This commit is contained in:
Twilight 2024-10-24 11:12:23 +08:00
commit 734d33d223
4 changed files with 239 additions and 0 deletions

162
.gitignore vendored Normal file
View File

@ -0,0 +1,162 @@
### Python template
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
.idea/

31
classification.py Normal file
View File

@ -0,0 +1,31 @@
from pprint import pprint
from pydantic import BaseModel
from transformers import pipeline
classifier = pipeline("zero-shot-classification",
model="morit/chinese_xlm_xnli")
# 返回一个结构化的内容
class ClassifyResult(BaseModel):
sequence: str
labels: list
scores: list
prediction: str
def classify(text: str, labels: list):
output = classifier(text, labels)
pprint(output)
# 根据 score寻找最高的 label
prediction_rank = output['scores'].index(max(output['scores']))
return ClassifyResult(
sequence=text,
labels=output['labels'],
scores=output['scores'],
prediction=output['labels'][prediction_rank]
)

29
main.py Normal file
View File

@ -0,0 +1,29 @@
from typing import Union
import uvicorn
from fastapi import FastAPI
from pydantic import BaseModel
import classification
app = FastAPI()
class TextClassificationRequest(BaseModel):
text: str
labels: list[str]
class TextClassificationResponse(BaseModel):
prediction: str
labels: list[str]
@app.post("/classify")
def classify(req: TextClassificationRequest) -> TextClassificationResponse:
result = classification.classify(req.text, req.labels)
return TextClassificationResponse(prediction=result.labels[0], labels=result.labels)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)

View File

@ -0,0 +1,17 @@
syntax = "proto3";
service TextClassification {
rpc Classify(TextClassificationRequest) returns (TextClassificationResponse) {}
}
message TextClassificationRequest {
string text = 1;
repeated string labels = 2;
}
message TextClassificationResponse {
string sequence = 1;
string match = 2;
repeated string labels = 3;
repeated float scores = 4;
}