text-generation-inference/backends/gaudi/server/text_generation_server/models/causal_lm.py

1427 lines
52 KiB
Python
Raw Normal View History

# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
import bisect
from dataclasses import dataclass
from functools import wraps
import itertools
import math
import os
import tempfile
import time
import copy
from typing import Dict, List, Optional, Tuple, Type
import torch
import torch._dynamo
from loguru import logger
from opentelemetry import trace
import text_generation_server.habana_quantization_env as hq_env
import habana_frameworks.torch as htorch
from optimum.habana.utils import HabanaProfile
from optimum.habana.transformers.generation import MODELS_OPTIMIZED_WITH_STATIC_SHAPES
from text_generation_server.utils.chunks import concat_text_chunks
from optimum.habana.checkpoint_utils import (
get_repo_root,
model_on_meta,
write_checkpoints_json,
)
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
PreTrainedTokenizerBase,
AutoConfig,
)
from text_generation_server.utils.tokens import batch_top_tokens
from text_generation_server.models import Model
from text_generation_server.models.types import (
Batch,
Tokens,
Generation,
GeneratedText,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import (
HeterogeneousNextTokenChooser,
StoppingCriteria,
is_tokenizer_transparent,
pad_next_token_chooser_parameters,
)
from optimum.habana.utils import get_hpu_memory_stats
from text_generation_server.utils.debug import dbg_trace
from text_generation_server.utils.speculate import get_speculate
tracer = trace.get_tracer(__name__)
MAX_TOTAL_TOKENS = int(os.environ.get("MAX_TOTAL_TOKENS", 2048))
PAD_SEQUENCE_TO_MULTIPLE_OF = int(os.environ.get("PAD_SEQUENCE_TO_MULTIPLE_OF", 256))
CHUNK_SIZES = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]
LAZY_MODE = int(os.environ.get("PT_HPU_LAZY_MODE", 1))
BATCH_SIZE_EXPONENT_BASE = int(os.environ.get("BATCH_SIZE_EXPONENT_BASE", 2))
MAX_BATCH_SIZE = (
int(os.environ.get("MAX_BATCH_SIZE"))
if os.environ.get("MAX_BATCH_SIZE") is not None
else None
)
def torch_compile_for_eager(func):
if LAZY_MODE == 1:
return func
return torch.compile(
func, backend="hpu_backend", options={"keep_input_mutations": True}
)
def round_up_seq(number, k):
return (number + k - 1) // k * k
def round_up_batch(number):
return BATCH_SIZE_EXPONENT_BASE ** (
math.ceil(math.log(number, BATCH_SIZE_EXPONENT_BASE))
)
def to_tensor_indices(indices, device):
return torch.tensor(indices, dtype=torch.long, device=device)
def calculate_chunks(offset):
result = []
while offset != 0:
sign = 1 if offset > 0 else -1
best_chunk = min((abs(offset - sign * c), sign * c) for c in CHUNK_SIZES)[1]
result.append(best_chunk)
offset = offset - best_chunk
return result
def biggest_single_chunk(offset):
if offset != 0:
idx = bisect.bisect(CHUNK_SIZES, abs(offset))
return int(math.copysign(CHUNK_SIZES[idx - 1], offset))
else:
return 0
@torch_compile_for_eager
def grouped_pad(tensor_groups, dims, values):
grouped_result = []
for tensors, dim, value in zip(tensor_groups, dims, values):
padding = MAX_TOTAL_TOKENS - tensors[0].size(dim) if dim is not None else 0
if padding > 0:
assert dim in [-1, -2], f"Only dims -1 and -2 are supported! {dim}"
pad_shape = (0, 0, 0, padding) if dim == -2 else (0, padding)
result = [
torch.nn.functional.pad(t, pad_shape, value=value) for t in tensors
]
else:
result = [t for t in tensors]
grouped_result.append(result)
htorch.core.mark_step()
return grouped_result
@torch_compile_for_eager
def roll(tensor, chunk, dim, merge_graphs):
if dim is None:
return tensor
tensor = torch.roll(tensor, chunk, dim)
if not merge_graphs:
htorch.core.mark_step()
return tensor
def grouped_roll(tensor_groups, chunk, dims, merge_graphs):
tensor_groups = [
[roll(t, chunk, dim, merge_graphs) for t in tensors]
for tensors, dim in zip(tensor_groups, dims)
]
if merge_graphs:
htorch.core.mark_step()
return tensor_groups
@torch_compile_for_eager
def grouped_shift(tensor_groups, dims, offset, merge_graphs):
chunks = calculate_chunks(offset)
for c in chunks:
tensor_groups = grouped_roll(tensor_groups, c, dims, merge_graphs)
return tensor_groups
def move(dst_tensors, dst_indices, src_tensors):
bs_dim = 0
num_indices = dst_indices.size(0)
for i, (dst_t, src_t) in enumerate(zip(dst_tensors, src_tensors)):
if src_t.size(bs_dim) != num_indices:
src_t = torch.narrow(src_t, bs_dim, 0, num_indices)
dst_t.index_copy_(bs_dim, dst_indices, src_t)
htorch.core.mark_step()
def grouped_move(dst_tensor_groups, dst_indices, src_tensor_groups):
for dst_tensors, src_tensors in zip(dst_tensor_groups, src_tensor_groups):
move(dst_tensors, dst_indices, src_tensors)
@torch_compile_for_eager
def extend_tensor(tensor, padding, dim):
result = torch.cat([tensor, padding], dim=dim)
htorch.core.mark_step()
return result
@torch_compile_for_eager
def extend_batch(tensors, target_bs, dim):
diff = target_bs - tensors[0].size(dim)
# TODO: add support for shrinking bs
if diff <= 0:
return tensors
shape = list(tensors[0].shape)
shape[dim] = diff
padding = torch.empty(shape, device=tensors[0].device, dtype=tensors[0].dtype)
tensors = [extend_tensor(t, padding, dim) for t in tensors]
return tensors
def grouped_extend_batch(tensor_groups, target_bs, bs_dims):
tensor_groups = [
extend_batch(tensors, target_bs, dim)
for tensors, dim in zip(tensor_groups, bs_dims)
]
return tensor_groups
@torch_compile_for_eager
def merge(tensor_group):
tensor_group = [torch.stack(tensor_group)]
