2023-04-03 17:06:42 +00:00
|
|
|
import torch
|
|
|
|
import torch.distributed
|
|
|
|
|
2023-05-09 16:26:19 +00:00
|
|
|
import numpy as np
|
|
|
|
|
2023-04-03 17:06:42 +00:00
|
|
|
from torch.nn import functional as F
|
|
|
|
|
|
|
|
from dataclasses import dataclass
|
|
|
|
from opentelemetry import trace
|
|
|
|
from transformers import AutoTokenizer, PreTrainedTokenizerBase, PreTrainedModel
|
2023-04-20 09:07:40 +00:00
|
|
|
from typing import Optional, Tuple, List, Type, Union, Dict
|
2023-04-03 17:06:42 +00:00
|
|
|
|
|
|
|
from text_generation_server.models import Model
|
|
|
|
from text_generation_server.models.types import (
|
|
|
|
Batch,
|
|
|
|
PrefillTokens,
|
|
|
|
Generation,
|
|
|
|
GeneratedText,
|
|
|
|
)
|
|
|
|
from text_generation_server.pb import generate_pb2
|
|
|
|
from text_generation_server.utils import (
|
|
|
|
NextTokenChooser,
|
|
|
|
StoppingCriteria,
|
|
|
|
Sampling,
|
|
|
|
)
|
|
|
|
|
|
|
|
tracer = trace.get_tracer(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class FlashCausalLMBatch(Batch):
|
|
|
|
batch_id: int
|
|
|
|
requests: List[generate_pb2.Request]
|
2023-04-20 09:07:40 +00:00
|
|
|
# request id -> idx in list mapping
|
|
|
|
requests_idx_mapping: Dict[int, int]
|
2023-04-03 17:06:42 +00:00
|
|
|
|
|
|
|
# Decoder values
|
2023-05-09 16:26:19 +00:00
|
|
|
input_ids: torch.Tensor
|
|
|
|
position_ids: torch.Tensor
|
|
|
|
|
2023-04-03 17:06:42 +00:00
|
|
|
# cumulative sequence lengths
|
2023-05-09 16:26:19 +00:00
|
|
|
cu_seqlens: torch.Tensor
|
|
|
|
# cumulative query sequence lengths, only used in decode
|
|
|
|
cu_seqlens_q: Optional[torch.Tensor]
|
|
|
|
# past key values, only used in decode
|
|
|
|
past_key_values: Optional[torch.Tensor]
|
2023-04-03 17:06:42 +00:00
|
|
|
max_seqlen: int
|
|
|
|
|
|
|
|
# All tokens
|
|
|
|
all_input_ids: List[List[int]]
|
|
|
|
all_input_ids_tensor: List[torch.Tensor]
|
|
|
|
|
|
|
|
# Lengths of all generations present in the batch
|
|
|
|
input_lengths: List[int]
|
2023-04-11 14:38:22 +00:00
|
|
|
offsets: List[Optional[int]]
|
|
|
|
token_offsets: List[Optional[int]]
|
2023-04-03 17:06:42 +00:00
|
|
|
|
|
|
|
# Generation helpers
|
|
|
|
next_token_choosers: List[NextTokenChooser]
|
|
|
|
stopping_criterias: List[StoppingCriteria]
|
|
|
|
|
2023-04-24 15:59:00 +00:00
|
|
|
# Maximum number of tokens this batch will grow to
|
|
|
|
max_tokens: int
|
|
|
|
|
2023-04-03 17:06:42 +00:00
|
|
|
def to_pb(self) -> generate_pb2.Batch:
|
|
|
|
return generate_pb2.Batch(
|
2023-04-24 15:59:00 +00:00
|
|
|
id=self.batch_id,
|
|
|
|
requests=self.requests,
|
|
|
|
size=len(self),
|
|
|
|
max_tokens=self.max_tokens,
|
2023-04-03 17:06:42 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_pb(
|
|
|
|
cls,
|
|
|
|
pb: generate_pb2.Batch,
|
|
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
|
|
device: torch.device,
|
2023-04-20 09:07:40 +00:00
|
|
|
) -> "FlashCausalLMBatch":
|
2023-04-03 17:06:42 +00:00
|
|
|
position_ids = []
|
|
|
|
cu_seqlens = [0]
|
|
|
|
max_seqlen = 0
|
|
|
|
|
|
|
|
input_lengths = []
|
2023-04-11 14:38:22 +00:00
|
|
|
offsets = []
|
|
|
|
token_offsets = []
|
2023-04-03 17:06:42 +00:00
|
|
|
all_input_ids = []
|
2023-04-20 09:07:40 +00:00
|
|
|
requests_idx_mapping = {}
|
2023-04-03 17:06:42 +00:00
|
|
|
|
|
|
|
next_token_choosers = []
|
|
|
|
stopping_criterias = []
|
|
|
|
|
|
|
|
# Cumulative length
|
|
|
|
cumulative_length = 0
|
|
|
|
|
2023-04-24 15:59:00 +00:00
|
|
|
max_tokens = 0
|
|
|
|
|
2023-04-03 17:06:42 +00:00
|
|
|
# Parse batch
|
2023-04-20 09:07:40 +00:00
|
|
|
for i, r in enumerate(pb.requests):
|
|
|
|
# request id -> idx in list mapping
|
|
|
|
requests_idx_mapping[r.id] = i
|
|
|
|
|
2023-04-09 18:22:27 +00:00
|
|
|
