference/backends/neuron/tests/server/test_continuous_batching.py

75 lines
3.2 KiB
Python
Raw Normal View History

from helpers import create_request
from text_generation_server.generator import NeuronGenerator
from text_generation_server.pb.generate_pb2 import Batch
def test_continuous_batching_two_requests(neuron_model_config):
"""Verify that two requests added to the batch at different generation steps
generate the same outputs (continuous batching).
"""
neuron_model_path = neuron_model_config["neuron_model_path"]
generator = NeuronGenerator.from_pretrained(neuron_model_path)
assert generator.model.batch_size > 1
input_text = "Once upon a time"
max_new_tokens = 20
# Prefill a single request, remembering the generated token
tokens = {0: [], 1: []}
request = create_request(id=0, inputs=input_text, max_new_tokens=max_new_tokens)
max_length = generator.model.max_length
batch = Batch(id=0, requests=[request], size=1, max_tokens=max_length)
generations, next_batch = generator.prefill(batch)
assert next_batch.size == 1
assert len(generations) == 1
g = generations[0]
tokens[g.request_id].append(g.tokens.ids[0])
assert len(tokens[0]) == 1
# Decode a few tokens
gen_tokens = 4
for _ in range(gen_tokens - 1):
generations, next_batch = generator.decode([next_batch])
assert len(generations) == 1
g = generations[0]
tokens[g.request_id].append(g.tokens.ids[0])
assert len(tokens[0]) == gen_tokens
assert next_batch.size == 1
# Add a second request
request = create_request(id=1, inputs=input_text, max_new_tokens=max_new_tokens)
batch = Batch(id=1, requests=[request], size=1, max_tokens=max_length)
generations, next_batch_1 = generator.prefill(batch)
assert next_batch_1.size == 1
# We should have generated only a single token
assert len(generations) == 1
g = generations[0]
tokens[g.request_id].append(g.tokens.ids[0])
assert len(tokens[0]) == gen_tokens
assert len(tokens[1]) == 1
# Decode more tokens until we reach the maximum for the first request
batches = [next_batch, next_batch_1]
for _ in range(max_new_tokens - gen_tokens):
generations, next_batch = generator.decode(batches)
for g in generations:
tokens[g.request_id].append(g.tokens.ids[0])
batches = [next_batch]
# Verify we now only have one pending request
assert next_batch.size == 1
assert len(tokens[0]) == max_new_tokens
assert len(tokens[1]) == max_new_tokens - gen_tokens + 1
# Verify we have the output for the first request
for g in generations:
if g.request_id == 0:
output = g.generated_text
assert output.text != ""
assert output.generated_tokens == max_new_tokens
generated_text = output.text
# Continue decoding until the end of the second request
for _ in range(gen_tokens - 1):
generations, next_batch = generator.decode([next_batch])
assert len(generations) == 1
g = generations[0]
tokens[g.request_id].append(g.tokens.ids[0])
assert next_batch is None
output = generations[0].generated_text
assert output.generated_tokens == max_new_tokens
assert tokens[0] == tokens[1]
assert output.text == generated_text