* refactor: abusing goroutines * fix: trim data prefix * refactor: move functions to render package * refactor: add back trim & flush --------- Co-authored-by: JustSong <quanpengsong@gmail.com>
405 lines
12 KiB
Go
405 lines
12 KiB
Go
package gemini
|
|
|
|
import (
|
|
"bufio"
|
|
"encoding/json"
|
|
"fmt"
|
|
"github.com/songquanpeng/one-api/common/render"
|
|
"io"
|
|
"net/http"
|
|
"strings"
|
|
|
|
"github.com/songquanpeng/one-api/common"
|
|
"github.com/songquanpeng/one-api/common/config"
|
|
"github.com/songquanpeng/one-api/common/helper"
|
|
"github.com/songquanpeng/one-api/common/image"
|
|
"github.com/songquanpeng/one-api/common/logger"
|
|
"github.com/songquanpeng/one-api/common/random"
|
|
"github.com/songquanpeng/one-api/relay/adaptor/openai"
|
|
"github.com/songquanpeng/one-api/relay/constant"
|
|
"github.com/songquanpeng/one-api/relay/model"
|
|
|
|
"github.com/gin-gonic/gin"
|
|
)
|
|
|
|
// https://ai.google.dev/docs/gemini_api_overview?hl=zh-cn
|
|
|
|
const (
|
|
VisionMaxImageNum = 16
|
|
)
|
|
|
|
// Setting safety to the lowest possible values since Gemini is already powerless enough
|
|
func ConvertRequest(textRequest model.GeneralOpenAIRequest) *ChatRequest {
|
|
geminiRequest := ChatRequest{
|
|
Contents: make([]ChatContent, 0, len(textRequest.Messages)),
|
|
SafetySettings: []ChatSafetySettings{
|
|
{
|
|
Category: "HARM_CATEGORY_HARASSMENT",
|
|
Threshold: config.GeminiSafetySetting,
|
|
},
|
|
{
|
|
Category: "HARM_CATEGORY_HATE_SPEECH",
|
|
Threshold: config.GeminiSafetySetting,
|
|
},
|
|
{
|
|
Category: "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
|
Threshold: config.GeminiSafetySetting,
|
|
},
|
|
{
|
|
Category: "HARM_CATEGORY_DANGEROUS_CONTENT",
|
|
Threshold: config.GeminiSafetySetting,
|
|
},
|
|
},
|
|
GenerationConfig: ChatGenerationConfig{
|
|
Temperature: textRequest.Temperature,
|
|
TopP: textRequest.TopP,
|
|
MaxOutputTokens: textRequest.MaxTokens,
|
|
},
|
|
}
|
|
if textRequest.Tools != nil {
|
|
functions := make([]model.Function, 0, len(textRequest.Tools))
|
|
for _, tool := range textRequest.Tools {
|
|
functions = append(functions, tool.Function)
|
|
}
|
|
geminiRequest.Tools = []ChatTools{
|
|
{
|
|
FunctionDeclarations: functions,
|
|
},
|
|
}
|
|
} else if textRequest.Functions != nil {
|
|
geminiRequest.Tools = []ChatTools{
|
|
{
|
|
FunctionDeclarations: textRequest.Functions,
|
|
},
|
|
}
|
|
}
|
|
shouldAddDummyModelMessage := false
|
|
for _, message := range textRequest.Messages {
|
|
content := ChatContent{
|
|
Role: message.Role,
|
|
Parts: []Part{
|
|
{
|
|
Text: message.StringContent(),
|
|
},
|
|
},
|
|
}
|
|
openaiContent := message.ParseContent()
|
|
var parts []Part
|
|
imageNum := 0
|
|
for _, part := range openaiContent {
|
|
if part.Type == model.ContentTypeText {
|
|
parts = append(parts, Part{
|
|
Text: part.Text,
|
|
})
|
|
} else if part.Type == model.ContentTypeImageURL {
|
|
imageNum += 1
|
|
if imageNum > VisionMaxImageNum {
|
|
continue
|
|
}
|
|
mimeType, data, _ := image.GetImageFromUrl(part.ImageURL.Url)
|
|
parts = append(parts, Part{
