2023-06-08 12:51:52 +00:00
|
|
|
# coding=utf-8
|
|
|
|
# Copyright 2022 HuggingFace Inc. team and BigScience workshop.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
"""PyTorch BLOOM model."""
|
|
|
|
|
|
|
|
import math
|
|
|
|
import os
|
|
|
|
import warnings
|
|
|
|
from typing import Optional, Tuple, Union
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.distributed
|
|
|
|
import torch.utils.checkpoint
|
|
|
|
from torch import nn
|
|
|
|
from torch.nn import LayerNorm
|
|
|
|
from torch.nn import functional as F
|
|
|
|
|
|
|
|
from transformers.modeling_outputs import (
|
|
|
|
BaseModelOutputWithPastAndCrossAttentions,
|
|
|
|
CausalLMOutputWithCrossAttentions,
|
|
|
|
)
|
|
|
|
from transformers import BloomConfig, PreTrainedModel
|
|
|
|
|
2024-05-13 10:44:30 +00:00
|
|
|
from text_generation_server.layers import (
|
2023-06-08 12:51:52 +00:00
|
|
|
TensorParallelColumnLinear,
|
|
|
|
TensorParallelEmbedding,
|
|
|
|
TensorParallelRowLinear,
|
2024-02-26 18:49:28 +00:00
|
|
|
SpeculativeHead,
|
2023-06-08 12:51:52 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
CUSTOM_KERNELS_ENABLED = False
|
2023-09-27 10:22:09 +00:00
|
|
|
if (
|
|
|
|
torch.cuda.is_available()
|
|
|
|
and not os.environ.get("DISABLE_CUSTOM_KERNELS", "False") == "True"
|
|
|
|
):
|
2023-06-08 12:51:52 +00:00
|
|
|
try:
|
|
|
|
from custom_kernels import fused_bloom_attention_cuda
|
|
|
|
|
|
|
|
CUSTOM_KERNELS_ENABLED = True
|
|
|
|
except ImportError:
|
|
|
|
pass
|
|
|
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "bigscience/bloom-560m"
|
|
|
|
_CONFIG_FOR_DOC = "BloomConfig"
|
|
|
|
|
|
|
|
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
|
|
|
"bigscience/bigscience-small-testing",
|
|
|
|
"bigscience/bloom-560m",
|
|
|
|
"bigscience/bloom-1b1",
|
|
|
|
"bigscience/bloom-1b7",
|
|
|
|
"bigscience/bloom-3b",
|
|
|
|
"bigscience/bloom-7b1",
|
|
|
|
"bigscience/bloom",
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
def _make_causal_mask(
|
|
|
|
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
|
|
|
|
) -> torch.BoolTensor:
|
|
|
|
"""
|
|
|
|
Make causal mask used for self-attention.
|
|
|
|
"""
|
|
|
|
batch_size, target_length = input_ids_shape
|
|
|
|
mask = torch.ones(
|
|
|
|
(target_length, target_length + past_key_values_length),
|
|
|
|
dtype=torch.bool,
|
|
|
|
device=device,
|
|
|
|
)
|
|
|
|
mask = mask.triu(1 + past_key_values_length)
|
|
|
|
|
|
|
|
expanded_mask = mask.unsqueeze(0).expand(
|
|
|
|
batch_size, target_length, target_length + past_key_values_length
|
|
|
|
)
|
|
|
|
return expanded_mask
|
|
|
|
|
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
|
|
|
|
"""
|
|
|
|
Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
|
|
|
|
"""
|
|
|
|
batch_size, src_length = mask.shape
|
|
|
|
tgt_length = tgt_length if tgt_length is not None else src_length
|
|
|
|
|
|
|
|
expanded_mask = ~(mask[:, None, :].to(torch.bool))
|
|
|
|
return expanded_mask.expand(batch_size, tgt_length, src_length)
|
|
|
|
|
|
|
|
|
|
|
|
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int) -> torch.Tensor:
|
|
|
|
"""
|
|
|
|
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
|
|
|
|
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
|
|
|
|
`softmax(l+a) = softmax(l)`. Based on
|
|
|
|
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
|
|
|
|
TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
Returns tensor shaped (batch_size * num_heads, 1, max_seq_len)
|
|
|
|
attention_mask (`torch.Tensor`):
|
|
|
|
Token-wise attention mask, this should be of shape (batch_size, max_seq_len).
