text-generation-inference/backends/client/src/v3/client.rs

293 lines
9.9 KiB
Rust
Raw Normal View History

use crate::v3::{pb, Chunk};
use crate::{ClientError, Result, WARMUP_IMAGE_BASE64};
2022-10-18 13:19:03 +00:00
/// Single shard Client
use base64::engine::general_purpose::STANDARD;
use base64::Engine;
2023-02-13 12:02:45 +00:00
use grpc_metadata::InjectTelemetryContext;
use pb::generate::v3::text_generation_service_client::TextGenerationServiceClient;
use pb::generate::v3::*;
use std::cmp::min;
use std::time::Duration;
2022-10-08 10:30:12 +00:00
use tonic::transport::{Channel, Uri};
2023-02-13 12:02:45 +00:00
use tracing::instrument;
2022-10-08 10:30:12 +00:00
2022-10-18 13:19:03 +00:00
/// Text Generation Inference gRPC client
#[derive(Debug, Clone)]
2022-10-08 10:30:12 +00:00
pub struct Client {
2022-10-17 12:59:00 +00:00
stub: TextGenerationServiceClient<Channel>,
2022-10-08 10:30:12 +00:00
}
impl Client {
2022-10-17 12:59:00 +00:00
/// Returns a client connected to the given url
pub async fn connect(uri: Uri) -> Result<Self> {
let channel = Channel::builder(uri).connect().await?;
2022-10-08 10:30:12 +00:00
2022-10-17 12:59:00 +00:00
Ok(Self {
stub: TextGenerationServiceClient::new(channel),
})
2022-10-08 10:30:12 +00:00
}
2022-10-17 12:59:00 +00:00
/// Returns a client connected to the given unix socket
pub async fn connect_uds(path: String) -> Result<Self> {
let channel = Channel::from_shared("http://[::]:50051".to_string())
2022-10-08 10:30:12 +00:00
.unwrap()
.connect_with_connector(tower::service_fn(move |_: Uri| {
tokio::net::UnixStream::connect(path.clone())
}))
2022-10-17 12:59:00 +00:00
.await?;
2022-10-08 10:30:12 +00:00
2022-10-17 12:59:00 +00:00
Ok(Self {
stub: TextGenerationServiceClient::new(channel),
})
2022-10-08 10:30:12 +00:00
}
2022-10-18 13:19:03 +00:00
/// Returns a list of uris or unix sockets of all shards
2022-10-08 10:30:12 +00:00
#[instrument(skip(self))]
pub async fn service_discovery(&mut self) -> Result<Vec<String>> {
2023-02-13 12:02:45 +00:00
let request = tonic::Request::new(ServiceDiscoveryRequest {}).inject_context();
let response = self.stub.service_discovery(request).await.map_err(|_| {
ClientError::Connection("Server does not support v3 interface".to_string())
})?;
2022-10-08 10:30:12 +00:00
let urls = response
.into_inner()
.urls
.into_iter()
2022-10-18 13:19:03 +00:00
// Remove unix socket prefix
2022-10-08 10:30:12 +00:00
.map(|url| match url.strip_prefix("unix://") {
None => url,
Some(stripped_url) => stripped_url.to_string(),
})
.collect();
Ok(urls)
}
/// Get model info
#[instrument(skip(self))]
pub async fn info(&mut self) -> Result<InfoResponse> {
let request = tonic::Request::new(InfoRequest {}).inject_context();
let response = self.stub.info(request).await?.into_inner();
Ok(response)
}
/// Get model health
#[instrument(skip(self))]
pub async fn health(&mut self) -> Result<HealthResponse> {
let request = tonic::Request::new(HealthRequest {}).inject_context();
let response = self.stub.health(request).await?.into_inner();
Ok(response)
}
2022-10-18 13:19:03 +00:00
/// Clear the past generations cache
2022-10-08 10:30:12 +00:00
#[instrument(skip(self))]
pub async fn clear_cache(&mut self, batch_id: Option<u64>) -> Result<()> {
let request = tonic::Request::new(ClearCacheRequest { id: batch_id }).inject_context();
2023-02-13 12:02:45 +00:00
self.stub.clear_cache(request).await?;
2022-10-08 10:30:12 +00:00
Ok(())
}
/// Filter a cached batch
#[instrument(skip(self))]
pub async fn filter_batch(
&mut self,
batch_id: u64,
request_ids: Vec<u64>,
) -> Result<Option<CachedBatch>> {
let request = tonic::Request::new(FilterBatchRequest {
batch_id,
request_ids,