|
|
InlineData: &InlineData{
|
|
MimeType: mimeType,
|
|
Data: data,
|
|
},
|
|
})
|
|
}
|
|
}
|
|
content.Parts = parts
|
|
|
|
// there's no assistant role in gemini and API shall vomit if Role is not user or model
|
|
if content.Role == "assistant" {
|
|
content.Role = "model"
|
|
}
|
|
// Converting system prompt to prompt from user for the same reason
|
|
if content.Role == "system" {
|
|
content.Role = "user"
|
|
shouldAddDummyModelMessage = true
|
|
}
|
|
geminiRequest.Contents = append(geminiRequest.Contents, content)
|
|
|
|
// If a system message is the last message, we need to add a dummy model message to make gemini happy
|
|
if shouldAddDummyModelMessage {
|
|
geminiRequest.Contents = append(geminiRequest.Contents, ChatContent{
|
|
Role: "model",
|
|
Parts: []Part{
|
|
{
|
|
Text: "Okay",
|
|
},
|
|
},
|
|
})
|
|
shouldAddDummyModelMessage = false
|
|
}
|
|
}
|
|
|
|
return &geminiRequest
|
|
}
|
|
|
|
func ConvertEmbeddingRequest(request model.GeneralOpenAIRequest) *BatchEmbeddingRequest {
|
|
inputs := request.ParseInput()
|
|
requests := make([]EmbeddingRequest, len(inputs))
|
|
model := fmt.Sprintf("models/%s", request.Model)
|
|
|
|
for i, input := range inputs {
|
|
requests[i] = EmbeddingRequest{
|
|
Model: model,
|
|
Content: ChatContent{
|
|
Parts: []Part{
|
|
{
|
|
Text: input,
|
|
},
|
|
},
|
|
},
|
|
}
|
|
}
|
|
|
|
return &BatchEmbeddingRequest{
|
|
Requests: requests,
|
|
}
|
|
}
|
|
|
|
type ChatResponse struct {
|
|
Candidates []ChatCandidate `json:"candidates"`
|
|
PromptFeedback ChatPromptFeedback `json:"promptFeedback"`
|
|
}
|
|
|
|
func (g *ChatResponse) GetResponseText() string {
|
|
if g == nil {
|
|
return ""
|
|
}
|
|
if len(g.Candidates) > 0 && len(g.Candidates[0].Content.Parts) > 0 {
|
|
return g.Candidates[0].Content.Parts[0].Text
|
|
}
|
|
return ""
|
|
}
|
|
|
|
type ChatCandidate struct {
|
|
Content ChatContent `json:"content"`
|
|
FinishReason string `json:"finishReason"`
|
|
Index int64 `json:"index"`
|
|
SafetyRatings []ChatSafetyRating `json:"safetyRatings"`
|
|
}
|
|
|
|
type ChatSafetyRating struct {
|
|
Category string `json:"category"`
|
|
Probability string `json:"probability"`
|
|
}
|
|
|
|
type ChatPromptFeedback struct {
|
|
SafetyRatings []ChatSafetyRating `json:"safetyRatings"`
|
|
}
|
|
|
|
func getToolCalls(candidate *ChatCandidate) []model.Tool {
|
|
var toolCalls []model.Tool
|
|
|
|
item := candidate.Content.Parts[0]
|
|
if item.FunctionCall == nil {
|
|
return toolCalls
|
|
}
|
|
argsBytes, err := json.Marshal(item.FunctionCall.Arguments)
|
|
if err != nil {
|
|
logger.FatalLog("getToolCalls failed: " + err.Error())
|
|
return toolCalls
|
|
}
|
|
toolCall := model.Tool{
|
|
Id: fmt.Sprintf("call_%s", random.GetUUID()),
|
|
Type: "function",
|
|
Function: model.Function{
|
|
Arguments: string(argsBytes),
|
|
Name: item.FunctionCall.FunctionName,
|
|
},
|
|
}
|
|
toolCalls = append(toolCalls, toolCall)
|
|
return toolCalls
|
|
}
|
|
|
|
func responseGeminiChat2OpenAI(response *ChatResponse) *openai.TextResponse {
|
|
fullTextResponse := openai.TextResponse{