|
|
|
|
num_heads (`int`, *required*):
|
|
|
|
number of heads
|
|
|
|
dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`):
|
|
|
|
dtype of the output tensor
|
|
|
|
"""
|
|
|
|
batch_size, seq_length = attention_mask.shape
|
|
|
|
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
|
|
|
base = torch.tensor(
|
|
|
|
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))),
|
|
|
|
device=attention_mask.device,
|
|
|
|
dtype=torch.float32,
|
|
|
|
)
|
|
|
|
powers = torch.arange(
|
|
|
|
1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32
|
|
|
|
)
|
|
|
|
slopes = torch.pow(base, powers)
|
|
|
|
|
|
|
|
if closest_power_of_2 != num_heads:
|
|
|
|
extra_base = torch.tensor(
|
|
|
|
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))),
|
|
|
|
device=attention_mask.device,
|
|
|
|
dtype=torch.float32,
|
|
|
|
)
|
|
|
|
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
|
|
|
extra_powers = torch.arange(
|
|
|
|
1,
|
|
|
|
1 + 2 * num_remaining_heads,
|
|
|
|
2,
|
|
|
|
device=attention_mask.device,
|
|
|
|
dtype=torch.int32,
|
|
|
|
)
|
|
|
|
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
|
|
|
|
|
|
|
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
|
|
|
|
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
|
|
|
|
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
|
|
|
|
# => the query_length dimension will then be broadcasted correctly
|
|
|
|
# This is more or less identical to T5's relative position bias:
|
|
|
|
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
|
|
|
|
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
|
|
|
|
alibi = slopes[..., None] * arange_tensor
|
|
|
|
return alibi
|
|
|
|
|
|
|
|
|
|
|
|
# @torch.jit.script
|
|
|
|
def dropout_add(
|
|
|
|
x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool
|
|
|
|
) -> torch.Tensor:
|
|
|
|
"""
|
|
|
|
Dropout add function
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (`torch.tensor`, *required*):
|
|
|
|
input tensor
|
|
|
|
residual (`torch.tensor`, *required*):
|
|
|
|
esidual tensor
|
|
|
|
prob (`float`, *required*):
|
|
|
|
dropout probability
|
|
|
|
training (`bool`, *required*):
|
|
|
|
training mode
|
|
|
|
"""
|
|
|
|
out = F.dropout(x, p=prob, training=training)
|
|
|
|
out = residual + out
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
# @torch.jit.script # this is shit for unknow reasons.
|
|
|
|
def _split_heads(
|
|
|
|
fused_qkv: torch.Tensor, num_heads: int, head_dim: int
|
|
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
|
|
"""
|
|
|
|
Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory
|
|
|
|
storage as `fused_qkv`
|
|
|
|
|
|
|
|
Args:
|
|
|
|
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
|
|
|
|
value: [batch_size, seq_length, num_heads, head_dim]
|
|
|
|
"""
|
|
|
|
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
|
|
|
|
fused_qkv = fused_qkv.view(batch_size, seq_length, num_heads, 3 * head_dim)
|
|
|
|
query_layer, key_layer, value_layer = fused_qkv.split(head_dim, dim=-1)
|
|
|
|
|
|
|
|
query_layer = query_layer.transpose(1, 2).reshape(
|
|
|
|
batch_size * num_heads, seq_length, head_dim
|
|
|
|
)
|
|
|
|
key_layer = key_layer.permute(0, 2, 3, 1).reshape(
|
|
|
|
batch_size * num_heads, head_dim, seq_length
|
|
|
|
)
|
|
|
|
value_layer = value_layer.transpose(1, 2).reshape(
|
|
|
|
batch_size * num_heads, seq_length, head_dim
|
|
|
|
)
|
|
|
|
|
|
|
|
return query_layer, key_layer, value_layer
|
|
|
|
|
|
|
|
|
|
|
|
# @torch.jit.script
|
|
|
|
def _merge_heads(x: torch.Tensor, num_heads: int, head_dim: int) -> torch.Tensor:
|
|
|
|
"""
|
|
|
|
Merge heads together over the last dimenstion
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x: (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
torch.tensor: [batch_size, seq_length, num_heads * head_dim]
|
|
|
|
"""
|
|
|
|
# What we want to achieve is:
|
|
|
|
# batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
|
|
|
|
batch_size_and_num_heads, seq_length, _ = x.shape
|
|
|
|
batch_size = batch_size_and_num_heads // num_heads
|
|
|
|
|
|
|
|
# First view to decompose the batch size
|
|
|
|
# batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
|
|
|
|
x = x.view(batch_size, num_heads, seq_length, head_dim)
|
|
|
|
|
|
|
|
# batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
|
|
|
|
x = x.permute(0, 2, 1, 3)
|
|
|
|
|
|
|
|
# batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
|
|
|
|
return x.reshape(batch_size, seq_length, num_heads * head_dim)
|
|
|
|
|
|
|
|
|
|
|
|
class BloomAttention(nn.Module):
|
|
|
|
def __init__(self, prefix, config: BloomConfig, weights):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.pretraining_tp = config.pretraining_tp
|
|
|
|
self.slow_but_exact = config.slow_but_exact
|
|
|
|
|
|
|
|
self.process_group = weights.process_group
|
|
|
|
|
|
|
|
self.hidden_size = config.hidden_size
|
|
|
|
self.num_heads = config.n_head
|
|
|
|
self.head_dim = self.hidden_size // self.num_heads
|
|
|
|
self.split_size = self.hidden_size
|
|
|
|
self.hidden_dropout = config.hidden_dropout
|
|
|
|
|
|
|
|
if self.head_dim * self.num_heads != self.hidden_size:
|
|
|
|
raise ValueError(
|
|
|
|
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
|
|
|
f" {self.num_heads})."