htorch.core.mark_step()
return tensor_group
@torch_compile_for_eager
def split(tensor_group, clone_data):
tensor_group = [t.squeeze(0) for t in torch.split(tensor_group[0], 1)]
if clone_data:
tensor_group = [t.clone() for t in tensor_group]
htorch.core.mark_step()
return tensor_group
def remove_kv_cache_from_output(module):
orig_fwd = module.forward
@wraps(orig_fwd)
def forward(*args, **kwargs):
if kwargs["past_key_values"] is not None:
kwargs["return_dict"] = False
output = orig_fwd(*args, **kwargs)
first_value, second_value, *_ = output
if first_value.nelement() < 2:
return second_value
else:
return first_value
else:
kwargs["return_dict"] = True
return orig_fwd(*args, **kwargs)
module.forward = forward
return module
@dataclass
class CausalLMRequest:
idx: int
data: generate_pb2.Request
input_length: int
prefix_offset: int
read_offset: int
stopping_criteria: StoppingCriteria
all_input_ids: torch.Tensor
@classmethod
def from_pb(
cls, idx: int, data: generate_pb2.Request, tokenizer: PreTrainedTokenizerBase
):
return cls(
idx=idx,
data=data,
input_length=None,
prefix_offset=None,
read_offset=None,
stopping_criteria=StoppingCriteria.from_pb(
data.stopping_parameters, tokenizer
),
all_input_ids=None,
)
def update_idx(self, new_idx):
prev = self.idx
self.idx = new_idx
return (new_idx, prev)
@dataclass
class CausalLMBatch(Batch):
batch_id: int
requests: List[CausalLMRequest]
# Decoder values
input_ids: torch.Tensor
attention_mask: torch.Tensor
position_ids: torch.Tensor
past_key_values: Optional[List[Tuple]]
merged_kv_cache: bool
# Lengths of all generations present in the batch
input_length: int
# Generation helpers
next_token_chooser: HeterogeneousNextTokenChooser
top_n_tokens: List[int]
top_n_tokens_tensor: torch.Tensor
input_length: int
# Past metadata
logits = None
past = None
keys_head_dim_last: bool = True
def to_pb(self) -> generate_pb2.CachedBatch:
return generate_pb2.CachedBatch(
id=self.batch_id,
request_ids=[r.data.id for r in self.requests],
size=len(self),
max_tokens=self.max_tokens,
)
def detach_kv_cache(self):
past_keys = [past[0] for past in self.past_key_values]
past_values = [past[1] for past in self.past_key_values]
del self.past_key_values
return past_keys, past_values
def attach_kv_cache(self, past_keys, past_values):
# TODO: Add support for models that don't store kv_cache in a list
self.past_key_values = list(zip(past_keys, past_values))
def merge_kv_cache_if_needed(self, target_bs, offset):
pad_needed = self.seq_length < MAX_TOTAL_TOKENS
shift_needed = offset != 0
expand_needed = target_bs > self.batch_size
# Very simple heuristic to determine whether we should merge tensors
# this needs tuning for other models/scenarios
small_bs = len(self.past_key_values) > self.batch_size
if (
not self.merged_kv_cache
and small_bs
and (pad_needed or shift_needed or expand_needed)
):
past_keys, past_values = self.detach_kv_cache()
past_keys = merge(past_keys)
past_values = merge(past_values)
self.attach_kv_cache(past_keys, past_values)
self.merged_kv_cache = True
def split_kv_cache_if_needed(self, clone_data):
if self.merged_kv_cache:
past_keys, past_values = self.detach_kv_cache()
past_keys = split(past_keys, clone_data)
past_values = split(past_values, clone_data)
self.attach_kv_cache(past_keys, past_values)
self.merged_kv_cache = False
def get_tensor_groups(self):
past_keys, past_values = self.detach_kv_cache()
seq_dim = -1
key_dim = -2 if self.keys_head_dim_last else -1
value_dim = -2
tensors = [
[self.input_ids],
[self.attention_mask],
[self.position_ids],
past_keys,
past_values,
]
# We don't need to align position_ids
seq_dims = [seq_dim, seq_dim, None, key_dim, value_dim]
bs_dims = [0, 0, 0] + ([1, 1] if self.merged_kv_cache else [0, 0])
return tensors, seq_dims, bs_dims
def set_tensor_groups(self, tensors):
self.input_ids = tensors.pop(0)[0]
self.attention_mask = tensors.pop(0)[0]
self.position_ids = tensors.pop(0)[0]
past_keys = tensors.pop(0)
past_values = tensors.pop(0)
self.attach_kv_cache(past_keys, past_values)
def realign(self, target_bs, offset, pad_token_id):
tensors, seq_dims, _ = self.get_tensor_groups()
tensors = grouped_pad(tensors, seq_dims, [pad_token_id, 0, 0, 0, 0])
tensors = grouped_shift(tensors, seq_dims, offset, self.merged_kv_cache)
self.set_tensor_groups(tensors)
def expand_bs(self, target_bs):
tensors, _, bs_dims = self.get_tensor_groups()
tensors = grouped_extend_batch(tensors, target_bs, bs_dims)
self.set_tensor_groups(tensors)
def used_indices(self):
return [req.idx for req in self.requests]
def update_indices(self, new_indices):
for req, new_idx in zip(self.requests, new_indices):
req.idx = new_idx
return self.used_indices()
def free_indices_generator(self):
used = set(req.idx for req in self.requests)
return (i for i in range(self.batch_size) if i not in used)
def move_data(self, src_batches):
dst_tensors, _, dst_dims = self.get_tensor_groups()
free_indices_gen = self.free_indices_generator()
for src_b in src_batches:
dst_indices = to_tensor_indices(
src_b.update_indices(free_indices_gen), self.input_ids.device
)
src_tensors, _, src_dims = src_b.get_tensor_groups()
grouped_move(dst_tensors, dst_indices, src_tensors)
self.set_tensor_groups(dst_tensors)
@classmethod
def recombine(
cls, batches: List["CausalLMBatch"], pad_token_id: int
) -> "CausalLMBatch":
if not all(b.past_key_values is not None for b in batches):
raise ValueError("KV cache not allocated! Cannot recombine before prefill!")