tokenized_input = tokenizer(
|
|
|
|
r.inputs, truncation=True, max_length=r.truncate
|
|
|
|
)["input_ids"]
|
2023-04-20 09:07:40 +00:00
|
|
|
|
2023-04-03 17:06:42 +00:00
|
|
|
input_length = len(tokenized_input)
|
|
|
|
max_seqlen = max(max_seqlen, input_length)
|
|
|
|
input_lengths.append(input_length)
|
2023-04-20 09:07:40 +00:00
|
|
|
|
2023-04-11 14:38:22 +00:00
|
|
|
offsets.append(None)
|
|
|
|
token_offsets.append(None)
|
2023-04-03 17:06:42 +00:00
|
|
|
|
2023-05-09 16:26:19 +00:00
|
|
|
all_input_ids.append(tokenized_input)
|
2023-04-03 17:06:42 +00:00
|
|
|
|
|
|
|
# Position ids
|
2023-05-09 16:26:19 +00:00
|
|
|
position_ids.append(np.arange(0, input_length))
|
2023-04-03 17:06:42 +00:00
|
|
|
|
|
|
|
# Add cumulative lengths of all previous inputs
|
|
|
|
cu_seqlens.append(cumulative_length + input_length)
|
|
|
|
|
|
|
|
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
|
2023-04-24 15:59:00 +00:00
|
|
|
|
2023-04-03 17:06:42 +00:00
|
|
|
stopping_criteria = StoppingCriteria.from_pb(
|
|
|
|
r.stopping_parameters, tokenizer
|
|
|
|
)
|
2023-04-24 15:59:00 +00:00
|
|
|
max_new_tokens = stopping_criteria.max_new_tokens
|
2023-04-03 17:06:42 +00:00
|
|
|
stopping_criterias.append(stopping_criteria)
|
2023-04-24 15:59:00 +00:00
|
|
|
|
2023-04-03 17:06:42 +00:00
|
|
|
# Update
|
|
|
|
cumulative_length += input_length
|
2023-04-24 15:59:00 +00:00
|
|
|
max_tokens += input_length + max_new_tokens
|
2023-04-03 17:06:42 +00:00
|
|
|
|
2023-05-09 16:26:19 +00:00
|
|
|
# Create tensors on device
|
|
|
|
input_ids = torch.tensor(
|
|
|
|
np.concatenate(all_input_ids), dtype=torch.int64, device=device
|
|
|
|
)
|
|
|
|
position_ids = torch.tensor(
|
|
|
|
np.concatenate(position_ids), dtype=torch.int32, device=device
|
|
|
|
)
|
|
|
|
cu_seqlens = torch.tensor(cu_seqlens, device=device, dtype=torch.int32)
|
|
|
|
|
2023-04-03 17:06:42 +00:00
|
|
|
return cls(
|
|
|
|
batch_id=pb.id,
|
|
|
|
requests=pb.requests,
|
2023-04-20 09:07:40 +00:00
|
|
|
requests_idx_mapping=requests_idx_mapping,
|
2023-04-03 17:06:42 +00:00
|
|
|
input_ids=input_ids,
|
|
|
|
position_ids=position_ids,
|
|
|
|
cu_seqlens=cu_seqlens,
|
2023-05-09 16:26:19 +00:00
|
|
|
cu_seqlens_q=None,
|
2023-04-03 17:06:42 +00:00
|
|
|
max_seqlen=max_seqlen,
|
|
|
|
past_key_values=None,
|
|
|
|
input_lengths=input_lengths,
|
2023-04-11 14:38:22 +00:00
|
|
|
offsets=offsets,
|
|
|
|
token_offsets=token_offsets,
|
2023-04-03 17:06:42 +00:00
|
|
|
all_input_ids=all_input_ids,
|
2023-05-09 16:26:19 +00:00
|
|
|
all_input_ids_tensor=[],
|
2023-04-03 17:06:42 +00:00
|
|
|
next_token_choosers=next_token_choosers,
|
|
|
|
stopping_criterias=stopping_criterias,
|
2023-04-24 15:59:00 +00:00
|
|
|
max_tokens=max_tokens,
|
2023-04-03 17:06:42 +00:00
|
|
|
)
|
|
|
|
|
2023-04-20 09:07:40 +00:00
|
|
|
@tracer.start_as_current_span("filter")
|
|
|
|
def filter(self, requests: List[generate_pb2.Request]) -> "FlashCausalLMBatch":
|
|
|
|
if len(requests) == 0:
|
|
|
|
raise ValueError("Batch must have at least one request")
|
|
|
|
# We assume that if len(requests) == len(self) then the requests are the same
|
|
|
|
if len(requests) == len(self):
|
|
|
|
return self
|
|
|
|
|
2023-04-21 12:57:18 +00:00
|
|
|
single_request = len(requests) == 1
|
|
|
|
|
2023-04-20 09:07:40 +00:00
|
|
|
# Cumulative length
|
|
|
|
cumulative_length = 0
|
|
|
|
|
|
|
|
# New values after filtering
|
|
|
|
requests_idx_mapping = {}
|
|
|
|
|
2023-05-09 16:26:19 +00:00
|
|
|
input_ids = self.input_ids.new_empty(len(requests))
|
|
|
|
position_ids = self.position_ids.new_empty(len(requests))
|
|
|
|
# Create on CPU to only move to GPU once instead of at every copy
|
|
|
|
cu_seqlens = torch.zeros(len(requests) + 1, dtype=torch.int32)
|