|
|
|
|
)
|
|
|
|
|
|
|
|
# Layer-wise attention scaling
|
|
|
|
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
|
|
|
|
self.beta = 1.0
|
|
|
|
|
|
|
|
process_group = weights.process_group
|
2023-07-10 12:47:15 +00:00
|
|
|
if self.num_heads % process_group.size() != 0:
|
|
|
|
raise ValueError(
|
|
|
|
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
|
|
|
|
f"and `num_shards`: {process_group.size()}"
|
|
|
|
)
|
2023-06-08 12:51:52 +00:00
|
|
|
self.num_heads = self.num_heads // process_group.size()
|
|
|
|
self.query_key_value = TensorParallelColumnLinear.load(
|
|
|
|
config=config,
|
|
|
|
prefix=f"{prefix}.query_key_value",
|
|
|
|
weights=weights,
|
|
|
|
bias=True,
|
|
|
|
)
|
|
|
|
self.dense = TensorParallelRowLinear.load(
|
|
|
|
config=config, prefix=f"{prefix}.dense", weights=weights, bias=True
|
|
|
|
)
|
|
|
|
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def compute_attention(
|
|
|
|
fused_qkv: torch.Tensor,
|
|
|
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
|
|
|
alibi: torch.Tensor,
|
|
|
|
attention_mask: torch.Tensor,
|
|
|
|
head_mask: Optional[torch.Tensor],
|
|
|
|
beta: float,
|
|
|
|
inv_norm_factor: float,
|
|
|
|
num_heads: int,
|
|
|
|
use_cache: bool,
|
|
|
|
):
|
|
|
|
batch_size, q_length, three_times_hidden_size = fused_qkv.shape
|
|
|
|
head_dim = three_times_hidden_size // (3 * num_heads)
|
|
|
|
batch_size * num_heads
|
|
|
|
|
|
|
|
### TODO @thomasw21: this takes quite a bit of time, how do I accelerate that?
|
|
|
|
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
|
|
|
(query_layer, key_layer, value_layer) = _split_heads(
|
|
|
|
fused_qkv, num_heads=num_heads, head_dim=head_dim
|
|
|
|
)
|
|
|
|
|
|
|
|
if layer_past is not None:
|
|
|
|
past_key, past_value = layer_past
|
|
|
|
# concatenate along seq_length dimension:
|
|
|
|
# - key: [batch_size * self.num_heads, head_dim, kv_length]
|
|
|
|
# - value: [batch_size * self.num_heads, kv_length, head_dim]
|
|
|
|
past_key = past_key.view(-1, *past_key.shape[-2:])
|
|
|
|
key_layer = torch.cat((past_key, key_layer), dim=2)
|
|
|
|
past_value = past_value.view(-1, *past_value.shape[-2:])
|
|
|
|
value_layer = torch.cat((past_value, value_layer), dim=1)
|
|
|
|
|
|
|
|
_, _, kv_length = key_layer.shape
|
|
|
|
|
|
|
|
if use_cache is True:
|
|
|
|
present = (key_layer, value_layer)
|
|
|
|
else:
|
|
|
|
present = None
|
|
|
|
###
|
|
|
|
|
|
|
|
# [batch_size * num_heads, q_length, kv_length]
|
|
|
|
# we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11
|
|
|
|
attention_scores = alibi.baddbmm(
|
|
|
|
batch1=query_layer,
|
|
|
|
batch2=key_layer,
|
|
|
|
beta=beta,
|
|
|
|
alpha=inv_norm_factor,
|
|
|
|
)
|
|
|
|
|
|
|
|
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
|
|
|
|
input_dtype = attention_scores.dtype
|
|
|
|
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
|
|
|
|
if input_dtype == torch.float16:
|
|
|
|
attention_scores = attention_scores.to(torch.float)
|
|
|
|
# torch.finfo not supported by torch.jit, we temporarily remplace with `-1e34`
|
|
|
|
attn_weights = attention_scores.masked_fill_(
|
|
|
|
attention_mask, torch.finfo(attention_scores.dtype).min
|
|
|
|
)
|
|
|
|
attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(
|
|
|
|
input_dtype
|
|
|
|
)
|
|
|
|
|
|
|
|
# # [batch_size, num_heads, q_length, kv_length]
|
|
|
|
# attention_probs = self.attention_dropout(attention_probs)
|
|
|
|
|
|
|
|
if head_mask is not None:
|
|
|
|
attention_probs = attention_probs * head_mask
|
|
|
|
|
|
|
|
# matmul: [batch_size * num_heads, q_length, head_dim]
|
|
|
|
context_layer = torch.bmm(attention_probs, value_layer, out=query_layer)
|
|
|
|
|
|
|
|
# change view [batch_size, num_heads, q_length, head_dim]
|