total_requests = sum(len(b) for b in batches)
new_bs = total_requests
new_bs = round_up_batch(total_requests)
batch_id = batches[0].batch_id
device = batches[0].input_ids.device
input_lengths = [b.input_length for b in batches]
max_input_length = max(input_lengths)
offsets = [max_input_length - b.input_length for b in batches]
cur_padding = [b.right_padding for b in batches]
# For prefill there is a space allocated only for first token
# Need to add padding to the max total tokens before first decode
moves_needed = [
total_requests - len(b) if b.batch_size == new_bs else total_requests
for b in batches
]
dst_batch_idx = min(enumerate(moves_needed), key=lambda idx_val: idx_val[1])[0]
reshape = batches[dst_batch_idx].batch_size < new_bs
# TODO: Add support for changing max seq len, i.e. due to output length bucketing
# FIXME: max_seq_len for non optimized code
if len(batches) > 1:
scenario = "CONCAT"
elif reshape:
scenario = "RESHAPE"
elif cur_padding[dst_batch_idx] <= 0:
scenario = "SHIFT"
offsets = [
biggest_single_chunk(b.max_input_length - max_input_length)
for b in batches
]
max_input_length = max_input_length + offsets[dst_batch_idx]
else:
# Nothing to do
return batches[0]
dbg_trace(
scenario,
f"bs:{[b.batch_size for b in batches]}->{new_bs}"
f" reqs:{[len(b) for b in batches]}"
f" offsets:{offsets}"
f" input_lengths:{input_lengths}"
f" cur_padding:{cur_padding}"
f" dst_batch:{dst_batch_idx}",
)
grouped_requests = [[req for req in batch.requests] for batch in batches]
flat_requests = list(itertools.chain(*grouped_requests))
for i in range(len(batches)):
target_bs = new_bs if i == dst_batch_idx else batches[i].batch_size
batches[i].merge_kv_cache_if_needed(target_bs, offsets[i])
batches[i].realign(target_bs, offsets[i], pad_token_id)
batches[i].split_kv_cache_if_needed(i == dst_batch_idx)
batches[dst_batch_idx].expand_bs(new_bs)
batches[dst_batch_idx].move_data(
[batches[i] for i in range(len(batches)) if i != dst_batch_idx]
)
top_n_tokens = [r.data.top_n_tokens for r in flat_requests]
top_n_tokens.extend([-1] * (new_bs - total_requests))
top_n_tokens_tensor = torch.tensor(
top_n_tokens, device=device, dtype=torch.int64
)
parameters = [r.data.parameters for r in flat_requests]
# append the dummy parameters for dummy requests
batch_size = batches[dst_batch_idx].batch_size
parameters = pad_next_token_chooser_parameters(parameters, batch_size)
# update past grammar states
fsm_grammar_states = [0] * batch_size
for batch in batches:
for i, req in enumerate(batch.requests):
fsm_grammar_states[req.idx] = (
batch.next_token_chooser.fsm_grammar_states[i]
)
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
parameters,
batches[dst_batch_idx].next_token_chooser.dtype,
batches[dst_batch_idx].next_token_chooser.device,
batches[dst_batch_idx].next_token_chooser.tokenizer,
fsm_grammar_states,
quantization_enabled=hq_env.is_quantization_enabled,
)
input_ids = batches[dst_batch_idx].input_ids
attention_mask = batches[dst_batch_idx].attention_mask
position_ids = batches[dst_batch_idx].position_ids
past_key_values = batches[dst_batch_idx].past_key_values
input_length = max_input_length
htorch.core.mark_step()
return cls(
batch_id=batch_id,
requests=flat_requests,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
merged_kv_cache=False,
next_token_chooser=next_token_chooser,
top_n_tokens=top_n_tokens,
top_n_tokens_tensor=top_n_tokens_tensor,
input_length=input_length,
)
@classmethod
def from_pb(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
dtype: torch.dtype,
device: torch.device,
) -> "CausalLMBatch":
dbg_trace("FROM_PB", f"num_reqs:{len(pb.requests)}")
requests = [
CausalLMRequest.from_pb(idx, req, tokenizer)
for idx, req in enumerate(pb.requests)
]
inputs = []
top_n_tokens = []
# Parse batch
max_truncation = 0
for i, r in enumerate(pb.requests):
inputs.append(concat_text_chunks(r.input_chunks.chunks))
top_n_tokens.append(r.top_n_tokens)
max_truncation = max(max_truncation, r.truncate)
max_input_length = max_truncation
if max_input_length < PAD_SEQUENCE_TO_MULTIPLE_OF:
max_input_length = PAD_SEQUENCE_TO_MULTIPLE_OF
max_new_tokens = max(r.stopping_criteria.max_new_tokens for r in requests)
# TODO: by tokenizing all inputs at once we loose information on actual input lengths
# this means that we cannot shift inputs to the left after a long input sequence
# was filtered out
new_bs = round_up_batch(len(requests))
missing_inputs = new_bs - len(inputs)
dummy_inputs = ["?"] * missing_inputs
parameters = [r.parameters for r in pb.requests]
# append the dummy parameters for dummy request
parameters = pad_next_token_chooser_parameters(parameters, new_bs)
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
pb=parameters,
dtype=dtype,
device=device,
tokenizer=tokenizer,
quantization_enabled=hq_env.is_quantization_enabled,
)
tokenized_inputs = tokenizer(
inputs + dummy_inputs,
return_tensors="pt",
padding="longest",
return_token_type_ids=False,
truncation=True,
max_length=max_truncation,
)
input_len = tokenized_inputs["input_ids"].shape[1]