|
|
|
cu_seqlens_q = torch.arange(
|
|
|
|
0, len(requests) + 1, device=self.cu_seqlens_q.device, dtype=torch.int32
|
|
|
|
)
|
2023-04-20 09:07:40 +00:00
|
|
|
max_seqlen = 0
|
|
|
|
past_key_values = []
|
|
|
|
|
|
|
|
all_input_ids = []
|
|
|
|
all_input_ids_tensor = []
|
|
|
|
|
2023-04-03 17:06:42 +00:00
|
|
|
input_lengths = []
|
2023-04-11 14:38:22 +00:00
|
|
|
offsets = []
|
|
|
|
token_offsets = []
|
2023-04-20 09:07:40 +00:00
|
|
|
|
2023-04-03 17:06:42 +00:00
|
|
|
next_token_choosers = []
|
|
|
|
stopping_criterias = []
|
|
|
|
|
2023-04-24 15:59:00 +00:00
|
|
|
max_tokens = 0
|
|
|
|
|
2023-04-20 09:07:40 +00:00
|
|
|
for i, r in enumerate(requests):
|
|
|
|
idx = self.requests_idx_mapping[r.id]
|
|
|
|
requests_idx_mapping[r.id] = i
|
|
|
|
|
|
|
|
# Get length
|
|
|
|
request_input_length = self.input_lengths[idx]
|
|
|
|
|
2023-05-09 16:26:19 +00:00
|
|
|
# Copy tensors (GPU)
|
|
|
|
input_ids[i] = self.input_ids[idx]
|
|
|
|
position_ids[i] = self.position_ids[idx]
|
|
|
|
|
|
|
|
# Copy to tensor (CPU)
|
|
|
|
cu_seqlens[i + 1] = cumulative_length + request_input_length
|
2023-04-20 09:07:40 +00:00
|
|
|
max_seqlen = max(max_seqlen, request_input_length)
|
2023-04-21 18:26:01 +00:00
|
|
|
|
2023-05-09 16:26:19 +00:00
|
|
|
# Slice from past
|
|
|
|
past_key_values.append(
|
|
|
|
self.past_key_values[:, self.cu_seqlens[idx] : self.cu_seqlens[idx + 1]]
|
|
|
|
)
|
2023-04-20 09:07:40 +00:00
|
|
|
|
|
|
|
all_input_ids.append(self.all_input_ids[idx])
|
|
|
|
all_input_ids_tensor.append(self.all_input_ids_tensor[idx])
|
|
|
|
|
|
|
|
input_lengths.append(request_input_length)
|
|
|
|
offsets.append(self.offsets[idx])
|
|
|
|
token_offsets.append(self.token_offsets[idx])
|
|
|
|
|
|
|
|
next_token_choosers.append(self.next_token_choosers[idx])
|
2023-04-24 15:59:00 +00:00
|
|
|
|
|
|
|
stopping_criteria = self.stopping_criterias[idx]
|
|
|
|
stopping_criterias.append(stopping_criteria)
|
2023-04-20 09:07:40 +00:00
|
|
|
|
|
|
|
cumulative_length += request_input_length
|
2023-04-24 15:59:00 +00:00
|
|
|
max_tokens += request_input_length + (
|
|
|
|
stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
|
|
|
|
)
|
2023-04-20 09:07:40 +00:00
|
|
|
|
2023-04-21 12:57:18 +00:00
|
|
|
if single_request:
|
|
|
|
# Preallocate tensor for bs = 1 case
|
2023-05-09 16:26:19 +00:00
|
|
|
past_key_values = F.pad(
|
2023-04-21 18:26:01 +00:00
|
|
|
past_key_values[0],
|
2023-04-21 13:59:18 +00:00
|
|
|
(
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
stopping_criterias[0].max_new_tokens
|
|
|
|
- stopping_criterias[0].current_tokens,
|
|
|
|
),
|
2023-04-21 12:57:18 +00:00
|
|
|
)
|
2023-05-09 16:26:19 +00:00
|
|
|
else:
|
|
|
|
# Cat all past
|
|
|
|
past_key_values = torch.cat(past_key_values, dim=1)
|
|
|
|
|
|
|
|
# Move to GPU now that we have the whole tensor
|
|
|
|
cu_seqlens = cu_seqlens.to(self.cu_seqlens.device)
|
2023-04-21 12:57:18 +00:00
|
|
|
|
2023-04-20 09:07:40 +00:00
|
|
|
return FlashCausalLMBatch(
|
|
|
|
batch_id=self.batch_id,
|
|
|
|
requests=requests,
|
|
|
|
requests_idx_mapping=requests_idx_mapping,
|
|
|
|
input_ids=input_ids,
|
|
|
|
position_ids=position_ids,
|
|
|
|
cu_seqlens=cu_seqlens,
|
2023-05-09 16:26:19 +00:00
|
|
|
cu_seqlens_q=cu_seqlens_q,
|
2023-04-20 09:07:40 +00:00
|
|
|
max_seqlen=max_seqlen,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
input_lengths=input_lengths,
|
|
|
|
offsets=offsets,
|
|
|
|
token_offsets=token_offsets,
|
|
|
|
all_input_ids=all_input_ids,
|
|
|
|
all_input_ids_tensor=all_input_ids_tensor,
|
|
|
|
next_token_choosers=next_token_choosers,
|
|
|
|
stopping_criterias=stopping_criterias,
|
2023-04-24 15:59:00 +00:00
|
|
|
max_tokens=max_tokens,
|