})
.inject_context();
let filtered_batch = self.stub.filter_batch(request).await?.into_inner();
Ok(filtered_batch.batch)
}
/// Warmup on a max size batch
///
/// Returns the maximum amount of tokens supported by the hardware
#[instrument(skip_all)]
pub async fn warmup(
&mut self,
max_input_length: u32,
max_prefill_tokens: u32,
max_total_tokens: u32,
max_batch_size: Option<usize>,
) -> Result<Option<u32>> {
let mut n_tokens = 0;
let mut requests = Vec::new();
// Create requests
while n_tokens < max_prefill_tokens {
2023-10-23 13:51:12 +00:00
let truncate = min(max_input_length, max_prefill_tokens - n_tokens);
Adding Llava-Next (Llava 1.6) with full support. (#1709) # What does this PR do? - Changed all models to extract `embed_tokens` in order to enable llava to separately call the embeddings and the core model layers. - Added VlmCausalLM to inherit from FlashMistral in order to be maximally supported. The only added logics sits on top and parses images into pixel values, preallocates input_ids space for the image embeddings, and passes them for the model. - Added Clip for the vision tower. - Didn't add flash for the vision tower since there's no padding anyway. - Added heuristic (potentially incomplete) to calculate number of features *before* calculating the clip patches (allows for easier logic reuse of the LLM under the hood). Still needs to be done: - [x] Implement the image parsing in the controller side, to avoid downloading n times per TP shard and also refusing requests too large early and avoid issues where the truncation actually truncates the image. - [ ] Make sure it works with quantization properly. - [x] Make sure it works with TP>1 <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-09 19:32:00 +00:00
let mut input_chunks = Vec::new();
input_chunks
.push(Chunk::Text("_test ".to_string().repeat(max_input_length as usize)).into());
if n_tokens == 0 {
input_chunks.push(
Chunk::Image(Image {
// Safe unwrap, because we control the data.
data: STANDARD.decode(WARMUP_IMAGE_BASE64).unwrap(),
mimetype: "image/jpeg;base64".to_string(),
})
.into(),
);
}
// Send stringly-typed inputs for compatibility for backends that haven't
// been updated to support chunks.
Adding Llava-Next (Llava 1.6) with full support. (#1709) # What does this PR do? - Changed all models to extract `embed_tokens` in order to enable llava to separately call the embeddings and the core model layers. - Added VlmCausalLM to inherit from FlashMistral in order to be maximally supported. The only added logics sits on top and parses images into pixel values, preallocates input_ids space for the image embeddings, and passes them for the model. - Added Clip for the vision tower. - Didn't add flash for the vision tower since there's no padding anyway. - Added heuristic (potentially incomplete) to calculate number of features *before* calculating the clip patches (allows for easier logic reuse of the LLM under the hood). Still needs to be done: - [x] Implement the image parsing in the controller side, to avoid downloading n times per TP shard and also refusing requests too large early and avoid issues where the truncation actually truncates the image. - [ ] Make sure it works with quantization properly. - [x] Make sure it works with TP>1 <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-09 19:32:00 +00:00
let mut inputs = String::new();
inputs.push_str(&"_test ".to_string().repeat(max_input_length as usize));
Idefics2. (#1756) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-23 21:04:44 +00:00
if n_tokens == 0 {
// 1 request is enough to test vision heads.
// Sending images on other queries messes up easily with truncation.
