ai-gateway/relay/adaptor/gemini/main.go
zijiren b21b3b5b46
refactor: abusing goroutines and channel (#1561)
* refactor: abusing goroutines

* fix: trim data prefix

* refactor: move functions to render package

* refactor: add back trim & flush

---------

Co-authored-by: JustSong <quanpengsong@gmail.com>
2024-06-30 18:36:33 +08:00

405 lines
12 KiB
Go

package gemini
import (
"bufio"
"encoding/json"
"fmt"
"github.com/songquanpeng/one-api/common/render"
"io"
"net/http"
"strings"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/config"
"github.com/songquanpeng/one-api/common/helper"
"github.com/songquanpeng/one-api/common/image"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/common/random"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/constant"
"github.com/songquanpeng/one-api/relay/model"
"github.com/gin-gonic/gin"
)
// https://ai.google.dev/docs/gemini_api_overview?hl=zh-cn
const (
VisionMaxImageNum = 16
)
// Setting safety to the lowest possible values since Gemini is already powerless enough
func ConvertRequest(textRequest model.GeneralOpenAIRequest) *ChatRequest {
geminiRequest := ChatRequest{
Contents: make([]ChatContent, 0, len(textRequest.Messages)),
SafetySettings: []ChatSafetySettings{
{
Category: "HARM_CATEGORY_HARASSMENT",
Threshold: config.GeminiSafetySetting,
},
{
Category: "HARM_CATEGORY_HATE_SPEECH",
Threshold: config.GeminiSafetySetting,
},
{
Category: "HARM_CATEGORY_SEXUALLY_EXPLICIT",
Threshold: config.GeminiSafetySetting,
},
{
Category: "HARM_CATEGORY_DANGEROUS_CONTENT",
Threshold: config.GeminiSafetySetting,
},
},
GenerationConfig: ChatGenerationConfig{
Temperature: textRequest.Temperature,
TopP: textRequest.TopP,
MaxOutputTokens: textRequest.MaxTokens,
},
}
if textRequest.Tools != nil {
functions := make([]model.Function, 0, len(textRequest.Tools))
for _, tool := range textRequest.Tools {
functions = append(functions, tool.Function)
}
geminiRequest.Tools = []ChatTools{
{
FunctionDeclarations: functions,
},
}
} else if textRequest.Functions != nil {
geminiRequest.Tools = []ChatTools{
{
FunctionDeclarations: textRequest.Functions,
},
}
}
shouldAddDummyModelMessage := false
for _, message := range textRequest.Messages {
content := ChatContent{
Role: message.Role,
Parts: []Part{
{
Text: message.StringContent(),
},
},
}
openaiContent := message.ParseContent()
var parts []Part
imageNum := 0
for _, part := range openaiContent {
if part.Type == model.ContentTypeText {
parts = append(parts, Part{
Text: part.Text,
})
} else if part.Type == model.ContentTypeImageURL {
imageNum += 1
if imageNum > VisionMaxImageNum {
continue
}
mimeType, data, _ := image.GetImageFromUrl(part.ImageURL.Url)
parts = append(parts, Part{
InlineData: &InlineData{
MimeType: mimeType,
Data: data,
},
})
}
}
content.Parts = parts
// there's no assistant role in gemini and API shall vomit if Role is not user or model
if content.Role == "assistant" {
content.Role = "model"
}
// Converting system prompt to prompt from user for the same reason
if content.Role == "system" {
content.Role = "user"
shouldAddDummyModelMessage = true
}
geminiRequest.Contents = append(geminiRequest.Contents, content)
// If a system message is the last message, we need to add a dummy model message to make gemini happy
if shouldAddDummyModelMessage {
geminiRequest.Contents = append(geminiRequest.Contents, ChatContent{
Role: "model",
Parts: []Part{
{
Text: "Okay",
},
},
})
shouldAddDummyModelMessage = false
}
}
return &geminiRequest
}
func ConvertEmbeddingRequest(request model.GeneralOpenAIRequest) *BatchEmbeddingRequest {
inputs := request.ParseInput()
requests := make([]EmbeddingRequest, len(inputs))
model := fmt.Sprintf("models/%s", request.Model)
for i, input := range inputs {
requests[i] = EmbeddingRequest{
Model: model,
Content: ChatContent{
Parts: []Part{
{
Text: input,
},
},
},
}
}
return &BatchEmbeddingRequest{
Requests: requests,
}
}
type ChatResponse struct {
Candidates []ChatCandidate `json:"candidates"`
PromptFeedback ChatPromptFeedback `json:"promptFeedback"`
}
func (g *ChatResponse) GetResponseText() string {
if g == nil {
return ""
}
if len(g.Candidates) > 0 && len(g.Candidates[0].Content.Parts) > 0 {
return g.Candidates[0].Content.Parts[0].Text
}
return ""
}
type ChatCandidate struct {
Content ChatContent `json:"content"`
FinishReason string `json:"finishReason"`
Index int64 `json:"index"`
SafetyRatings []ChatSafetyRating `json:"safetyRatings"`
}
type ChatSafetyRating struct {
Category string `json:"category"`
Probability string `json:"probability"`
}
type ChatPromptFeedback struct {
SafetyRatings []ChatSafetyRating `json:"safetyRatings"`
}
func getToolCalls(candidate *ChatCandidate) []model.Tool {
var toolCalls []model.Tool
item := candidate.Content.Parts[0]
if item.FunctionCall == nil {
return toolCalls
}
argsBytes, err := json.Marshal(item.FunctionCall.Arguments)
if err != nil {
logger.FatalLog("getToolCalls failed: " + err.Error())
return toolCalls
}
toolCall := model.Tool{
Id: fmt.Sprintf("call_%s", random.GetUUID()),
Type: "function",