2023-04-20 09:07:40 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
@tracer.start_as_current_span("concatenate")
|
|
|
|
def concatenate(cls, batches: List["FlashCausalLMBatch"]) -> "FlashCausalLMBatch":
|
|
|
|
# Batch attributes
|
|
|
|
requests = []
|
|
|
|
requests_idx_mapping = {}
|
|
|
|
|
2023-05-09 16:26:19 +00:00
|
|
|
total_batch_size = sum([len(b) for b in batches])
|
|
|
|
|
|
|
|
device = batches[0].input_ids.device
|
|
|
|
|
|
|
|
input_ids = batches[0].input_ids.new_empty(total_batch_size)
|
|
|
|
position_ids = batches[0].position_ids.new_empty(total_batch_size)
|
2023-04-20 09:07:40 +00:00
|
|
|
cu_seqlens = [0]
|
2023-05-09 16:26:19 +00:00
|
|
|
cu_seqlens_q = torch.arange(
|
|
|
|
0, total_batch_size + 1, device=device, dtype=torch.int32
|
|
|
|
)
|
2023-04-03 17:06:42 +00:00
|
|
|
max_seqlen = 0
|
|
|
|
past_key_values = []
|
|
|
|
|
2023-04-20 09:07:40 +00:00
|
|
|
all_input_ids = []
|
|
|
|
all_input_ids_tensor = []
|
|
|
|
|
|
|
|
input_lengths = []
|
|
|
|
offsets = []
|
|
|
|
token_offsets = []
|
|
|
|
|
|
|
|
next_token_choosers = []
|
|
|
|
stopping_criterias = []
|
|
|
|
|
2023-04-03 17:06:42 +00:00
|
|
|
# Cumulative length
|
2023-04-20 09:07:40 +00:00
|
|
|
cumulative_batch_size = 0
|
|
|
|
cumulative_length = 0
|
2023-04-24 15:59:00 +00:00
|
|
|
max_tokens = 0
|
2023-04-03 17:06:42 +00:00
|
|
|
|
|
|
|
for i, batch in enumerate(batches):
|
|
|
|
requests.extend(batch.requests)
|
2023-04-20 09:07:40 +00:00
|
|
|
|
|
|
|
if i == 0:
|
|
|
|
requests_idx_mapping = batch.requests_idx_mapping
|
|
|
|
else:
|
|
|
|
# We need to offset the mapping for each batch by the cumulative batch size
|
|
|
|
for k, v in batch.requests_idx_mapping.items():
|
|
|
|
requests_idx_mapping[k] = v + cumulative_batch_size
|
|
|
|
|
2023-05-09 16:26:19 +00:00
|
|
|
start_index = cumulative_batch_size
|
|
|
|
end_index = cumulative_batch_size + len(batch)
|
|
|
|
|
|
|
|
# Copy tensors (GPU)
|
|
|
|
input_ids[start_index:end_index] = batch.input_ids
|
|
|
|
position_ids[start_index:end_index] = batch.position_ids
|
|
|
|
|
2023-04-20 09:07:40 +00:00
|
|
|
# Add cumulative lengths of all previous inputs
|
|
|
|
cu_seqlens.extend([l + cumulative_length for l in batch.cu_seqlens[1:]])
|
|
|
|
max_seqlen = max(max_seqlen, batch.max_seqlen)
|
2023-04-21 13:59:18 +00:00
|
|
|
|
2023-04-21 12:57:18 +00:00
|
|
|
if len(batch) != 1:
|
2023-05-09 16:26:19 +00:00
|
|
|
past_key_values.append(batch.past_key_values)
|
2023-04-21 12:57:18 +00:00
|
|
|
else:
|
2023-04-21 13:59:18 +00:00
|
|
|
# past was pre-allocated for this batch
|
|
|
|
# We need to slice to remove the padding
|
|
|
|
past_key_values.append(
|
|
|
|
batch.past_key_values[:, : batch.input_lengths[0]]
|
|
|
|
)
|
2023-04-20 09:07:40 +00:00
|
|
|
|
|
|
|
all_input_ids.extend(batch.all_input_ids)
|
|
|
|
all_input_ids_tensor.extend(batch.all_input_ids_tensor)
|
|
|
|
|
2023-04-03 17:06:42 +00:00
|
|
|
input_lengths.extend(batch.input_lengths)
|
2023-04-11 14:38:22 +00:00
|
|
|
offsets.extend(batch.offsets)
|
|
|
|
token_offsets.extend(batch.token_offsets)
|
2023-04-20 09:07:40 +00:00
|
|
|
|
2023-04-03 17:06:42 +00:00
|
|
|
next_token_choosers.extend(batch.next_token_choosers)
|
|
|
|
stopping_criterias.extend(batch.stopping_criterias)
|
|
|
|
|
|
|
|
# Update
|
|
|
|
cumulative_length += batch.cu_seqlens[-1]
|
2023-04-20 09:07:40 +00:00
|
|
|
cumulative_batch_size += len(batch)
|
2023-04-24 15:59:00 +00:00
|
|
|
max_tokens += batch.max_tokens
|
2023-04-03 17:06:42 +00:00
|
|
|
|
2023-05-09 16:26:19 +00:00
|
|
|
# Cat past
|
|
|
|
past_key_values = torch.cat(past_key_values, dim=1)
|
|
|
|
# Create final tensor on GPU
|
|
|
|
cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32, device=device)
|
|
|
|
|
2023-04-03 17:06:42 +00:00
|