inputs.push_str(&format!(
"![](data:image/jpeg;base64,{WARMUP_IMAGE_BASE64})",
));
Idefics2. (#1756) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-23 21:04:44 +00:00
}
Adding Llava-Next (Llava 1.6) with full support. (#1709) # What does this PR do? - Changed all models to extract `embed_tokens` in order to enable llava to separately call the embeddings and the core model layers. - Added VlmCausalLM to inherit from FlashMistral in order to be maximally supported. The only added logics sits on top and parses images into pixel values, preallocates input_ids space for the image embeddings, and passes them for the model. - Added Clip for the vision tower. - Didn't add flash for the vision tower since there's no padding anyway. - Added heuristic (potentially incomplete) to calculate number of features *before* calculating the clip patches (allows for easier logic reuse of the LLM under the hood). Still needs to be done: - [x] Implement the image parsing in the controller side, to avoid downloading n times per TP shard and also refusing requests too large early and avoid issues where the truncation actually truncates the image. - [ ] Make sure it works with quantization properly. - [x] Make sure it works with TP>1 <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-09 19:32:00 +00:00
requests.push(Request {
id: 0,
inputs,
input_chunks: Some(Input {
chunks: input_chunks,
}),
// We truncate the input on the server side to be sure that it has the correct size
2023-10-23 13:51:12 +00:00
truncate,
Lots of improvements (Still 2 allocators) (#2449) * Making prefix/flashinfer the default and testing the full release tests. * Include flashinfer in the docker. * Using prebuilt. * Allowing window_left_size (dummy version). * Disabling flashinfer/prefix caching on odd head_dim * Disable prefix caching for lora. * More specific codes. * Update lock * Updating integration tests with new values with FI/FD. Remove paged as a default too, and using FD everywhere. * Update cargo lock ? * Upgrade to 1.80 because of bitstream... * Everywhere 1.80 * Forgot last default place. * Apply suggestions from code review Co-authored-by: drbh <david.richard.holtz@gmail.com> * Updated flake lock * Tmp * Upgrade resolution system for less errors in resolution. * Remove lambda for cleaner function. * Handling debugger. * OVerride the env in server tests. * Is this enough to make it work ? * This seems to be working. * Downgrade some logs. * Fixing the default for vlm. * Don't enable prefix caching on VLM just yet. * Change `add_special_tokens` in order to have the correct tokens for chat input and not (since it's super important with the prefixing now) * Fixing prefix caching for flashdecoding. * Update all models. * Fixed flashinfer version. * add_special_tokens is internal only * Fixing seqlen with the new vlms. * Fixing the issue with `add_special_tokens` not being passed around. * Fixing the test. * Removing encoder_decoder (seq2seq). * Update the chat test. * Fixing the batching tokenization in flash causal lm. * Truncating left for radix purposes. * Oops this doesn't belong here. * Put back default pure shell. * Update server tests - Default to throughput test in k6 - Use TGI_WIGGLE_ROOM to adjust wiggle room * Only n_heads / process_group.size() are necessary. * Revert the integrationt tests change (seem linked to head_size modification). * Adding error message when assert is violated. * Fixing the free algorithm to handle times where the common prefix is smaller. * Apply suggestions from code review Co-authored-by: OlivierDehaene <olivier@huggingface.co> * Update server/text_generation_server/layers/attention/common.py Co-authored-by: OlivierDehaene <olivier@huggingface.co> * Fix disabling prefix caching - Fix windowing checks. * Revert the Cohere tokenizer change (for now using a revision instead). * Fmt. --------- Co-authored-by: drbh <david.richard.holtz@gmail.com> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2024-08-29 14:29:01 +00:00
// Most request will have that
add_special_tokens: true,
// Blocks and slots will be set on the server side if we use paged attention
blocks: vec![],
slots: vec![],
cache_len: 0,
chunk_len: None,
// Set sampling parameters to also take these ops into account in the max memory
parameters: Some(NextTokenChooserParameters {
temperature: 0.9,
top_k: 10,
top_p: 0.9,
typical_p: 0.9,
do_sample: false,
seed: 0,
repetition_penalty: 1.2,
frequency_penalty: 0.1,
watermark: true,
grammar: String::new(),
grammar_type: GrammarType::None as i32,
}),
stopping_parameters: Some(StoppingCriteriaParameters {
max_new_tokens: max_total_tokens - truncate,
stop_sequences: vec![],
ignore_eos_token: true,
}),
prefill_logprobs: true,
