icp-api/detect.py
2025-01-23 03:58:58 +08:00

96 lines
3.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import base64
import onnxruntime
import cv2
import numpy as np
class Detect:
def __init__(self):
self.big_img = None
def read_base64_image(self, base64_string):
# 解码Base64字符串为字节串
img_data = base64.b64decode(base64_string)
# 将解码后的字节串转换为numpy数组OpenCV使用numpy作为其基础
np_array = np.frombuffer(img_data, np.uint8)
# 使用OpenCV的imdecode函数将字节数据解析为cv::Mat对象
img = cv2.imdecode(np_array, cv2.IMREAD_COLOR)
return img
def detect(self, big_img):
confidence_thres = 0.7
iou_thres = 0.7
session = onnxruntime.InferenceSession("./models/yolov8.onnx")
model_inputs = session.get_inputs()
self.big_img = self.read_base64_image(big_img)
img_height, img_width = self.big_img.shape[:2]
img = cv2.cvtColor(self.big_img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (512, 192))
image_data = np.array(img) / 255.0
image_data = np.transpose(image_data, (2, 0, 1))
image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
input = {model_inputs[0].name: image_data}
output = session.run(None, input)
outputs = np.transpose(np.squeeze(output[0]))
rows = outputs.shape[0]
boxes, scores = [], []
x_factor = img_width / 512
y_factor = img_height / 192
for i in range(rows):
classes_scores = outputs[i][4:]
max_score = np.amax(classes_scores)
if max_score >= confidence_thres:
x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]
left = int((x - w / 2) * x_factor)
top = int((y - h / 2) * y_factor)
width = int(w * x_factor)
height = int(h * y_factor)
boxes.append([left, top, width, height])
scores.append(max_score)
indices = cv2.dnn.NMSBoxes(boxes, scores, confidence_thres, iou_thres)
new_boxes = [boxes[i] for i in indices]
# print(new_boxes)
if len(new_boxes) != 5:
return False
return new_boxes
def siamese(self, small_img, boxes):
session = onnxruntime.InferenceSession("./models/siamese.onnx")
positions = [165, 200, 231, 265]
result_list = []
for x in positions:
if len(result_list) == 4:
break
raw_image2 = self.read_base64_image(small_img)
raw_image2 = raw_image2[11:11 + 28, x:x + 26]
img2 = cv2.cvtColor(raw_image2, cv2.COLOR_BGR2RGB)
img2 = cv2.resize(img2, (105, 105))
image_data_2 = np.array(img2) / 255.0
image_data_2 = np.transpose(image_data_2, (2, 0, 1))
image_data_2 = np.expand_dims(image_data_2, axis=0).astype(np.float32)
for box in boxes:
raw_image1 = self.big_img[box[1]:box[1] + box[3] + 2, box[0]:box[0] + box[2] + 2]
img1 = cv2.cvtColor(raw_image1, cv2.COLOR_BGR2RGB)
img1 = cv2.resize(img1, (105, 105))
image_data_1 = np.array(img1) / 255.0
image_data_1 = np.transpose(image_data_1, (2, 0, 1))
image_data_1 = np.expand_dims(image_data_1, axis=0).astype(np.float32)
inputs = {'input': image_data_1, "input.53": image_data_2}
output = session.run(None, inputs)
output_sigmoid = 1 / (1 + np.exp(-output[0]))
res = output_sigmoid[0][0]
# print(res)
if res >= 0.7:
# print("\n")
# print(res)
# print(box)
result_list.append([box[0], box[1]])
break
return result_list