# Round up sequence length
bucket_size = max_input_length
left_padding = max_input_length - input_len
if input_len < max_input_length and PAD_SEQUENCE_TO_MULTIPLE_OF != 0:
assert (
PAD_SEQUENCE_TO_MULTIPLE_OF <= max_input_length
), "PAD_SEQUENCE_TO_MULTIPLE_OF cannot be higher than max_input_length"
rounded_seq_len = round_up_seq(input_len + 1, PAD_SEQUENCE_TO_MULTIPLE_OF)
if rounded_seq_len <= max_input_length:
bucket_size = rounded_seq_len - 1
else:
bucket_size = max_input_length - 1
left_padding = bucket_size - input_len
input_ids = tokenized_inputs["input_ids"]
attention_mask = tokenized_inputs["attention_mask"]
# Allocate space for first token
input_ids = torch.nn.functional.pad(
input_ids, (left_padding, 1), value=tokenizer.pad_token_id
)
attention_mask = torch.nn.functional.pad(
attention_mask, (left_padding, 1), value=0
)
all_input_ids = torch.nn.functional.pad(
input_ids, (0, max_new_tokens), value=tokenizer.pad_token_id
).T.split(1, dim=1)
input_len = bucket_size
for r in requests:
r.input_length = input_len
r.prefix_offset = input_len - 5
r.read_offset = input_len
r.all_input_ids = all_input_ids[r.idx]
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
old_bs = len(requests)
top_n_tokens.extend([-1] * (new_bs - old_bs))
top_n_tokens_tensor = torch.tensor(
top_n_tokens, device=device, dtype=torch.int64
)
htorch.core.mark_step()
return cls(
batch_id=pb.id,
requests=requests,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=None,
merged_kv_cache=False,
next_token_chooser=next_token_chooser,
top_n_tokens=top_n_tokens,
top_n_tokens_tensor=top_n_tokens_tensor,
input_length=input_len,
)
@tracer.start_as_current_span("filter")
def filter(self, request_ids: List[int]) -> Optional["CausalLMBatch"]:
dbg_trace("FILTER", f"num_reqs:{len(self.requests)} -> {len(request_ids)}")
request_ids = set(request_ids)
self.requests = [req for req in self.requests if req.data.id in request_ids]
return self
@classmethod
@tracer.start_as_current_span("concatenate")
def concatenate(
cls, batches: List["CausalLMBatch"], pad_token_id: int = 0
) -> "CausalLMBatch":
return cls.recombine(batches, pad_token_id)
def __len__(self):
return len(self.requests)
@property
def max_input_length(self):
return max(req.input_length for req in self.requests)
@property
def batch_size(self):
return self.attention_mask.size(0)
@property
def seq_length(self):
return self.attention_mask.size(1)
@property
def right_padding(self):
return self.seq_length - self.input_length
# Maximum number of tokens this batch will grow to
@property
def max_tokens(self):
max_total_tokens = self.attention_mask.size(1)
return len(self.requests) * max_total_tokens
class CausalLM(Model):
def __init__(
self,
model_id: str,
model_class: Optional[Type[torch.nn.Module]] = None,
revision: Optional[str] = None,
quantize: Optional[str] = None,
speculator: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
default_dtype=torch.float16,
trust_remote_code: bool = False,
tokenizer_class=AutoTokenizer,
config_class=AutoConfig,
batch_class=CausalLMBatch,
):
if speculator:
raise RuntimeError("Speculator decoding is not enabled for AutoModel")
self.prev_bs = 0
self.quantize = quantize
# Create tokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
# Create model
world_size = int(os.getenv("WORLD_SIZE", "1"))
rank = int(os.getenv("RANK", "0"))
dtype = torch.bfloat16 if dtype is None else dtype
device = torch.device("hpu")
if hq_env.is_quantization_enabled:
htorch.core.hpu_set_env()
if world_size > 1:
os.environ.setdefault(
"DEEPSPEED_USE_HABANA_FRAMEWORKS_DETERMINISTIC_API", "1"
)
model = self.get_deepspeed_model(model_id, dtype, revision)
model = hq_env.prepare_model_for_quantization(model)
else:
get_repo_root(model_id)
# Check support for rope scaling
model_kwargs = {}
config = AutoConfig.from_pretrained(model_id)
if hasattr(config, "rope_scaling"):
model_kwargs["rope_scaling"] = self.get_rope_scaling()
model = AutoModelForCausalLM.from_pretrained(
model_id,
revision=revision,
torch_dtype=dtype,
trust_remote_code=trust_remote_code,
**model_kwargs,
)
model = hq_env.prepare_model_for_quantization(model)
model = model.eval().to(device)
self.enable_hpu_graph = (
os.getenv("ENABLE_HPU_GRAPH", "true").lower() == "true" and LAZY_MODE == 1
)
self.limit_hpu_graph = os.getenv("LIMIT_HPU_GRAPH", "true").lower() == "true"
if model.config.model_type not in [
"gpt_bigcode"
]: # gpt_bigcode/starcoderbase-3b skips remove_kv_cache_from_output()
model = remove_kv_cache_from_output(model)
if self.enable_hpu_graph:
from habana_frameworks.torch.hpu import wrap_in_hpu_graph
model = wrap_in_hpu_graph(model, disable_tensor_cache=True)
else:
if LAZY_MODE == 0:
# It is said that "keep_input_mutations" is safe for inference to be done
dbg_trace("TORCH COMPILE", "Torch compiling of model")
model.model = torch.compile(
model.model,
backend="hpu_backend",
options={"keep_input_mutations": True},
)
model = hq_env.setup_quantization(model)
if model.config.model_type not in MODELS_OPTIMIZED_WITH_STATIC_SHAPES:
raise ValueError(f"Model type {model.config.model_type} is not supported!")