|
|
|
context_layer = _merge_heads(
|
|
|
|
context_layer, num_heads=num_heads, head_dim=head_dim
|
|
|
|
)
|
|
|
|
|
|
|
|
return context_layer, present, attention_probs
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
hidden_states: torch.Tensor,
|
|
|
|
residual: torch.Tensor,
|
|
|
|
alibi: torch.Tensor,
|
|
|
|
attention_mask: torch.Tensor,
|
|
|
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
|
|
use_cache: bool = False,
|
|
|
|
output_attentions: bool = False,
|
|
|
|
):
|
|
|
|
fused_qkv = self.query_key_value(
|
|
|
|
hidden_states
|
|
|
|
) # [batch_size, seq_length, 3 x hidden_size]
|
|
|
|
batch_size, q_length, _ = fused_qkv.shape
|
|
|
|
|
|
|
|
if layer_past is not None:
|
|
|
|
past_key, past_value = layer_past
|
|
|
|
layer_past = (
|
|
|
|
past_key.view(-1, *past_key.shape[-2:]),
|
|
|
|
past_value.view(-1, *past_value.shape[-2:]),
|
|
|
|
)
|
|
|
|
|
|
|
|
if CUSTOM_KERNELS_ENABLED:
|
|
|
|
assert self.training is False, "Only foward pass was implemented"
|
|
|
|
assert (
|
|
|
|
attention_mask.shape[-1] < 4096
|
|
|
|
), "Custom kernel support only up to 4096 tokens"
|
|
|
|
(
|
|
|
|
context_layer,
|
|
|
|
present,
|
|
|
|
attention_probs,
|
|
|
|
) = fused_bloom_attention_cuda.forward(
|
|
|
|
fused_qkv,
|
|
|
|
layer_past,
|
|
|
|
alibi,
|
|
|
|
attention_mask,
|
|
|
|
head_mask,
|
|
|
|
self.beta,
|
|
|
|
self.inv_norm_factor,
|
|
|
|
self.num_heads,
|
|
|
|
use_cache,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
context_layer, present, attention_probs = self.compute_attention(
|
|
|
|
fused_qkv=fused_qkv,
|
|
|
|
layer_past=layer_past,
|
|
|
|
alibi=alibi,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
head_mask=head_mask,
|
|
|
|
beta=self.beta,
|
|
|
|
inv_norm_factor=self.inv_norm_factor,
|
|
|
|
num_heads=self.num_heads,
|
|
|
|
use_cache=use_cache,
|
|
|
|
)
|
|
|
|
|
|
|
|
# aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232
|
|
|
|
if self.pretraining_tp > 1 and self.slow_but_exact:
|
|
|
|
slices = self.hidden_size / self.pretraining_tp
|
|
|
|
output_tensor = torch.zeros_like(context_layer)
|
|
|
|
for i in range(self.pretraining_tp):
|
|
|
|
output_tensor = output_tensor + F.linear(
|
|
|
|
context_layer[:, :, int(i * slices) : int((i + 1) * slices)],
|
|
|
|
self.dense.weight[:, int(i * slices) : int((i + 1) * slices)],
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
output_tensor = self.dense(context_layer)
|
|
|
|
|
|
|
|
# output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training)
|
|
|
|
output_tensor += residual
|
|
|
|
|
|
|
|
outputs = (output_tensor, present)
|
|
|
|
if output_attentions:
|
|
|
|
outputs += (attention_probs,)
|
|
|
|
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
|
|
|
|
class BloomMLP(nn.Module):
|
|
|
|
def __init__(self, prefix, config: BloomConfig, weights):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.pretraining_tp = config.pretraining_tp
|
|
|
|
self.slow_but_exact = config.slow_but_exact
|
|
|
|
self.dense_h_to_4h = TensorParallelColumnLinear.load(
|
|
|
|
config=config, prefix=f"{prefix}.dense_h_to_4h", weights=weights, bias=True
|
|
|
|
)
|
|
|
|
self.dense_4h_to_h = TensorParallelRowLinear.load(
|
|
|
|
config=config, prefix=f"{prefix}.dense_4h_to_h", weights=weights, bias=True
|
|
|
|
)
|
|
|
|
self.gelu_impl = torch.nn.GELU(approximate="tanh")
|
|
|
|
self.hidden_dropout = config.hidden_dropout
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self, hidden_states: torch.Tensor, residual: torch.Tensor
|
|
|
|
) -> torch.Tensor:
|
|
|
|
hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states))
|
|
|
|
|
|
|
|
if self.pretraining_tp > 1 and self.slow_but_exact:
|
|
|
|