Rebased #617 (#868) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 09:43:47 +00:00
top_n_tokens: 20,
Enable multiple LoRa adapters (#2010) * feat: first draft load multiple lora * feat: load weights within layer and refactor lora pass * fix: refactor and reduce lora math * feat: baseline impl single request multi lora support * feat: prefer lorax implementation and port loading logic * fix: prefer adapter_data and refactors * feat: perfer loraxs custom punica kernels and add mlp loras * fix: adjust batch for bgmv * fix: adjust adapter_segments logic when in batch * fix: refactor and move changes to v3 proto * fix: pass model_id for all flash causal lms * fix: pass model_id for all causal and seq2seq lms * fix: add model_id to model test * feat: add lora support to mistral and refactors * feat: prefer model id in request * fix: include rust code for adapter id * feat: bump launcher and add new lora docs * feat: support base model generation and refactors * fix: rename doc to retry ci build * feat: support if vlm models * fix: add adapter_data param and avoid missing layers * fix: add adapter_data param to phi and neox * fix: update all models forwards to include adapter_data * fix: add model_id to IdeficsCausalLM * Update lora.md Fixed a typo * Update lora.md Fixing spam image * fix: add lora kernel to dockerfile, support running without kernels and refactors * fix: avoid dockerfile conflict * fix: refactors and adjust flash llama lora logic * fix: skip llama test due to CI issue (temp) * fix: skip llama test CI (temp) 2 * fix: revert skips and prefer updated ci token for tests * fix: refactors and helpful comments * fix: add noop in TensorParallelAdapterRowLinear too * fix: refactor and move shard_lora_weights logic * fix: exit early if no adapter_data --------- Co-authored-by: Derek <datavistics@gmail.com>
2024-06-25 18:46:27 +00:00
adapter_id: None,
});
n_tokens += max_input_length;
// Check max_batch_size
if Some(requests.len()) == max_batch_size {
break;
}
}
let batch = Batch {
id: 0,
size: requests.len() as u32,
requests,
max_tokens: max_input_length,
max_blocks: 0,
};
let request = tonic::Request::new(WarmupRequest {
batch: Some(batch),
max_input_length,
max_prefill_tokens,
max_total_tokens,
})
.inject_context();
let response = self.stub.warmup(request).await?.into_inner();
Ok(response.max_supported_total_tokens)
}
2022-10-18 13:19:03 +00:00
/// Generate one token for each request in the given batch
///
/// Returns Generation for each request in batch
2022-10-18 13:19:03 +00:00
/// and the next cached batch
2023-02-13 12:02:45 +00:00
#[instrument(skip_all, fields(id = &batch.id, size = &batch.size))]
pub async fn prefill(
&mut self,
batch: Batch,
cached_batch: Option<CachedBatch>,
) -> Result<(Vec<Generation>, Option<CachedBatch>, PrefillTimings)> {
let request = tonic::Request::new(PrefillRequest {
batch: Some(batch),
cached_batch,
})
.inject_context();
2023-02-13 12:02:45 +00:00
let response = self.stub.prefill(request).await?.into_inner();
Ok((
response.generations,
response.batch,
PrefillTimings::new(response.forward_ns, response.decode_ns, response.total_ns),
))
2022-10-08 10:30:12 +00:00
}
/// Generate one token for each request in the given cached batches
2022-10-18 13:19:03 +00:00
///
/// Returns Generation for each request in batches
2022-10-18 13:19:03 +00:00
/// and the next cached batch
2023-02-13 12:02:45 +00:00
#[instrument(skip_all, fields(size = batches.iter().map(|batch|{batch.size}).sum::<u32>()))]
pub async fn decode(
2022-10-08 10:30:12 +00:00
&mut self,
batches: Vec<CachedBatch>,
) -> Result<(Vec<Generation>, Option<CachedBatch>, DecodeTimings)> {
2023-02-13 12:02:45 +00:00
let request = tonic::Request::new(DecodeRequest { batches }).inject_context();
let response = self.stub.decode(request).await?.into_inner();
Ok((
response.generations,
response.batch,
DecodeTimings::new(
response.concat_ns,
response.forward_ns,
response.decode_ns,
response.total_ns,
),
))
}
}
pub struct PrefillTimings {
pub forward: Duration,
pub decode: Duration,
pub total: Duration,
}
impl PrefillTimings {
fn new(forward_ns: u64, decode_ns: u64, total_ns: u64) -> Self {
Self {
forward: Duration::from_nanos(forward_ns),
decode: Duration::from_nanos(decode_ns),
total: Duration::from_nanos(total_ns),
}
}
}
pub struct DecodeTimings {
pub concat: Option<Duration>,
pub forward: Duration,
pub decode: Duration,
pub total: Duration,
}
impl DecodeTimings {
fn new(concat_ns: Option<u64>, forward_ns: u64, decode_ns: u64, total_ns: u64) -> Self {
Self {
concat: concat_ns.map(Duration::from_nanos),
forward: Duration::from_nanos(forward_ns),
decode: Duration::from_nanos(decode_ns),
total: Duration::from_nanos(total_ns),
}
}
2022-10-08 10:30:12 +00:00
}