|
|
return FlashCausalLMBatch(
|
|
|
|
batch_id=batches[0].batch_id,
|
|
|
|
requests=requests,
|
2023-04-20 09:07:40 +00:00
|
|
|
requests_idx_mapping=requests_idx_mapping,
|
2023-04-03 17:06:42 +00:00
|
|
|
input_ids=input_ids,
|
|
|
|
position_ids=position_ids,
|
|
|
|
cu_seqlens=cu_seqlens,
|
2023-05-09 16:26:19 +00:00
|
|
|
cu_seqlens_q=cu_seqlens_q,
|
2023-04-03 17:06:42 +00:00
|
|
|
max_seqlen=max_seqlen,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
input_lengths=input_lengths,
|
2023-04-11 14:38:22 +00:00
|
|
|
offsets=offsets,
|
|
|
|
token_offsets=token_offsets,
|
2023-04-03 17:06:42 +00:00
|
|
|
all_input_ids=all_input_ids,
|
|
|
|
all_input_ids_tensor=all_input_ids_tensor,
|
|
|
|
next_token_choosers=next_token_choosers,
|
|
|
|
stopping_criterias=stopping_criterias,
|
2023-04-24 15:59:00 +00:00
|
|
|
max_tokens=max_tokens,
|
2023-04-03 17:06:42 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.requests)
|
|
|
|
|
|
|
|
|
|
|
|
class FlashCausalLM(Model):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
model_cls: Type[PreTrainedModel],
|
|
|
|
model_id: str,
|
|
|
|
revision: Optional[str] = None,
|
2023-04-12 10:03:10 +00:00
|
|
|
quantize: bool = False,
|
|
|
|
decode_buffer: int = 3,
|
2023-04-03 17:06:42 +00:00
|
|
|
):
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
device = torch.device("cuda")
|
2023-05-09 16:26:19 +00:00
|
|
|
dtype = torch.float16
|
2023-04-03 17:06:42 +00:00
|
|
|
else:
|
|
|
|
raise NotImplementedError("FlashCausalLM is only available on GPU")
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
2023-04-09 18:22:27 +00:00
|
|
|
model_id, revision=revision, padding_side="left", truncation_side="left"
|
2023-04-03 17:06:42 +00:00
|
|
|
)
|
|
|
|
self.model = (
|
|
|
|
model_cls.from_pretrained(
|
|
|
|
model_id,
|
|
|
|
revision=revision,
|
|
|
|
torch_dtype=dtype,
|
2023-04-19 10:51:11 +00:00
|
|
|
load_in_8bit=quantize,
|
2023-04-03 17:06:42 +00:00
|
|
|
)
|
|
|
|
.eval()
|
2023-04-19 10:51:11 +00:00
|
|
|
.to(device)
|
2023-04-03 17:06:42 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
super(FlashCausalLM, self).__init__(
|
2023-04-21 13:36:29 +00:00
|
|
|
tokenizer=tokenizer,
|
|
|
|
requires_padding=False,
|
|
|
|
dtype=dtype,
|
|
|
|
device=device,
|
|
|
|
decode_buffer=decode_buffer,
|
2023-04-03 17:06:42 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def batch_type(self) -> Type[FlashCausalLMBatch]:
|
|
|
|
return FlashCausalLMBatch
|
|
|
|
|
|
|
|
def decode(self, generated_ids: Union[torch.Tensor, List[int]]) -> str:
|
|
|
|
return self.tokenizer.decode(
|
2023-05-03 08:10:34 +00:00
|
|
|
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
2023-04-03 17:06:42 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids: torch.Tensor,
|
|
|
|
position_ids: torch.Tensor,
|
|
|
|
cu_seqlens: torch.Tensor,
|
2023-05-09 16:26:19 +00:00
|
|
|
cu_seqlens_q: Optional[torch.Tensor],
|
2023-04-03 17:06:42 +00:00
|
|
|
max_s: int,
|
|
|
|
past_key_values: Optional = None,
|
2023-04-21 13:59:18 +00:00
|
|
|
pre_allocate_past_size: Optional[int] = None,
|
2023-04-03 17:06:42 +00:00
|
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
|
# Model Forward
|
|
|
|
return self.model.forward(
|
|
|
|
input_ids=input_ids,
|
|
|
|
position_ids=position_ids,
|
|
|
|
cu_seqlens=cu_seqlens,
|
2023-05-09 16:26:19 +00:00
|
|
|
cu_seqlens_q=cu_seqlens_q,
|
2023-04-03 17:06:42 +00:00
|
|
|
max_s=max_s,
|
|
|
|
past_key_values=past_key_values,
|
2023-04-21 13:59:18 +00:00
|
|
|
pre_allocate_past_size=pre_allocate_past_size,
|
2023-04-03 17:06:42 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
@tracer.start_as_current_span("generate_token")
|
|
|
|
def generate_token(
|
|
|
|
self, batch: FlashCausalLMBatch