intermediate_output = torch.zeros_like(residual)
|
|
|
|
slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp
|
|
|
|
for i in range(self.pretraining_tp):
|
|
|
|
intermediate_output = intermediate_output + F.linear(
|
|
|
|
hidden_states[:, :, int(i * slices) : int((i + 1) * slices)],
|
|
|
|
self.dense_4h_to_h.weight[
|
|
|
|
:, int(i * slices) : int((i + 1) * slices)
|
|
|
|
],
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
intermediate_output = self.dense_4h_to_h(hidden_states)
|
|
|
|
|
|
|
|
# output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)
|
|
|
|
intermediate_output += residual
|
|
|
|
|
|
|
|
return intermediate_output
|
|
|
|
|
|
|
|
|
|
|
|
class BloomBlock(nn.Module):
|
|
|
|
def __init__(self, layer_id: int, config: BloomConfig, weights):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
prefix = f"h.{layer_id}"
|
|
|
|
self.input_layernorm = LayerNorm.load(
|
|
|
|
prefix=f"{prefix}.input_layernorm",
|
|
|
|
weights=weights,
|
|
|
|
eps=config.layer_norm_epsilon,
|
|
|
|
)
|
|
|
|
self.num_heads = config.n_head
|
|
|
|
self.self_attention = BloomAttention(
|
|
|
|
prefix=f"{prefix}.self_attention", config=config, weights=weights
|
|
|
|
)
|
|
|
|
self.post_attention_layernorm = LayerNorm.load(
|
|
|
|
prefix=f"{prefix}.post_attention_layernorm",
|
|
|
|
weights=weights,
|
|
|
|
eps=config.layer_norm_epsilon,
|
|
|
|
)
|
|
|
|
|
|
|
|
self.mlp = BloomMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
|
|
|
|
self.apply_residual_connection_post_layernorm = (
|
|
|
|
config.apply_residual_connection_post_layernorm
|
|
|
|
)
|
|
|
|
self.hidden_dropout = config.hidden_dropout
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
hidden_states: torch.Tensor,
|
|
|
|
alibi: torch.Tensor,
|
|
|
|
attention_mask: torch.Tensor,
|
|
|
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
|
|
use_cache: bool = False,
|
|
|
|
output_attentions: bool = False,
|
|
|
|
):
|
|
|
|
# hidden_states: [batch_size, seq_length, hidden_size]
|
|
|
|
|
|
|
|
# Layer norm at the beginning of the transformer layer.
|
|
|
|
layernorm_output = self.input_layernorm(hidden_states)
|
|
|
|
|
|
|
|
# Layer norm post the self attention.
|
|
|
|
if self.apply_residual_connection_post_layernorm:
|
|
|
|
residual = layernorm_output
|
|
|
|
else:
|
|
|
|
residual = hidden_states
|
|
|
|
|
|
|
|
# Self attention.
|
|
|
|
attn_outputs = self.self_attention(
|
|
|
|
layernorm_output,
|
|
|
|
residual,
|
|
|
|
layer_past=layer_past,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
alibi=alibi,
|
|
|
|
head_mask=head_mask,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
attention_output = attn_outputs[0]
|
|
|
|
|
|
|
|
outputs = attn_outputs[1:]
|
|
|
|
|
|
|
|
layernorm_output = self.post_attention_layernorm(attention_output)
|
|
|
|
|
|
|
|
# Get residual
|
|
|
|
if self.apply_residual_connection_post_layernorm:
|
|
|
|
residual = layernorm_output
|
|
|
|
else:
|
|
|
|
residual = attention_output
|
|
|
|
|
|
|
|
# MLP.
|
|
|
|
output = self.mlp(layernorm_output, residual)
|
|
|
|
|
|
|
|
if use_cache:
|
|
|
|
outputs = (output,) + outputs
|
|
|
|
else:
|
|
|
|
outputs = (output,) + outputs[1:]
|
|
|
|
|
|
|
|
return outputs # hidden_states, present, attentions
|
|
|
|
|
|
|
|
|
|
|
|
class BloomPreTrainedModel(PreTrainedModel):
|
|
|
|
config_class = BloomConfig
|
|
|
|
base_model_prefix = "transformer"
|
|
|
|
_no_split_modules = ["BloomBlock"]
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _convert_to_standard_cache(
|
|
|
|
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
|
|
|
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
|
|
|
"""
|
|
|
|
Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
|
|
|
|
num_heads, ...]))
