ai-gateway/relay/adaptor/openai/token.go
TAKO 296ab013b8
feat: support gpt-4o mini (#1665)
* feat: support gpt-4o mini

* feat: fix gpt-4o mini image price
2024-07-22 22:44:08 +08:00

233 lines
7.3 KiB
Go

package openai
import (
"errors"
"fmt"
"github.com/pkoukk/tiktoken-go"
"github.com/songquanpeng/one-api/common/config"
"github.com/songquanpeng/one-api/common/image"
"github.com/songquanpeng/one-api/common/logger"
billingratio "github.com/songquanpeng/one-api/relay/billing/ratio"
"github.com/songquanpeng/one-api/relay/model"
"math"
"strings"
)
// tokenEncoderMap won't grow after initialization
var tokenEncoderMap = map[string]*tiktoken.Tiktoken{}
var defaultTokenEncoder *tiktoken.Tiktoken
func InitTokenEncoders() {
logger.SysLog("initializing token encoders")
gpt35TokenEncoder, err := tiktoken.EncodingForModel("gpt-3.5-turbo")
if err != nil {
logger.FatalLog(fmt.Sprintf("failed to get gpt-3.5-turbo token encoder: %s", err.Error()))
}
defaultTokenEncoder = gpt35TokenEncoder
gpt4oTokenEncoder, err := tiktoken.EncodingForModel("gpt-4o")
if err != nil {
logger.FatalLog(fmt.Sprintf("failed to get gpt-4o token encoder: %s", err.Error()))
}
gpt4TokenEncoder, err := tiktoken.EncodingForModel("gpt-4")
if err != nil {
logger.FatalLog(fmt.Sprintf("failed to get gpt-4 token encoder: %s", err.Error()))
}
for model := range billingratio.ModelRatio {
if strings.HasPrefix(model, "gpt-3.5") {
tokenEncoderMap[model] = gpt35TokenEncoder
} else if strings.HasPrefix(model, "gpt-4o") {
tokenEncoderMap[model] = gpt4oTokenEncoder
} else if strings.HasPrefix(model, "gpt-4") {
tokenEncoderMap[model] = gpt4TokenEncoder
} else {
tokenEncoderMap[model] = nil
}
}
logger.SysLog("token encoders initialized")
}
func getTokenEncoder(model string) *tiktoken.Tiktoken {
tokenEncoder, ok := tokenEncoderMap[model]
if ok && tokenEncoder != nil {
return tokenEncoder
}
if ok {
tokenEncoder, err := tiktoken.EncodingForModel(model)
if err != nil {
logger.SysError(fmt.Sprintf("failed to get token encoder for model %s: %s, using encoder for gpt-3.5-turbo", model, err.Error()))
tokenEncoder = defaultTokenEncoder
}
tokenEncoderMap[model] = tokenEncoder
return tokenEncoder
}
return defaultTokenEncoder
}
func getTokenNum(tokenEncoder *tiktoken.Tiktoken, text string) int {
if config.ApproximateTokenEnabled {
return int(float64(len(text)) * 0.38)
}
return len(tokenEncoder.Encode(text, nil, nil))
}
func CountTokenMessages(messages []model.Message, model string) int {
tokenEncoder := getTokenEncoder(model)
// Reference:
// https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
// https://github.com/pkoukk/tiktoken-go/issues/6
//
// Every message follows <|start|>{role/name}\n{content}<|end|>\n
var tokensPerMessage int
var tokensPerName int
if model == "gpt-3.5-turbo-0301" {
tokensPerMessage = 4
tokensPerName = -1 // If there's a name, the role is omitted
} else {
tokensPerMessage = 3
tokensPerName = 1
}
tokenNum := 0
for _, message := range messages {
tokenNum += tokensPerMessage
switch v := message.Content.(type) {
case string:
tokenNum += getTokenNum(tokenEncoder, v)
case []any:
for _, it := range v {
m := it.(map[string]any)
switch m["type"] {
case "text":
if textValue, ok := m["text"]; ok {
if textString, ok := textValue.(string); ok {
tokenNum += getTokenNum(tokenEncoder, textString)
}
}
case "image_url":
imageUrl, ok := m["image_url"].(map[string]any)
if ok {
url := imageUrl["url"].(string)
detail := ""
if imageUrl["detail"] != nil {
detail = imageUrl["detail"].(string)
}
imageTokens, err := countImageTokens(url, detail, model)
if err != nil {
logger.SysError("error counting image tokens: " + err.Error())