|
|
|
|
) -> Tuple[List[Generation], Optional[FlashCausalLMBatch]]:
|
2023-05-09 16:26:19 +00:00
|
|
|
prefill = batch.past_key_values is None
|
2023-04-20 09:07:40 +00:00
|
|
|
|
2023-05-09 16:26:19 +00:00
|
|
|
if prefill and len(batch) == 1:
|
2023-04-21 13:59:18 +00:00
|
|
|
# Ask to pre-allocate kv to its max size
|
|
|
|
# == number of tokens + max_new_tokens
|
|
|
|
pre_allocate_past_size = (
|
|
|
|
batch.input_lengths[0] + batch.stopping_criterias[0].max_new_tokens
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
pre_allocate_past_size = None
|
|
|
|
|
2023-04-03 17:06:42 +00:00
|
|
|
out, present = self.forward(
|
2023-05-09 16:26:19 +00:00
|
|
|
batch.input_ids,
|
|
|
|
batch.position_ids,
|
|
|
|
batch.cu_seqlens,
|
|
|
|
batch.cu_seqlens_q,
|
2023-04-03 17:06:42 +00:00
|
|
|
batch.max_seqlen,
|
2023-05-09 16:26:19 +00:00
|
|
|
batch.past_key_values,
|
2023-04-21 13:59:18 +00:00
|
|
|
pre_allocate_past_size,
|
2023-04-03 17:06:42 +00:00
|
|
|
)
|
|
|
|
|
2023-05-09 16:26:19 +00:00
|
|
|
if prefill:
|
|
|
|
if len(batch) > 1:
|
|
|
|
# We create the prefill_tokens_indices tensor that will be used to gather prefill logprobs
|
|
|
|
# When batch == 1, we will just use the batch.input_ids values directly
|
|
|
|
prefill_tokens_indices = batch.input_ids.new_zeros(len(batch.input_ids))
|
|
|
|
|
|
|
|
# Create batch.cu_seqlens_q for decode
|
|
|
|
batch.cu_seqlens_q = torch.arange(
|
|
|
|
0, len(batch) + 1, device=self.device, dtype=torch.int32
|
|
|
|
)
|
|
|
|
next_input_ids = batch.input_ids.new_empty(len(batch))
|
|
|
|
next_position_ids = batch.position_ids.new_empty(len(batch))
|
|
|
|
else:
|
|
|
|
prefill_logprobs = None
|
|
|
|
next_input_ids = batch.input_ids
|
|
|
|
next_position_ids = batch.position_ids
|
|
|
|
|
|
|
|
next_token_logprobs = out.new_empty(len(batch))
|
|
|
|
|
|
|
|
# Prepare past for next decode
|
|
|
|
if len(batch) > 1:
|
|
|
|
# Used to slice next batch past
|
|
|
|
past_indices = torch.empty(
|
|
|
|
present.shape[1], dtype=torch.int64, device=self.device
|
|
|
|
)
|
|
|
|
batch.past_key_values = present.new_empty(
|
|
|
|
(
|
|
|
|
present.shape[0],
|
|
|
|
present.shape[1] + len(batch.requests),
|
|
|
|
*present.shape[2:],
|
2023-04-21 13:59:18 +00:00
|
|
|
)
|
2023-05-09 16:26:19 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
# It is actually faster to do a whole other for loop here as the copy from present to past is fairly slow
|
|
|
|
# and will run asynchronously while we do the next for loop
|
|
|
|
cumulative_length = 0
|
|
|
|
for i, input_length in enumerate(batch.input_lengths):
|
|
|
|
# Indexing metadata
|
|
|
|
start_index = cumulative_length
|
|
|
|
end_index = cumulative_length + input_length
|
|
|
|
|
|
|
|
# Indices to copy present at the correct place in past_key_values
|
|
|
|
torch.arange(
|
|
|
|
start_index + i,
|
|
|
|
end_index + i,
|
|
|
|
dtype=torch.int64,
|
|
|
|
device=self.device,
|
|
|
|
out=past_indices[start_index:end_index],
|
|
|
|
)
|
|
|
|
cumulative_length += input_length
|
|
|
|
|
|
|
|
# Copy from present to past_key_values
|
|
|
|
batch.past_key_values[:, past_indices] = present
|
|
|
|
|
|
|
|
# Initialize past_key_values in prefill for len(batch) == 1
|
|
|
|
elif prefill:
|
|
|
|
# present is already pre-padded
|
|
|
|
batch.past_key_values = present
|
2023-04-03 17:06:42 +00:00
|
|
|
|
|
|
|
# Cumulative length
|
|
|
|
cumulative_length = 0
|
|
|
|
|
|
|
|
# Results
|
|
|
|
generations: List[Generation] = []
|
2023-04-20 09:07:40 +00:00
|
|
|
stopped = True
|
2023-04-03 17:06:42 +00:00
|
|
|
|
|
|
|
# Zipped iterator
|
|
|
|
iterator = zip(
|
|
|
|
batch.input_lengths,
|
|
|
|
batch.next_token_choosers,
|
|
|
|
batch.stopping_criterias,
|
|
|
|
batch.all_input_ids,