|
|
|
|
"""
|
|
|
|
batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape
|
|
|
|
num_heads = batch_size_times_num_heads // batch_size
|
|
|
|
# key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length]
|
|
|
|
# value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim]
|
|
|
|
return tuple(
|
|
|
|
(
|
|
|
|
layer_past[0].view(batch_size, num_heads, head_dim, seq_length),
|
|
|
|
layer_past[1].view(batch_size, num_heads, seq_length, head_dim),
|
|
|
|
)
|
|
|
|
for layer_past in past_key_value
|
|
|
|
)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _convert_to_bloom_cache(
|
|
|
|
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
|
|
|
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
|
|
|
"""
|
|
|
|
Converts the cache to the format expected by Bloom, i.e. to tuple(tuple([batch_size * num_heads, ...]))
|
|
|
|
"""
|
|
|
|
batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
|
|
|
|
batch_size_times_num_heads = batch_size * num_heads
|
|
|
|
# key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
|
|
|
|
# value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
|
|
|
|
return tuple(
|
|
|
|
(
|
|
|
|
layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length),
|
|
|
|
layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim),
|
|
|
|
)
|
|
|
|
for layer_past in past_key_value
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class BloomModel(BloomPreTrainedModel):
|
|
|
|
def __init__(self, config: BloomConfig, weights):
|
|
|
|
super().__init__(config)
|
|
|
|
|
|
|
|
self.embed_dim = config.hidden_size
|
|
|
|
self.num_heads = config.n_head
|
|
|
|
|
|
|
|
process_group = weights.process_group
|
|
|
|
self.tp_rank = process_group.rank()
|
|
|
|
self.tp_world_size = process_group.size()
|
|
|
|
|
|
|
|
self.word_embeddings = TensorParallelEmbedding(
|
|
|
|
prefix="word_embeddings", weights=weights
|
|
|
|
)
|
|
|
|
|
|
|
|
self.word_embeddings_layernorm = LayerNorm.load(
|
|
|
|
prefix="word_embeddings_layernorm",
|
|
|
|
weights=weights,
|
|
|
|
eps=config.layer_norm_epsilon,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Transformer blocks
|
|
|
|
self.h = nn.ModuleList(
|
|
|
|
[
|
|
|
|
BloomBlock(layer_id=layer_id, config=config, weights=weights)
|
|
|
|
for layer_id in range(config.num_hidden_layers)
|
|
|
|
]
|
|
|
|
)
|
|
|
|
|
|
|
|
# Final Layer Norm
|
|
|
|
self.ln_f = LayerNorm.load(
|
|
|
|
prefix="ln_f", weights=weights, eps=config.layer_norm_epsilon
|
|
|
|
)
|
|
|
|
|
|
|
|
def _prepare_attn_mask(
|
|
|
|
self,
|
|
|
|
attention_mask: torch.Tensor,
|
|
|
|
input_shape: Tuple[int, int],
|
|
|
|
past_key_values_length: int,
|
|
|
|
) -> torch.BoolTensor:
|
|
|
|
# create causal mask
|
|
|
|
# [batch_size, seq_length] -> [batch_size, tgt_length, src_length]
|
|
|
|
combined_attention_mask = None
|
|
|
|
device = attention_mask.device
|
|
|
|
_, src_length = input_shape
|
|
|
|
|
|
|
|
if src_length > 1:
|
|
|
|
combined_attention_mask = _make_causal_mask(
|
|
|
|
input_shape,
|
|
|
|
device=device,
|
|
|
|
past_key_values_length=past_key_values_length,
|
|
|
|
)
|
|
|
|
|
|
|
|
# [batch_size, seq_length] -> [batch_size, tgt_length, src_length]
|
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
|
|
|
|
combined_attention_mask = (
|
|
|
|
expanded_attn_mask
|
|
|
|
if combined_attention_mask is None
|
|
|
|
else expanded_attn_mask | combined_attention_mask
|
|
|
|
)
|
|
|
|
|
|
|
|
return combined_attention_mask
|
|
|
|
|
|
|
|
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
|
|
|
self.word_embeddings = new_embeddings
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
head_mask: Optional[torch.LongTensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.LongTensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
**deprecated_arguments,
|
|
|
|
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
|
|
|
if deprecated_arguments.pop("position_ids", False) is not False:
|
|
|
|
