text-generation-inference/backends/gaudi/server/text_generation_server/utils/quantization.py

150 lines
5.2 KiB
Python
Raw Normal View History

import json
import os
from dataclasses import dataclass
from typing import Optional
from huggingface_hub import hf_hub_download
from text_generation_server.utils.weights import (
WeightsLoader,
)
# TODO: Split this config to have a single config type per quant method
@dataclass
class _QuantizerConfig:
bits: int
checkpoint_format: Optional[str]
desc_act: bool
groupsize: int
quant_method: str
sym: bool
@dataclass
class _FP8QuantizerConfig:
activation_scale_ub: float
# We should probably do this with Pytantic JSON deserialization,
# but for now we'll stay close to the old _set_gptq_params.
def _get_quantizer_config(model_id, revision):
bits = 4
groupsize = -1
quant_method = "gptq"
checkpoint_format = None
sym = False
desc_act = False
filename = "config.json"
try:
if os.path.exists(os.path.join(model_id, filename)):
filename = os.path.join(model_id, filename)
else:
filename = hf_hub_download(model_id, filename=filename, revision=revision)
with open(filename, "r") as f:
data = json.load(f)
# FP8 config
if data["quantization_config"]["quant_method"] == "fbgemm_fp8":
return _FP8QuantizerConfig(
activation_scale_ub=data["quantization_config"]["activation_scale_ub"]
)
if "zero_point" in data["quantization_config"]:
sym = not data["quantization_config"]["zero_point"]
quant_method = "awq"
elif "sym" in data["quantization_config"]:
sym = data["quantization_config"]["sym"]
bits = data["quantization_config"]["bits"]
groupsize = data["quantization_config"]["group_size"]
# Order is important here, desc_act is missing on some real models
quant_method = data["quantization_config"]["quant_method"]
checkpoint_format = data["quantization_config"].get("checkpoint_format")
desc_act = data["quantization_config"]["desc_act"]
except Exception:
filename = "quantize_config.json"
try:
if os.path.exists(os.path.join(model_id, filename)):
filename = os.path.join(model_id, filename)
else:
filename = hf_hub_download(
model_id, filename=filename, revision=revision
)
with open(filename, "r") as f:
data = json.load(f)
bits = data["bits"]
groupsize = data["group_size"]
if "zero_point" in data:
sym = not data["zero_point"]
quant_method = "awq"
elif "sym" in data:
sym = data["sym"]
desc_act = data["desc_act"]
if "version" in data and data["version"] == "GEMM":
quant_method = "awq"
except Exception:
filename = "quant_config.json"
try:
if os.path.exists(os.path.join(model_id, filename)):
filename = os.path.join(model_id, filename)
else:
filename = hf_hub_download(
model_id, filename=filename, revision=revision
)
with open(filename, "r") as f:
data = json.load(f)
bits = data["w_bit"]
groupsize = data["q_group_size"]
desc_act = data["desc_act"]
if "version" in data and data["version"] == "GEMM":
quant_method = "awq"
except Exception:
pass
return _QuantizerConfig(
bits=bits,
groupsize=groupsize,
quant_method=quant_method,
checkpoint_format=checkpoint_format,
sym=sym,
desc_act=desc_act,
)
def get_loader(
quantize: Optional[str], model_id: str, revision: Optional[str]
) -> WeightsLoader:
quantizer_config = _get_quantizer_config(model_id, revision)
if quantize in {"awq", "gptq"}:
from text_generation_server.layers.gptq import GPTQWeightsLoader
# TODO: improve check once we have one config type per quantize value
if not isinstance(quantizer_config, _QuantizerConfig):
raise ValueError(
f"Quantize is set to `{quantize}` but received a `{quantizer_config.__class__.__name__}` config."
)
Gaudi: clean cuda/rocm code in hpu backend, enable flat_hpu (#3113) * clean cuda/rocm code in hpu backend, enable flat_hpu Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * fix TP in pageattn Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * adjust block table in hpu to improve performance Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * enable all the model. not testet yet Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * use tensor cache in hpu graph to avoid replay issue Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * add moe support, fix qwen/mistral/mixtral crash Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * fix phimoe issue Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * gpt_bigcode could also go pageattn Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * enable dbrx remove some unused code Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * multi-modality initial PR Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * adjust warmup and enable vlm Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * fix incorrect output in qwen2 idefics if hpu graph is used Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * remove unused quantization code and enable awq/gptq int4 Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * fix gptq issue Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * enable fp8 Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * warmup prefill remove model where pageattn is not used, set block table to None since it's not used Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * add warmup_decode Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * warmup decode Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * remove block_tables and prefill_cache_indices which will lead to dynamic shape Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * fix comment Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * missing gptj change... Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * fix some issue Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * remove torch.where to fix incorrect output in hpu graph model Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * match the latest vllm_extension ops Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> --------- Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-04-14 13:58:13 +00:00
return GPTQWeightsLoader(
bits=quantizer_config.bits,
Gaudi: clean cuda/rocm code in hpu backend, enable flat_hpu (#3113) * clean cuda/rocm code in hpu backend, enable flat_hpu Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * fix TP in pageattn Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * adjust block table in hpu to improve performance Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * enable all the model. not testet yet Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * use tensor cache in hpu graph to avoid replay issue Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * add moe support, fix qwen/mistral/mixtral crash Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * fix phimoe issue Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * gpt_bigcode could also go pageattn Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * enable dbrx remove some unused code Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * multi-modality initial PR Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * adjust warmup and enable vlm Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * fix incorrect output in qwen2 idefics if hpu graph is used Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * remove unused quantization code and enable awq/gptq int4 Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * fix gptq issue Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * enable fp8 Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * warmup prefill remove model where pageattn is not used, set block table to None since it's not used Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * add warmup_decode Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * warmup decode Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * remove block_tables and prefill_cache_indices which will lead to dynamic shape Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * fix comment Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * missing gptj change... Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * fix some issue Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * remove torch.where to fix incorrect output in hpu graph model Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> * match the latest vllm_extension ops Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> --------- Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-04-14 13:58:13 +00:00
desc_act=quantizer_config.desc_act,
groupsize=quantizer_config.groupsize,
quant_method=quantizer_config.quant_method,
quantize=quantize,
sym=quantizer_config.sym,
)
elif quantize == "fp8" or quantize is None:
from text_generation_server.layers.fp8 import HybridFP8UnquantLoader
# Since the default for the quantize config is _QuantizerConfig,
# we need to add this check to not get an attribute error
activation_scale_ub = None
if isinstance(quantizer_config, _FP8QuantizerConfig):
activation_scale_ub = quantizer_config.activation_scale_ub
return HybridFP8UnquantLoader(activation_scale_ub, to_fp8=quantize == "fp8")
else:
raise ValueError(f"Unknown quantization method: {quantize}")