if tokenizer.pad_token_id is None:
if model.config.pad_token_id is not None:
tokenizer.pad_token_id = model.config.pad_token_id
elif model.config.eos_token_id is not None:
if isinstance(model.config.eos_token_id, int):
tokenizer.pad_token_id = model.config.eos_token_id
elif isinstance(model.config.eos_token_id, list):
tokenizer.pad_token_id = model.config.eos_token_id[0]
else:
raise ValueError(
f"{type(model.config.eos_token_id)} type of eos_token_id in the model's config is not supported for tokenizer.pad_token_id"
)
elif tokenizer.eos_token_id is not None:
tokenizer.pad_token_id = tokenizer.eos_token_id
else:
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
self.kwargs = {
"use_cache": True,
"return_dict": True,
}
if model.config.model_type in [
"llama",
"mistral",
"starcoder2",
"qwen2",
"falcon",
"gpt_bigcode",
]:
if model.config.model_type not in ["falcon", "gpt_bigcode"]:
self.kwargs["attn_softmax_bf16"] = True
if model.config.model_type not in ["gpt_bigcode"]:
self.kwargs["trim_logits"] = True
if os.getenv("USE_FLASH_ATTENTION", "true").lower() == "true":
self.kwargs["use_flash_attention"] = True
if os.getenv("FLASH_ATTENTION_RECOMPUTE", "true").lower() == "true":
self.kwargs["flash_attention_recompute"] = True
self.speculate = get_speculate()
super(CausalLM, self).__init__(
model_id=model_id,
model=model,
tokenizer=tokenizer,
requires_padding=True,
dtype=dtype,
device=device,
rank=rank,
)
# Create profiler
ranks_to_profile = [int(val) for val in os.getenv("PROF_RANKS", "0").split(",")]
record_shapes = os.getenv("PROF_RECORD_SHAPES", "false").lower() == "true"
output_dir = os.getenv("PROF_PATH", "/tmp/hpu_profile")
self.profiling_warmup_steps = (
int(os.getenv("PROF_WARMUPSTEP", "0")) if rank in ranks_to_profile else 0
)
self.profiling_steps = (
int(os.getenv("PROF_STEP", "0")) if rank in ranks_to_profile else 0
)
self.profiling_wait_steps = int(os.getenv("PROF_WAITSTEP", "0"))
if self.profiling_steps > 0:
self.hb_profiler = HabanaProfile(
wait=self.profiling_wait_steps,
warmup=self.profiling_warmup_steps,
active=self.profiling_steps,
output_dir=output_dir,
record_shapes=record_shapes,
)
self.hb_profiler.start()
else:
self.hb_profiler = None
self.step = 0
def get_deepspeed_model(
self, model_id: str, dtype: torch.dtype, revision: Optional[str] = None
) -> torch.nn.Module:
import deepspeed
from habana_frameworks.torch.distributed.hccl import initialize_distributed_hpu
world_size, rank, local_rank = initialize_distributed_hpu()
model_kwargs = {"revision": revision}
# Initialize process(es) for DeepSpeed
deepspeed.init_distributed(dist_backend="hccl")
logger.info(
"DeepSpeed is enabled. world_size {} rank {} local_rank {}".format(
world_size, rank, local_rank
)
)
config = AutoConfig.from_pretrained(model_id, **model_kwargs)
load_to_meta = model_on_meta(config)
# Check support for rope scaling
if hasattr(config, "rope_scaling"):
config.rope_scaling = self.get_rope_scaling()
model_kwargs["rope_scaling"] = self.get_rope_scaling()
if load_to_meta:
# Construct model with fake meta tensors, later will be replaced on devices during ds-inference ckpt load
with deepspeed.OnDevice(dtype=dtype, device="meta"):
model = AutoModelForCausalLM.from_config(config, torch_dtype=dtype)
else:
get_repo_root(model_id, local_rank=os.getenv("LOCAL_RANK"))
# TODO: revisit placement on CPU when auto-injection is possible
with deepspeed.OnDevice(dtype=dtype, device="cpu"):
model = AutoModelForCausalLM.from_pretrained(
model_id, torch_dtype=dtype, **model_kwargs
)
model = model.eval()
# Initialize the model
ds_inference_kwargs = {"dtype": dtype}
ds_inference_kwargs["tensor_parallel"] = {"tp_size": world_size}
ds_inference_kwargs["enable_cuda_graph"] = False
if load_to_meta:
# model loaded to meta is managed differently
checkpoints_json = tempfile.NamedTemporaryFile(suffix=".json", mode="+w")
write_checkpoints_json(model_id, local_rank, checkpoints_json)
ds_inference_kwargs["checkpoint"] = checkpoints_json.name
model = deepspeed.init_inference(model, **ds_inference_kwargs)
return model.module
def get_rope_scaling(self) -> Optional[Dict]:
rope_scaling = os.getenv("ROPE_SCALING", None)
if rope_scaling is None:
return None
rope_factor = float(os.getenv("ROPE_FACTOR", 1.0))
return {"type": rope_scaling, "factor": float(rope_factor)}
@property
def batch_type(self) -> Type[CausalLMBatch]:
return CausalLMBatch
def decode(self, generated_ids: List[int]) -> str:
return self.tokenizer.decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
def decode_token(
self,
all_input_ids: List[int],
prefix_offset: int = 0,
read_offset: int = 0,