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
|
|
|
warnings.warn(
|
|
|
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
|
|
|
" passing `position_ids`.",
|
|
|
|
FutureWarning,
|
|
|
|
)
|
|
|
|
if len(deprecated_arguments) > 0:
|
|
|
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
|
|
|
|
|
|
|
output_attentions = (
|
|
|
|
output_attentions
|
|
|
|
if output_attentions is not None
|
|
|
|
else self.config.output_attentions
|
|
|
|
)
|
|
|
|
output_hidden_states = (
|
|
|
|
output_hidden_states
|
|
|
|
if output_hidden_states is not None
|
|
|
|
else self.config.output_hidden_states
|
|
|
|
)
|
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = (
|
|
|
|
return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
)
|
|
|
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
|
|
raise ValueError(
|
|
|
|
"You cannot specify both input_ids and inputs_embeds at the same time"
|
|
|
|
)
|
|
|
|
elif input_ids is not None:
|
|
|
|
batch_size, seq_length = input_ids.shape
|
|
|
|
elif inputs_embeds is not None:
|
|
|
|
batch_size, seq_length, _ = inputs_embeds.shape
|
|
|
|
else:
|
|
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
|
|
|
|
if past_key_values is None:
|
|
|
|
past_key_values = tuple([None] * len(self.h))
|
|
|
|
|
|
|
|
# Prepare head mask if needed
|
|
|
|
# 1.0 in head_mask indicate we keep the head
|
|
|
|
# attention_probs has shape batch_size x num_heads x N x N
|
|
|
|
# head_mask has shape n_layer x batch x num_heads x N x N
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
|
|
|
|
|
|
|
if inputs_embeds is None:
|
|
|
|
inputs_embeds = self.word_embeddings(input_ids)
|
|
|
|
|
|
|
|
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
|
|
|
|
|
|
|
presents = () if use_cache else None
|
|
|
|
all_self_attentions = () if output_attentions else None
|
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
|
|
|
|
|
|
# Compute alibi tensor: check build_alibi_tensor documentation
|
|
|
|
seq_length_with_past = seq_length
|
|
|
|
past_key_values_length = 0
|
|
|
|
if past_key_values[0] is not None:
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[-1]
|
|
|
|
seq_length_with_past = seq_length_with_past + past_key_values_length
|
|
|
|
if attention_mask is None:
|
|
|
|
attention_mask = torch.ones(
|
|
|
|
(batch_size, seq_length_with_past), device=hidden_states.device
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
attention_mask = attention_mask.to(hidden_states.device)
|
|
|
|
|
|
|
|
alibi = build_alibi_tensor(attention_mask, self.num_heads)
|
|
|
|
|
|
|
|
causal_mask = self._prepare_attn_mask(
|
|
|
|
attention_mask,
|
|
|
|
input_shape=(batch_size, seq_length),
|
|
|
|
past_key_values_length=past_key_values_length,
|
|
|
|
)
|
|
|
|
|
|
|
|
if hasattr(self, "tp_rank"):
|
|
|
|
assert self.num_heads % self.tp_world_size == 0
|
|
|
|
block_size = self.num_heads // self.tp_world_size
|
|
|
|
alibi = alibi[
|
|
|
|
:, self.tp_rank * block_size : (self.tp_rank + 1) * block_size
|
|
|
|
]
|
|
|
|
alibi = alibi.reshape(batch_size * block_size, 1, seq_length_with_past)
|
|
|
|
causal_mask = torch.repeat_interleave(causal_mask, block_size, dim=0)
|
|
|
|
else:
|
|
|
|
alibi = alibi.reshape(batch_size * self.num_heads, 1, seq_length_with_past)
|
|
|
|
causal_mask = torch.repeat_interleave(causal_mask, self.num_heads, dim=0)
|
|
|
|
|
|
|
|
alibi = alibi.to(hidden_states.dtype)
|
|
|
|
|
|
|
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
|
|
|
|
outputs = block(
|
|
|
|
hidden_states,
|
|
|
|
layer_past=layer_past,
|
|
|
|
attention_mask=causal_mask,
|
|
|
|
head_mask=head_mask[i],
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
alibi=alibi,
|
|
|
|
)
|
|
|
|
|
|
|
|
hidden_states = outputs[0]
|
|
|
|
if use_cache is True:
|
|
|
|
presents = presents + (outputs[1],)
|
|
|
|
|
|
|
|
if output_attentions:
|
|
|
|
all_self_attentions = all_self_attentions + (
|
|
|
|
outputs[2 if use_cache else 1],
|
|
|
|
)
|
|
|
|
|
|
|
|