} else {
tokenNum += imageTokens
}
}
}
}
}
tokenNum += getTokenNum(tokenEncoder, message.Role)
if message.Name != nil {
tokenNum += tokensPerName
tokenNum += getTokenNum(tokenEncoder, *message.Name)
}
}
tokenNum += 3 // Every reply is primed with <|start|>assistant<|message|>
return tokenNum
}
const (
lowDetailCost = 85
highDetailCostPerTile = 170
additionalCost = 85
// gpt-4o-mini cost higher than other model
gpt4oMiniLowDetailCost = 2833
gpt4oMiniHighDetailCost = 5667
gpt4oMiniAdditionalCost = 2833
)
// https://platform.openai.com/docs/guides/vision/calculating-costs
// https://github.com/openai/openai-cookbook/blob/05e3f9be4c7a2ae7ecf029a7c32065b024730ebe/examples/How_to_count_tokens_with_tiktoken.ipynb
func countImageTokens(url string, detail string, model string) (_ int, err error) {
var fetchSize = true
var width, height int
// Reference: https://platform.openai.com/docs/guides/vision/low-or-high-fidelity-image-understanding
// detail == "auto" is undocumented on how it works, it just said the model will use the auto setting which will look at the image input size and decide if it should use the low or high setting.
// According to the official guide, "low" disable the high-res model,
// and only receive low-res 512px x 512px version of the image, indicating
// that image is treated as low-res when size is smaller than 512px x 512px,
// then we can assume that image size larger than 512px x 512px is treated
// as high-res. Then we have the following logic:
// if detail == "" || detail == "auto" {
// width, height, err = image.GetImageSize(url)
// if err != nil {
// return 0, err
// }
// fetchSize = false
// // not sure if this is correct
// if width > 512 || height > 512 {
// detail = "high"
// } else {
// detail = "low"
// }
// }
// However, in my test, it seems to be always the same as "high".
// The following image, which is 125x50, is still treated as high-res, taken
// 255 tokens in the response of non-stream chat completion api.
// https://upload.wikimedia.org/wikipedia/commons/1/10/18_Infantry_Division_Messina.jpg
if detail == "" || detail == "auto" {
// assume by test, not sure if this is correct
detail = "high"
}
switch detail {
case "low":
if strings.HasPrefix(model, "gpt-4o-mini") {
return gpt4oMiniLowDetailCost, nil
}
return lowDetailCost, nil
case "high":
if fetchSize {
width, height, err = image.GetImageSize(url)
if err != nil {
return 0, err
}
}
if width > 2048 || height > 2048 { // max(width, height) > 2048
ratio := float64(2048) / math.Max(float64(width), float64(height))
width = int(float64(width) * ratio)
height = int(float64(height) * ratio)
}
if width > 768 && height > 768 { // min(width, height) > 768
ratio := float64(768) / math.Min(float64(width), float64(height))
width = int(float64(width) * ratio)
height = int(float64(height) * ratio)
}
numSquares := int(math.Ceil(float64(width)/512) * math.Ceil(float64(height)/512))
if strings.HasPrefix(model, "gpt-4o-mini") {
return numSquares*gpt4oMiniHighDetailCost + gpt4oMiniAdditionalCost, nil
}
result := numSquares*highDetailCostPerTile + additionalCost
return result, nil
default:
return 0, errors.New("invalid detail option")
}
}
func CountTokenInput(input any, model string) int {
switch v := input.(type) {
case string:
return CountTokenText(v, model)
case []string:
text := ""
for _, s := range v {
text += s
}
return CountTokenText(text, model)
}
return 0
}
func CountTokenText(text string, model string) int {
tokenEncoder := getTokenEncoder(model)
return getTokenNum(tokenEncoder, text)
}
func CountToken(text string) int {
return CountTokenInput(text, "gpt-3.5-turbo")
}