|
|
|
|
)
|
|
|
|
|
2023-05-09 16:26:19 +00:00
|
|
|
# We do two for loops as the first one can run completely asynchronously from the GPU while for the second
|
|
|
|
# one, we need to first do a GPU <-> CPU sync
|
|
|
|
# It is faster if we delay this sync for the maximum amount of time
|
|
|
|
|
2023-04-03 17:06:42 +00:00
|
|
|
# For each member of the batch
|
|
|
|
for i, (
|
|
|
|
input_length,
|
|
|
|
next_token_chooser,
|
|
|
|
stopping_criteria,
|
|
|
|
all_input_ids,
|
|
|
|
) in enumerate(iterator):
|
|
|
|
# Indexing metadata
|
|
|
|
start_index = cumulative_length
|
|
|
|
end_index = cumulative_length + input_length
|
|
|
|
|
2023-04-20 09:07:40 +00:00
|
|
|
if prefill:
|
2023-04-03 17:06:42 +00:00
|
|
|
# Prefill mode
|
|
|
|
# out is of shape [cumulative_sequence_lengths, vocab_size]
|
2023-05-09 16:26:19 +00:00
|
|
|
# only take last token logit
|
|
|
|
logits = out[end_index - 1 : end_index]
|
|
|
|
|
|
|
|
# Create all_input_ids_tensor that will be used by token warpers (for example, RepetitionPenalty)
|
|
|
|
all_input_ids_tensor = batch.input_ids.new_empty(
|
|
|
|
input_length + stopping_criteria.max_new_tokens
|
|
|
|
)
|
|
|
|
# Copy from batch.input_ids to all_input_ids_tensor
|
|
|
|
all_input_ids_tensor[:input_length] = batch.input_ids[
|
|
|
|
start_index:end_index
|
|
|
|
]
|
|
|
|
batch.all_input_ids_tensor.append(all_input_ids_tensor)
|
|
|
|
|
|
|
|
# Initialize position_ids
|
|
|
|
# In decode, we do not need this as we can just increment position ids
|
|
|
|
next_position_ids[i] = batch.position_ids[end_index - 1]
|
|
|
|
|
|
|
|
# Used to gather prefill logprobs
|
|
|
|
# Copy batch.input_ids to prefill_token_indices
|
|
|
|
if len(batch) > 1:
|
|
|
|
prefill_tokens_indices[
|
|
|
|
start_index : end_index - 1
|
|
|
|
] = batch.input_ids[start_index + 1 : end_index]
|
|
|
|
else:
|
|
|
|
# Set prefill_tokens_indices to the correct slice
|
|
|
|
prefill_tokens_indices = batch.input_ids[
|
|
|
|
start_index + 1 : end_index
|
|
|
|
]
|
2023-04-03 17:06:42 +00:00
|
|
|
else:
|
|
|
|
# Decode mode
|
|
|
|
# out is of shape [batch_size, vocab_size]
|
2023-05-09 16:26:19 +00:00
|
|
|
logits = out[i].view(1, -1)
|
|
|
|
|
|
|
|
all_input_ids_tensor = batch.all_input_ids_tensor[i]
|
2023-04-03 17:06:42 +00:00
|
|
|
|
|
|
|
# Select next token
|
2023-05-09 16:26:19 +00:00
|
|
|
next_token_id, logprob = next_token_chooser(
|
2023-04-03 17:06:42 +00:00
|
|
|
all_input_ids_tensor[None, :input_length], logits
|
|
|
|
)
|
2023-05-09 16:26:19 +00:00
|
|
|
|
|
|
|
# Add to all_input_ids_tensor
|
|
|
|
next_token_id_squeezed = next_token_id.view(1)
|
|
|
|
all_input_ids_tensor[input_length] = next_token_id_squeezed
|
|
|
|
|
|
|
|
# Set values
|
|
|
|
next_input_ids[i] = next_token_id_squeezed
|
|
|
|
next_token_logprobs[i] = logprob[-1, next_token_id].view(1)
|
|
|
|
|
|
|
|
cumulative_length += input_length
|
|
|
|
|
|
|
|
# Set values in batch
|
|
|
|
batch.input_ids = next_input_ids
|
|
|
|
batch.position_ids = next_position_ids + 1
|
|
|
|
batch.cu_seqlens = batch.cu_seqlens + batch.cu_seqlens_q
|
|
|
|
|
|
|
|
if prefill:
|
|
|
|
# Get prefill logprobs
|
|
|
|
prefill_logprobs_tensor = torch.log_softmax(out, -1)
|
|
|
|
prefill_logprobs = torch.gather(
|
|
|
|
prefill_logprobs_tensor, 1, prefill_tokens_indices.view(-1, 1)
|
|
|
|
)
|
|
|
|
# GPU <-> CPU sync
|
|
|
|
prefill_logprobs = prefill_logprobs.view(-1).tolist()
|
|
|
|
|
|
|
|
# GPU <-> CPU sync
|
|
|
|
next_token_logprobs = next_token_logprobs.tolist()
|
|
|
|
next_token_ids = batch.input_ids.tolist()
|
|
|
|
|
|
|
|
cumulative_length = 0
|
|
|
|
|
|
|
|
# Zipped iterator
|
|
|
|
iterator = zip(
|
|
|
|
batch.requests,
|
|
|
|
batch.input_lengths,
|
|
|
|
batch.offsets,
|
|
|
|