) -> Tuple[str, int, int]:
if is_tokenizer_transparent(self.tokenizer):
new_text = self.tokenizer.decode(
all_input_ids[read_offset:], skip_special_tokens=False
)
return new_text, read_offset, len(all_input_ids)
else:
return super().decode_token(all_input_ids, prefix_offset, read_offset)
def forward(
self,
input_ids,
attention_mask,
position_ids,
token_idx,
past_key_values: Optional[List[Tuple]] = None,
bypass_hpu_graph: Optional[bool] = None,
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
# Model Forward
kwargs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"token_idx": token_idx,
}
# Optimum Habana got "lazy_mode" key-val only supported for llama type of models
if self.model.config.model_type == "llama":
kwargs["lazy_mode"] = LAZY_MODE == 1
if self.has_position_ids:
kwargs["position_ids"] = position_ids
if bypass_hpu_graph is not None:
kwargs["bypass_hpu_graphs"] = bypass_hpu_graph
kwargs.update(self.kwargs)
if past_key_values is not None and self.model.config.model_type not in [
"gpt_bigcode"
]:
return self.model.forward(**kwargs)
else:
outputs = self.model.forward(**kwargs)
return outputs.logits, outputs.past_key_values
@tracer.start_as_current_span("generate_token")
def generate_token(
self, batches: List[CausalLMBatch]
) -> Tuple[List[Generation], Optional[CausalLMBatch], Tuple[int, int]]:
start = time.time_ns()
# Results
generations: List[Generation] = []
prev_batches = []
requests_to_generate = []
# In order to pipeline any actions on CPU we perform the operation in 3 main stages:
# Stage 1. Collect next token ids of any previously started generations
for batch_id, batch in enumerate(batches):
if batch.logits is not None:
logits = batch.logits
past = batch.past
prefill = batch.past_key_values is None
if prefill:
# no right padding for prefill
token_idx_scalar = batch.attention_mask.shape[-1] - 1
token_idx = torch.tensor(token_idx_scalar).to(self.device)
else:
token_idx_scalar = (
batch.attention_mask.shape[-1] - batch.right_padding
)
token_idx = torch.tensor(token_idx_scalar).to(self.device)
# Select next token
input_length = batch.input_length
if logits.shape[-2] > 1:
next_token_ids, next_token_logprobs, logprobs, _, _ = (
batch.next_token_chooser(
batch.input_ids,
logits[:, input_length - 1 : input_length, :].squeeze(-2),
self.speculate,
)
)
else:
next_token_ids, next_token_logprobs, logprobs, _, _ = (
batch.next_token_chooser(
batch.input_ids, logits.squeeze(-2), self.speculate
)
)
# Speculation is not active for causal
accepted_ids = torch.ones_like(batch.input_ids)[:, 0]
batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
batch.top_n_tokens,
batch.top_n_tokens_tensor,
logprobs,
accepted_ids,
)
prev_batches.append(
{
"next_token_ids": next_token_ids,
"next_token_logprobs": next_token_logprobs,
}
)
for req_idx, req in enumerate(batch.requests):
requests_to_generate.append(
{
"req": req,
"prev_req_idx": req.idx,
"batch_id": batch_id,
"seed": batch.next_token_chooser.seeds[req_idx],
"do_sample": batch.next_token_chooser.do_sample[req_idx],
"top_n_tokens": batch.top_n_tokens[req_idx],
"top_token_ids": batch_top_token_ids[req_idx],
"top_token_logprobs": batch_top_token_logprobs[req_idx],
"grammar_state": batch.next_token_chooser.fsm_grammar_states[
req.idx
],
}
)
htorch.core.mark_step()
# Add new token into input_ids
batch.input_ids.index_copy_(1, token_idx, next_token_ids.unsqueeze(1))
# Update attention_mask as we added a new token to input_ids
batch.attention_mask.index_fill_(1, token_idx, 1)
# Adjust lengths
batch.input_length += 1
# Update position_ids
if prefill:
batch.position_ids = (
torch.index_select(batch.position_ids, 1, token_idx - 1) + 1
)
else:
batch.position_ids += 1
# Update past key values
if prefill or self.model.config.model_type in ["gpt_bigcode"]:
batch.past_key_values = past
htorch.core.mark_step()
# Stage 2. Prepare new batch for speculative scheduling
if len(batches) > 1:
batch = self.batch_type.concatenate(batches, self.tokenizer.pad_token_id)
else:
batch = batches[0]
prefill = batch.past_key_values is None
# Check if we need to do any bookkeeping first
if not prefill:
batch = batch.__class__.recombine([batch], self.tokenizer.pad_token_id)
scenario = "PREFILL" if prefill else "GENERATE"
if (
self.enable_hpu_graph
and self.limit_hpu_graph
and round_up_batch(batch.batch_size) != self.prev_bs
):
self.model.clear_cache()
self.prev_bs = round_up_batch(batch.batch_size)
dbg_trace(
scenario,
f"bs:{batch.batch_size} num_reqs:{len(batch.requests)} seq_len:{batch.seq_length} padding:{batch.right_padding}",
)
assert batch.right_padding > 0, "No more room for next token!"