# Add last hidden state
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
return tuple(
|
|
|
|
v
|
|
|
|
for v in [
|
|
|
|
hidden_states,
|
|
|
|
presents,
|
|
|
|
all_hidden_states,
|
|
|
|
all_self_attentions,
|
|
|
|
]
|
|
|
|
if v is not None
|
|
|
|
)
|
|
|
|
|
|
|
|
return BaseModelOutputWithPastAndCrossAttentions(
|
|
|
|
last_hidden_state=hidden_states,
|
|
|
|
past_key_values=presents,
|
|
|
|
hidden_states=all_hidden_states,
|
|
|
|
attentions=all_self_attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class BloomForCausalLM(BloomPreTrainedModel):
|
|
|
|
def __init__(self, config, weights):
|
|
|
|
super().__init__(config)
|
|
|
|
self.transformer = BloomModel(config, weights)
|
|
|
|
|
2024-02-26 18:49:28 +00:00
|
|
|
self.lm_head = SpeculativeHead.load(
|
2023-06-08 12:51:52 +00:00
|
|
|
config,
|
|
|
|
prefix="word_embeddings",
|
|
|
|
weights=weights,
|
|
|
|
)
|
|
|
|
|
|
|
|
def prepare_inputs_for_generation(
|
|
|
|
self,
|
|
|
|
input_ids: torch.LongTensor,
|
|
|
|
past_key_values: Optional[torch.Tensor] = None,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
|
|
**kwargs,
|
|
|
|
) -> dict:
|
|
|
|
# only last token for input_ids if past is not None
|
|
|
|
if past_key_values:
|
|
|
|
input_ids = input_ids[:, -1].unsqueeze(-1)
|
|
|
|
|
|
|
|
# the cache may be in the stardard format (e.g. in contrastive search), convert to bloom's format if needed
|
|
|
|
if past_key_values[0][0].shape[0] == input_ids.shape[0]:
|
|
|
|
past_key_values = self._convert_to_bloom_cache(past_key_values)
|
|
|
|
|
|
|
|
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
|
|
|
if inputs_embeds is not None and past_key_values is None:
|
|
|
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
|
|
|
else:
|
|
|
|
model_inputs = {"input_ids": input_ids}
|
|
|
|
|
|
|
|
model_inputs.update(
|
|
|
|
{
|
|
|
|
"past_key_values": past_key_values,
|
|
|
|
"use_cache": kwargs.get("use_cache"),
|
|
|
|
"attention_mask": attention_mask,
|
|
|
|
}
|
|
|
|
)
|
|
|
|
return model_inputs
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
|
|
labels: Optional[torch.Tensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
**deprecated_arguments,
|
2024-02-28 14:50:31 +00:00
|
|
|
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
2023-06-08 12:51:52 +00:00
|
|
|
r"""
|
|
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
|
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
|
|
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
|
|
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
|
|
|
"""
|
|
|
|
if deprecated_arguments.pop("position_ids", False) is not False:
|
|
|
|
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
|
|
|
warnings.warn(
|
|
|
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
|
|
|
" passing `position_ids`.",
|
|
|
|
FutureWarning,
|
|
|
|
)
|
|
|
|
if len(deprecated_arguments) > 0:
|
|
|
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
|
|
|
|
|
|
|
return_dict = (
|
|
|
|
return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
)
|
|
|
|
|
|
|
|
transformer_outputs = self.transformer(
|
|
|
|
input_ids,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
head_mask=head_mask,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict,
|
|
|
|
)
|
|
|
|
hidden_states = transformer_outputs[0]
|
|
|
|
|
2024-02-26 18:49:28 +00:00
|
|
|
logits, speculative_logits = self.lm_head(hidden_states)
|
2023-06-08 12:51:52 +00:00
|
|
|
loss = None
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
output = (lm_logits,) + transformer_outputs[1:]
|
|
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
|
2024-02-26 18:49:28 +00:00
|
|
|
return (
|
|
|
|
CausalLMOutputWithCrossAttentions(
|
|
|
|
loss=loss,
|
|
|
|
logits=logits,
|
|
|
|
past_key_values=transformer_outputs.past_key_values,
|
|
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
|
|
attentions=transformer_outputs.attentions,
|
|
|
|
),
|
|
|
|
speculative_logits,
|
2023-06-08 12:51:52 +00:00
|
|
|
)
|