|
|
Id: fmt.Sprintf("chatcmpl-%s", random.GetUUID()),
|
|
Object: "chat.completion",
|
|
Created: helper.GetTimestamp(),
|
|
Choices: make([]openai.TextResponseChoice, 0, len(response.Candidates)),
|
|
}
|
|
for i, candidate := range response.Candidates {
|
|
choice := openai.TextResponseChoice{
|
|
Index: i,
|
|
Message: model.Message{
|
|
Role: "assistant",
|
|
},
|
|
FinishReason: constant.StopFinishReason,
|
|
}
|
|
if len(candidate.Content.Parts) > 0 {
|
|
if candidate.Content.Parts[0].FunctionCall != nil {
|
|
choice.Message.ToolCalls = getToolCalls(&candidate)
|
|
} else {
|
|
choice.Message.Content = candidate.Content.Parts[0].Text
|
|
}
|
|
} else {
|
|
choice.Message.Content = ""
|
|
choice.FinishReason = candidate.FinishReason
|
|
}
|
|
fullTextResponse.Choices = append(fullTextResponse.Choices, choice)
|
|
}
|
|
return &fullTextResponse
|
|
}
|
|
|
|
func streamResponseGeminiChat2OpenAI(geminiResponse *ChatResponse) *openai.ChatCompletionsStreamResponse {
|
|
var choice openai.ChatCompletionsStreamResponseChoice
|
|
choice.Delta.Content = geminiResponse.GetResponseText()
|
|
//choice.FinishReason = &constant.StopFinishReason
|
|
var response openai.ChatCompletionsStreamResponse
|
|
response.Id = fmt.Sprintf("chatcmpl-%s", random.GetUUID())
|
|
response.Created = helper.GetTimestamp()
|
|
response.Object = "chat.completion.chunk"
|
|
response.Model = "gemini"
|
|
response.Choices = []openai.ChatCompletionsStreamResponseChoice{choice}
|
|
return &response
|
|
}
|
|
|
|
func embeddingResponseGemini2OpenAI(response *EmbeddingResponse) *openai.EmbeddingResponse {
|
|
openAIEmbeddingResponse := openai.EmbeddingResponse{
|
|
Object: "list",
|
|
Data: make([]openai.EmbeddingResponseItem, 0, len(response.Embeddings)),
|
|
Model: "gemini-embedding",
|
|
Usage: model.Usage{TotalTokens: 0},
|
|
}
|
|
for _, item := range response.Embeddings {
|
|
openAIEmbeddingResponse.Data = append(openAIEmbeddingResponse.Data, openai.EmbeddingResponseItem{
|
|
Object: `embedding`,
|
|
Index: 0,
|
|
Embedding: item.Values,
|
|
})
|
|
}
|
|
return &openAIEmbeddingResponse
|
|
}
|
|
|
|
func StreamHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, string) {
|
|
responseText := ""
|
|
scanner := bufio.NewScanner(resp.Body)
|
|
scanner.Split(bufio.ScanLines)
|
|
|
|
common.SetEventStreamHeaders(c)
|
|
|
|
for scanner.Scan() {
|
|
data := scanner.Text()
|
|
data = strings.TrimSpace(data)
|
|
if !strings.HasPrefix(data, "data: ") {
|
|
continue
|
|
}
|
|
data = strings.TrimPrefix(data, "data: ")
|
|
data = strings.TrimSuffix(data, "\"")
|
|
|
|
var geminiResponse ChatResponse
|
|
err := json.Unmarshal([]byte(data), &geminiResponse)
|
|
if err != nil {
|
|
logger.SysError("error unmarshalling stream response: " + err.Error())
|
|
continue
|
|
}
|
|
|
|
response := streamResponseGeminiChat2OpenAI(&geminiResponse)
|
|
if response == nil {
|
|
continue
|
|
}
|
|
|
|
responseText += response.Choices[0].Delta.StringContent()
|
|
|
|
err = render.ObjectData(c, response)
|
|
if err != nil {
|
|
logger.SysError(err.Error())