# Execute batch
if prefill:
# no right padding for prefill
token_idx = torch.tensor(batch.attention_mask.shape[-1] - 1).to(self.device)
batch.logits, batch.past = self.forward(
batch.input_ids,
batch.attention_mask,
batch.position_ids,
token_idx,
batch.past_key_values,
bypass_hpu_graph=(
prefill and self.limit_hpu_graph if self.enable_hpu_graph else None
),
)
elif all([req.stopping_criteria.max_new_tokens == 1 for req in batch.requests]):
# Don't schedule next forward if max_new_tokens for all requests equals 1
# - we've already generated the first and only needed token in the prefill phase
pass
else:
token_idx = torch.tensor(
batch.attention_mask.shape[-1] - batch.right_padding
).to(self.device)
input_ids = torch.index_select(batch.input_ids, 1, token_idx - 1)
logits = self.forward(
input_ids,
batch.attention_mask,
batch.position_ids,
token_idx,
batch.past_key_values,
bypass_hpu_graph=(
prefill and self.limit_hpu_graph if self.enable_hpu_graph else None
),
)
if self.model.config.model_type in ["gpt_bigcode"]:
batch.logits, batch.past = logits
else:
batch.logits = logits
htorch.core.mark_step()
start_decode = time.time_ns()
# Stage 3. Finish and return previous generations
stopped = len(requests_to_generate) > 0
for prev_batch in prev_batches:
prev_batch["next_token_logprobs"] = prev_batch[
"next_token_logprobs"
].tolist()
prev_batch["next_token_ids_cpu"] = prev_batch["next_token_ids"].cpu()
htorch.core.mark_step()
for req_data in requests_to_generate:
req = req_data["req"]
i = req_data["prev_req_idx"]
prev_batch_id = req_data["batch_id"]
assert len(prev_batches) > prev_batch_id
next_token_ids_cpu = prev_batches[prev_batch_id]["next_token_ids_cpu"]
next_token_logprobs = prev_batches[prev_batch_id]["next_token_logprobs"]
request = req.data
input_length = req.input_length
prefix_offset = req.prefix_offset
read_offset = req.read_offset
do_sample = req_data["do_sample"]
seed = req_data["seed"]
stopping_criteria = req.stopping_criteria
all_input_ids = req.all_input_ids
next_token_id = next_token_ids_cpu[i]
next_token_logprob = next_token_logprobs[i]
top_n_tokens = req_data["top_n_tokens"]
top_token_ids = req_data["top_token_ids"]
top_token_logprobs = req_data["top_token_logprobs"]
grammar_state = req_data["grammar_state"]
# Append next token to all tokens
all_input_ids[input_length] = next_token_id
new_input_length = input_length + 1
# Generated token
if (
is_tokenizer_transparent(self.tokenizer)
and len(stopping_criteria.stop_sequence_criterias) == 0
):
next_token_text = ""
else:
next_token_text, prefix_offset, read_offset = self.decode_token(
all_input_ids[0:new_input_length, 0], prefix_offset, read_offset
)
# Evaluate stopping criteria
stop, reason = stopping_criteria(
next_token_id,
next_token_text,
)
if not stop:
stopped = False
# Shard generations
# All generations will be appended in the rust sharded client
if i % self.world_size == self.rank:
if stop:
# Decode generated tokens
if is_tokenizer_transparent(self.tokenizer):
output_text = None
else:
output_text = self.decode(
all_input_ids[
new_input_length
- stopping_criteria.current_tokens : new_input_length,
0,
]
)
generated_text = GeneratedText(
output_text,
stopping_criteria.current_tokens,
reason,
seed if do_sample else None,
)
else:
generated_text = None
# Prefill
if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
# Remove generated token to only have prefill and add nan for first prompt token
prefill_logprobs = [float("nan")] + next_token_logprobs
prefill_token_ids = all_input_ids[0 : new_input_length - 1]
prefill_texts = self.tokenizer.batch_decode(
prefill_token_ids,
clean_up_tokenization_spaces=False,
skip_special_tokens=False,
)
prefill_tokens = Tokens(
prefill_token_ids,
prefill_logprobs,
prefill_texts,
is_special=[],
)
else:
prefill_tokens = None
if top_n_tokens > 0:
all_top_tokens = []
for top_token_ids, top_token_logprobs in zip(
top_token_ids, top_token_logprobs
):
toptoken_texts = self.tokenizer.batch_decode(
top_token_ids,
clean_up_tokenization_spaces=False,
skip_special_tokens=False,
)
special_toptokens = [
token_id in self.all_special_ids
for token_id in top_token_ids
]
top_tokens = Tokens(
top_token_ids,
top_token_logprobs,
toptoken_texts,
special_toptokens,
)
all_top_tokens.append(top_tokens)
top_tokens = all_top_tokens
else:
top_tokens = None
generation = Generation(
request.id,
prefill_tokens,
Tokens(
[next_token_id],
[next_token_logprob],
[next_token_text],
[next_token_id in self.all_special_ids],
),
generated_text,
top_tokens,
)
generations.append(generation)
batch.next_token_chooser = (
batch.next_token_chooser.advance_grammar_single_with_past_state(