Function: model.Function{
Arguments: string(argsBytes),
Name: item.FunctionCall.FunctionName,
},
}
toolCalls = append(toolCalls, toolCall)
return toolCalls
}
func responseGeminiChat2OpenAI(response *ChatResponse) *openai.TextResponse {
fullTextResponse := openai.TextResponse{
Id: fmt.Sprintf("chatcmpl-%s", random.GetUUID()),
Object: "chat.completion",
Created: helper.GetTimestamp(),
Choices: make([]openai.TextResponseChoice, 0, len(response.Candidates)),
}
for i, candidate := range response.Candidates {
choice := openai.TextResponseChoice{
Index: i,
Message: model.Message{
Role: "assistant",
},
FinishReason: constant.StopFinishReason,
}
if len(candidate.Content.Parts) > 0 {
if candidate.Content.Parts[0].FunctionCall != nil {
choice.Message.ToolCalls = getToolCalls(&candidate)
} else {
choice.Message.Content = candidate.Content.Parts[0].Text
}
} else {
choice.Message.Content = ""
choice.FinishReason = candidate.FinishReason
}
fullTextResponse.Choices = append(fullTextResponse.Choices, choice)
}
return &fullTextResponse
}
func streamResponseGeminiChat2OpenAI(geminiResponse *ChatResponse) *openai.ChatCompletionsStreamResponse {
var choice openai.ChatCompletionsStreamResponseChoice
choice.Delta.Content = geminiResponse.GetResponseText()
//choice.FinishReason = &constant.StopFinishReason
var response openai.ChatCompletionsStreamResponse
response.Id = fmt.Sprintf("chatcmpl-%s", random.GetUUID())
response.Created = helper.GetTimestamp()
response.Object = "chat.completion.chunk"
response.Model = "gemini"
response.Choices = []openai.ChatCompletionsStreamResponseChoice{choice}
return &response
}
func embeddingResponseGemini2OpenAI(response *EmbeddingResponse) *openai.EmbeddingResponse {
openAIEmbeddingResponse := openai.EmbeddingResponse{
Object: "list",
Data: make([]openai.EmbeddingResponseItem, 0, len(response.Embeddings)),
Model: "gemini-embedding",
Usage: model.Usage{TotalTokens: 0},
}
for _, item := range response.Embeddings {
openAIEmbeddingResponse.Data = append(openAIEmbeddingResponse.Data, openai.EmbeddingResponseItem{
Object: `embedding`,
Index: 0,
Embedding: item.Values,
})
}
return &openAIEmbeddingResponse
}
func StreamHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, string) {
responseText := ""
scanner := bufio.NewScanner(resp.Body)
scanner.Split(bufio.ScanLines)
common.SetEventStreamHeaders(c)
for scanner.Scan() {
data := scanner.Text()
data = strings.TrimSpace(data)
if !strings.HasPrefix(data, "data: ") {
continue
}
data = strings.TrimPrefix(data, "data: ")
data = strings.TrimSuffix(data, "\"")
var geminiResponse ChatResponse
err := json.Unmarshal([]byte(data), &geminiResponse)
if err != nil {
logger.SysError("error unmarshalling stream response: " + err.Error())
continue
}
response := streamResponseGeminiChat2OpenAI(&geminiResponse)
if response == nil {
continue
}
responseText += response.Choices[0].Delta.StringContent()
err = render.ObjectData(c, response)
if err != nil {
logger.SysError(err.Error())
}
}
if err := scanner.Err(); err != nil {
logger.SysError("error reading stream: " + err.Error())
}
render.Done(c)
err := resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), ""
}
return nil, responseText
}
func Handler(c *gin.Context, resp *http.Response, promptTokens int, modelName string) (*model.ErrorWithStatusCode, *model.Usage) {
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
var geminiResponse ChatResponse
err = json.Unmarshal(responseBody, &geminiResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
if len(geminiResponse.Candidates) == 0 {
return &model.ErrorWithStatusCode{
Error: model.Error{
Message: "No candidates returned",
Type: "server_error",
Param: "",
Code: 500,
},
StatusCode: resp.StatusCode,
}, nil
}
fullTextResponse := responseGeminiChat2OpenAI(&geminiResponse)
fullTextResponse.Model = modelName
completionTokens := openai.CountTokenText(geminiResponse.GetResponseText(), modelName)
usage := model.Usage{
PromptTokens: promptTokens,
CompletionTokens: completionTokens,
TotalTokens: promptTokens + completionTokens,
}
fullTextResponse.Usage = usage
jsonResponse, err := json.Marshal(fullTextResponse)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, err = c.Writer.Write(jsonResponse)
return nil, &usage
}
func EmbeddingHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
var geminiEmbeddingResponse EmbeddingResponse
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
err = json.Unmarshal(responseBody, &geminiEmbeddingResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
if geminiEmbeddingResponse.Error != nil {
return &model.ErrorWithStatusCode{
Error: model.Error{
Message: geminiEmbeddingResponse.Error.Message,
Type: "gemini_error",
Param: "",
Code: geminiEmbeddingResponse.Error.Code,
},
StatusCode: resp.StatusCode,
}, nil
}
fullTextResponse := embeddingResponseGemini2OpenAI(&geminiEmbeddingResponse)
jsonResponse, err := json.Marshal(fullTextResponse)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, err = c.Writer.Write(jsonResponse)
return nil, &fullTextResponse.Usage
}