|
|
}
|
|
}
|
|
|
|
if err := scanner.Err(); err != nil {
|
|
logger.SysError("error reading stream: " + err.Error())
|
|
}
|
|
|
|
render.Done(c)
|
|
|
|
err := resp.Body.Close()
|
|
if err != nil {
|
|
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), ""
|
|
}
|
|
|
|
return nil, responseText
|
|
}
|
|
|
|
func Handler(c *gin.Context, resp *http.Response, promptTokens int, modelName string) (*model.ErrorWithStatusCode, *model.Usage) {
|
|
responseBody, err := io.ReadAll(resp.Body)
|
|
if err != nil {
|
|
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
|
|
}
|
|
err = resp.Body.Close()
|
|
if err != nil {
|
|
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
|
|
}
|
|
var geminiResponse ChatResponse
|
|
err = json.Unmarshal(responseBody, &geminiResponse)
|
|
if err != nil {
|
|
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
|
|
}
|
|
if len(geminiResponse.Candidates) == 0 {
|
|
return &model.ErrorWithStatusCode{
|
|
Error: model.Error{
|
|
Message: "No candidates returned",
|
|
Type: "server_error",
|
|
Param: "",
|
|
Code: 500,
|
|
},
|
|
StatusCode: resp.StatusCode,
|
|
}, nil
|
|
}
|
|
fullTextResponse := responseGeminiChat2OpenAI(&geminiResponse)
|
|
fullTextResponse.Model = modelName
|
|
completionTokens := openai.CountTokenText(geminiResponse.GetResponseText(), modelName)
|
|
usage := model.Usage{
|
|
PromptTokens: promptTokens,
|
|
CompletionTokens: completionTokens,
|
|
TotalTokens: promptTokens + completionTokens,
|
|
}
|
|
fullTextResponse.Usage = usage
|
|
jsonResponse, err := json.Marshal(fullTextResponse)
|
|
if err != nil {
|
|
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
|
|
}
|
|
c.Writer.Header().Set("Content-Type", "application/json")
|
|
c.Writer.WriteHeader(resp.StatusCode)
|
|
_, err = c.Writer.Write(jsonResponse)
|
|
return nil, &usage
|
|
}
|
|
|
|
func EmbeddingHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
|
|
var geminiEmbeddingResponse EmbeddingResponse
|
|
responseBody, err := io.ReadAll(resp.Body)
|
|
if err != nil {
|
|
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
|
|
}
|
|
err = resp.Body.Close()
|
|
if err != nil {
|
|
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
|
|
}
|
|
err = json.Unmarshal(responseBody, &geminiEmbeddingResponse)
|
|
if err != nil {
|
|
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
|
|
}
|
|
if geminiEmbeddingResponse.Error != nil {
|
|
return &model.ErrorWithStatusCode{
|
|
Error: model.Error{
|
|
Message: geminiEmbeddingResponse.Error.Message,
|
|
Type: "gemini_error",
|
|
Param: "",
|
|
Code: geminiEmbeddingResponse.Error.Code,
|
|
},
|
|
StatusCode: resp.StatusCode,
|
|
}, nil
|
|
}
|
|
fullTextResponse := embeddingResponseGemini2OpenAI(&geminiEmbeddingResponse)
|
|
jsonResponse, err := json.Marshal(fullTextResponse)
|
|
if err != nil {
|
|
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
|
|
}
|
|
c.Writer.Header().Set("Content-Type", "application/json")
|
|
c.Writer.WriteHeader(resp.StatusCode)
|
|
_, err = c.Writer.Write(jsonResponse)
|
|
return nil, &fullTextResponse.Usage
|
|
}
|