req.idx, next_token_id, grammar_state
)
)
req.all_input_ids = all_input_ids
req.input_length = new_input_length
req.prefix_offset = prefix_offset
req.read_offset = read_offset
htorch.core.mark_step()
self.step = self.step + 1
if self.hb_profiler is not None:
if (
self.step
> self.profiling_wait_steps
+ self.profiling_warmup_steps
+ self.profiling_steps
):
self.hb_profiler.stop()
else:
self.hb_profiler.step()
forward_ns = start_decode - start
decode_ns = time.time_ns() - start_decode
return generations, batch if not stopped else None, (forward_ns, decode_ns)
def generate_warmup_batch(self, request, seq_len, batch_size):
batch = copy.deepcopy(request.batch)
for req in batch.requests:
req.truncate = seq_len
for i in range(len(batch.requests) - batch_size):
batch.requests.pop()
return self.batch_type.from_pb(batch, self.tokenizer, self.dtype, self.device)
def warmup(
self, request: generate_pb2.WarmupRequest
) -> Tuple[Optional[int], Optional[int], Optional[int]]:
assert (
MAX_BATCH_SIZE is not None
), "MAX_BATCH_SIZE is not set, it should be set in the launcher"
MAX_BATCH_TOTAL_TOKENS = MAX_BATCH_SIZE * request.max_total_tokens
logger.info(f"MAX_BATCH_SIZE: {MAX_BATCH_SIZE}")
logger.info(f"MAX_BATCH_TOTAL_TOKENS: {MAX_BATCH_TOTAL_TOKENS}")
MAX_TOTAL_TOKENS = request.max_total_tokens
batch = self.batch_type.from_pb(
request.batch, self.tokenizer, self.dtype, self.device
)
max_prefill_batch_size = batch.input_ids.shape[0]
try:
# max prefill batch size warmup
_, prefill_batch, _ = self.generate_token([batch])
except Exception:
raise RuntimeError(
f"Not enough memory to handle {len(batch.input_ids)} prefill tokens. "
f"You need to decrease `--max-batch-prefill-tokens`"
)
del prefill_batch
# Warmup prefill batch_size
max_input_tokens = request.max_input_tokens
max_exp = math.ceil(math.log(max_prefill_batch_size, BATCH_SIZE_EXPONENT_BASE))
prefill_batch_size_list = [
BATCH_SIZE_EXPONENT_BASE**exp
for exp in range(
0,
max_exp + 1,
)
]
prefill_seqlen_list = [
seq
for seq in range(
PAD_SEQUENCE_TO_MULTIPLE_OF,
max_input_tokens,
PAD_SEQUENCE_TO_MULTIPLE_OF,
)
]
prefill_seqlen_list.append(max_input_tokens)
prefill_batch_size_list.sort(reverse=True)
prefill_seqlen_list.sort(reverse=True)
try:
for batch_size in prefill_batch_size_list:
for seq_len in prefill_seqlen_list:
batch = self.generate_warmup_batch(request, seq_len - 1, batch_size)
_, prefill_batch, _ = self.generate_token([batch])
except Exception:
prefill_batch_size_list.sort()
prefill_seqlen_list.sort()
raise RuntimeError(
f"Not enough memory to run following prefill batch_size."
f"Prefill batch size list:{prefill_batch_size_list}"
f"Prefill sequence length list:{prefill_seqlen_list}"
f"You need to decrease `--max-batch-prefill-tokens`"
)
prefill_seqlen_list.sort()
prefill_batch_size_list.sort()
mem_stats = get_hpu_memory_stats(self.device)
logger.info(
f"\nFollowing prefill warmup successfully.\n"
f"Prefill batch size list:{prefill_batch_size_list}\n"
f"Prefill sequence length list:{prefill_seqlen_list}\n"
f"Memory stats: {mem_stats} "
)
max_decode_batch_size = math.floor(MAX_BATCH_TOTAL_TOKENS / MAX_TOTAL_TOKENS)
max_exp = math.ceil(math.log(max_decode_batch_size, BATCH_SIZE_EXPONENT_BASE))
decode_batch_size_list = [
BATCH_SIZE_EXPONENT_BASE**exp for exp in range(0, max_exp + 1)
]
decode_batch_size_list.sort(reverse=True)
try:
for batch_size in decode_batch_size_list:
batches = []
iters = math.floor(batch_size / max_prefill_batch_size)
for i in range(iters):
batch = self.generate_warmup_batch(
request, PAD_SEQUENCE_TO_MULTIPLE_OF - 1, max_prefill_batch_size
)
_, prefill_batch, _ = self.generate_token([batch])
batches.append(prefill_batch)
if batch_size % max_prefill_batch_size != 0:
batch = self.generate_warmup_batch(
request,
PAD_SEQUENCE_TO_MULTIPLE_OF - 1,
batch_size % max_prefill_batch_size,
)
_, prefill_batch, _ = self.generate_token([batch])
batches.append(prefill_batch)
_, decode_batch, _ = self.generate_token(batches)
_, decode_batch, _ = self.generate_token([decode_batch])
del decode_batch
batches.clear()
except Exception:
raise RuntimeError(
f"Not enough memory to warmup decode batch_sizes({decode_batch_size_list})."
f"You need to decrease `--max-batch-total-tokens`"
)
decode_batch_size_list.sort()
max_supported_total_tokens = MAX_TOTAL_TOKENS * decode_batch_size_list[-1]
mem_stats = get_hpu_memory_stats(self.device)
logger.info(
f"\nFollowing decode warmup successfully.\n"
f"Decode batch size list:{decode_batch_size_list}\n"
f"Memory stats: {mem_stats} "
)
max_input_tokens = max_input_tokens
max_total_tokens = MAX_TOTAL_TOKENS
return max_supported_total_tokens, max_input_tokens, max_total_tokens