text-generation-inference/backends/neuron/server/text_generation_server/server.py

90 lines
3.1 KiB
Python
Raw Normal View History

2025-02-11 09:53:16 +00:00
import asyncio
from pathlib import Path
from typing import List
from grpc import aio
from grpc_reflection.v1alpha import reflection
from loguru import logger
from .generator import Generator, NeuronGenerator
from .interceptor import ExceptionInterceptor
from .pb import generate_pb2, generate_pb2_grpc
class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
def __init__(self, generator: Generator, server_urls: List[str]):
self.generator = generator
self.server_urls = server_urls
async def Info(self, request, context):
return self.generator.info
async def Health(self, request, context):
return generate_pb2.HealthResponse()
async def ServiceDiscovery(self, request, context):
return generate_pb2.ServiceDiscoveryResponse(urls=self.server_urls)
async def ClearCache(self, request, context):
if request.HasField("id"):
self.generator.clear(request.id)
else:
self.generator.clear()
return generate_pb2.ClearCacheResponse()
async def FilterBatch(self, request, context):
filtered_batch = self.generator.filter(request.batch_id, request.request_ids)
return generate_pb2.FilterBatchResponse(batch=filtered_batch)
async def Warmup(self, request, context):
max_tokens = self.generator.warmup(request.batch)
return generate_pb2.WarmupResponse(max_supported_total_tokens=max_tokens)
async def Prefill(self, request, context):
generations, batch = self.generator.prefill(request.batch)
return generate_pb2.PrefillResponse(generations=generations, batch=batch)
async def Decode(self, request, context):
generations, batch = self.generator.decode(request.batches)
return generate_pb2.DecodeResponse(generations=generations, batch=batch)
def serve(
model_id: str,
revision: str,
uds_path: Path,
):
async def serve_inner(model_id: str, revision: str):
unix_socket_template = "unix://{}-{}"
local_url = unix_socket_template.format(uds_path, 0)
server_urls = [local_url]
try:
generator = NeuronGenerator.from_pretrained(model_id, revision)
except Exception:
logger.exception("Error when initializing model")
raise
server = aio.server(interceptors=[ExceptionInterceptor()])
generate_pb2_grpc.add_TextGenerationServiceServicer_to_server(
TextGenerationService(generator, server_urls), server
)
SERVICE_NAMES = (
generate_pb2.DESCRIPTOR.services_by_name["TextGenerationService"].full_name,
reflection.SERVICE_NAME,
)
reflection.enable_server_reflection(SERVICE_NAMES, server)
server.add_insecure_port(local_url)
await server.start()
logger.info("Server started at {}".format(local_url))
try:
await server.wait_for_termination()
except KeyboardInterrupt:
logger.info("Signal received. Shutting down")
await server.stop(0)
asyncio.run(serve_inner(model_id, revision))