batch.token_offsets,
|
|
|
|
batch.next_token_choosers,
|
|
|
|
batch.stopping_criterias,
|
|
|
|
batch.all_input_ids,
|
|
|
|
batch.all_input_ids_tensor,
|
|
|
|
next_token_ids,
|
|
|
|
next_token_logprobs,
|
|
|
|
)
|
|
|
|
|
|
|
|
# For each member of the batch
|
|
|
|
for i, (
|
|
|
|
request,
|
|
|
|
input_length,
|
|
|
|
offset,
|
|
|
|
token_offset,
|
|
|
|
next_token_chooser,
|
|
|
|
stopping_criteria,
|
|
|
|
all_input_ids,
|
|
|
|
all_input_ids_tensor,
|
|
|
|
next_token_id,
|
|
|
|
next_token_logprob,
|
|
|
|
) in enumerate(iterator):
|
|
|
|
start_index = cumulative_length
|
|
|
|
end_index = cumulative_length + input_length
|
2023-04-03 17:06:42 +00:00
|
|
|
|
|
|
|
# Append next token to all tokens
|
2023-05-09 16:26:19 +00:00
|
|
|
all_input_ids.append(next_token_id)
|
2023-04-03 17:06:42 +00:00
|
|
|
|
|
|
|
# Generated token
|
2023-04-11 14:38:22 +00:00
|
|
|
next_token_text, offset, token_offset = self.decode_token(
|
|
|
|
all_input_ids,
|
|
|
|
offset,
|
|
|
|
token_offset,
|
2023-04-03 17:06:42 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
# Evaluate stopping criteria
|
|
|
|
stop, reason = stopping_criteria(
|
2023-05-09 16:26:19 +00:00
|
|
|
next_token_id,
|
2023-04-03 17:06:42 +00:00
|
|
|
next_token_text,
|
|
|
|
)
|
|
|
|
|
2023-05-10 13:48:21 +00:00
|
|
|
if not stop:
|
2023-04-20 09:07:40 +00:00
|
|
|
stopped = False
|
2023-04-03 17:06:42 +00:00
|
|
|
|
2023-05-10 13:48:21 +00:00
|
|
|
# Shard generations
|
|
|
|
# All generations will be appended in the rust sharded client
|
|
|
|
if i % self.world_size == self.rank:
|
|
|
|
if stop:
|
|
|
|
# Decode generated tokens
|
|
|
|
output_text = self.decode(
|
|
|
|
all_input_ids[-stopping_criteria.current_tokens :]
|
|
|
|
)
|
|
|
|
# Get seed
|
|
|
|
if isinstance(next_token_chooser.choice, Sampling):
|
|
|
|
seed = next_token_chooser.choice.seed
|
|
|
|
else:
|
|
|
|
seed = None
|
|
|
|
|
|
|
|
generated_text = GeneratedText(
|
|
|
|
output_text, stopping_criteria.current_tokens, reason, seed
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
generated_text = None
|
|
|
|
|
|
|
|
# Prefill
|
|
|
|
if prefill:
|
|
|
|
# Remove generated token to only have prefill and add nan for first prompt token
|
|
|
|
request_prefill_logprobs = [float("nan")] + prefill_logprobs[
|
|
|
|
start_index : end_index - 1
|
|
|
|
]
|
|
|
|
prefill_token_ids = all_input_ids[:-1]
|
|
|
|
prefill_texts = self.tokenizer.batch_decode(
|
|
|
|
prefill_token_ids,
|
|
|
|
clean_up_tokenization_spaces=False,
|
|
|
|
skip_special_tokens=False,
|
|
|
|
)
|
|
|
|
prefill_tokens = PrefillTokens(
|
|
|
|
prefill_token_ids, request_prefill_logprobs, prefill_texts
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
prefill_tokens = None
|
|
|
|
|
|
|
|
generation = Generation(
|
|
|
|
request.id,
|
|
|
|
prefill_tokens,
|
|
|
|
next_token_id,
|
|
|
|
next_token_logprob,
|
|
|
|
next_token_text,
|
|
|
|
next_token_id in self.all_special_ids,
|
|
|
|
generated_text,
|
2023-04-03 17:06:42 +00:00
|
|
|
)
|
|
|
|
|
2023-05-10 13:48:21 +00:00
|
|
|
generations.append(generation)
|
2023-04-03 17:06:42 +00:00
|
|
|
|
2023-04-21 12:57:18 +00:00
|
|
|
new_input_length = input_length + 1
|
2023-04-03 17:06:42 +00:00
|
|
|
|
2023-04-20 09:07:40 +00:00
|
|
|
# Update values
|
|
|
|
batch.input_lengths[i] = new_input_length
|
|
|
|
batch.offsets[i] = offset
|
|
|
|
batch.token_offsets[i] = token_offset
|
|
|
|
batch.all_input_ids[i] = all_input_ids
|
2023-05-09 16:26:19 +00:00
|
|
|
batch.max_seqlen = batch.max_seqlen + 1
|
|
|
|
cumulative_length += input_length
|
2023-04-20 09:07:40 +00:00
|
|
|
|
|
|
|
# No need to return a batch if we know that all requests stopped
|
|
|
|
return generations, batch if not stopped else None
|