ai-gateway/relay/adaptor/aws/llama3/main.go
Qiying Wang 720fe2dfeb
feat: refactor AwsClaude to Aws to support both llama3 and claude (#1601)
* feat: refactor AwsClaude to Aws to support both llama3 and claude

* fix: aws llama3 ratio
2024-07-06 13:19:41 +08:00

232 lines
7.1 KiB
Go

// Package aws provides the AWS adaptor for the relay service.
package aws
import (
"bytes"
"encoding/json"
"fmt"
"io"
"net/http"
"text/template"
"github.com/songquanpeng/one-api/common/ctxkey"
"github.com/songquanpeng/one-api/common/random"
"github.com/aws/aws-sdk-go-v2/aws"
"github.com/aws/aws-sdk-go-v2/service/bedrockruntime"
"github.com/aws/aws-sdk-go-v2/service/bedrockruntime/types"
"github.com/gin-gonic/gin"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/helper"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/relay/adaptor/aws/utils"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
relaymodel "github.com/songquanpeng/one-api/relay/model"
)
// Only support llama-3-8b and llama-3-70b instruction models
// https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html
var AwsModelIDMap = map[string]string{
"llama3-8b-8192": "meta.llama3-8b-instruct-v1:0",
"llama3-70b-8192": "meta.llama3-70b-instruct-v1:0",
}
func awsModelID(requestModel string) (string, error) {
if awsModelID, ok := AwsModelIDMap[requestModel]; ok {
return awsModelID, nil
}
return "", errors.Errorf("model %s not found", requestModel)
}
// promptTemplate with range
const promptTemplate = `<|begin_of_text|>{{range .Messages}}<|start_header_id|>{{.Role}}<|end_header_id|>{{.StringContent}}<|eot_id|>{{end}}<|start_header_id|>assistant<|end_header_id|>
`
var promptTpl = template.Must(template.New("llama3-chat").Parse(promptTemplate))
func RenderPrompt(messages []relaymodel.Message) string {
var buf bytes.Buffer
err := promptTpl.Execute(&buf, struct{ Messages []relaymodel.Message }{messages})
if err != nil {
logger.SysError("error rendering prompt messages: " + err.Error())
}
return buf.String()
}
func ConvertRequest(textRequest relaymodel.GeneralOpenAIRequest) *Request {
llamaRequest := Request{
MaxGenLen: textRequest.MaxTokens,
Temperature: textRequest.Temperature,
TopP: textRequest.TopP,
}
if llamaRequest.MaxGenLen == 0 {
llamaRequest.MaxGenLen = 2048
}
prompt := RenderPrompt(textRequest.Messages)
llamaRequest.Prompt = prompt
return &llamaRequest
}
func Handler(c *gin.Context, awsCli *bedrockruntime.Client, modelName string) (*relaymodel.ErrorWithStatusCode, *relaymodel.Usage) {
awsModelId, err := awsModelID(c.GetString(ctxkey.RequestModel))
if err != nil {
return utils.WrapErr(errors.Wrap(err, "awsModelID")), nil
}
awsReq := &bedrockruntime.InvokeModelInput{
ModelId: aws.String(awsModelId),
Accept: aws.String("application/json"),
ContentType: aws.String("application/json"),
}
llamaReq, ok := c.Get(ctxkey.ConvertedRequest)
if !ok {
return utils.WrapErr(errors.New("request not found")), nil
}
awsReq.Body, err = json.Marshal(llamaReq)
if err != nil {
return utils.WrapErr(errors.Wrap(err, "marshal request")), nil
}
awsResp, err := awsCli.InvokeModel(c.Request.Context(), awsReq)
if err != nil {
return utils.WrapErr(errors.Wrap(err, "InvokeModel")), nil
}
var llamaResponse Response
err = json.Unmarshal(awsResp.Body, &llamaResponse)
if err != nil {
return utils.WrapErr(errors.Wrap(err, "unmarshal response")), nil
}
openaiResp := ResponseLlama2OpenAI(&llamaResponse)
openaiResp.Model = modelName
usage := relaymodel.Usage{
PromptTokens: llamaResponse.PromptTokenCount,
CompletionTokens: llamaResponse.GenerationTokenCount,
TotalTokens: llamaResponse.PromptTokenCount + llamaResponse.GenerationTokenCount,
}
openaiResp.Usage = usage
c.JSON(http.StatusOK, openaiResp)
return nil, &usage
}
func ResponseLlama2OpenAI(llamaResponse *Response) *openai.TextResponse {
var responseText string
if len(llamaResponse.Generation) > 0 {
responseText = llamaResponse.Generation
}
choice := openai.TextResponseChoice{
Index: 0,
Message: relaymodel.Message{
Role: "assistant",
Content: responseText,
Name: nil,
},
FinishReason: llamaResponse.StopReason,
}
fullTextResponse := openai.TextResponse{
Id: fmt.Sprintf("chatcmpl-%s", random.GetUUID()),
Object: "chat.completion",
Created: helper.GetTimestamp(),
Choices: []openai.TextResponseChoice{choice},
}
return &fullTextResponse
}
func StreamHandler(c *gin.Context, awsCli *bedrockruntime.Client) (*relaymodel.ErrorWithStatusCode, *relaymodel.Usage) {
createdTime := helper.GetTimestamp()
awsModelId, err := awsModelID(c.GetString(ctxkey.RequestModel))
if err != nil {
return utils.WrapErr(errors.Wrap(err, "awsModelID")), nil
}
awsReq := &bedrockruntime.InvokeModelWithResponseStreamInput{
ModelId: aws.String(awsModelId),
Accept: aws.String("application/json"),
ContentType: aws.String("application/json"),
}
llamaReq, ok := c.Get(ctxkey.ConvertedRequest)
if !ok {
return utils.WrapErr(errors.New("request not found")), nil
}
awsReq.Body, err = json.Marshal(llamaReq)
if err != nil {
return utils.WrapErr(errors.Wrap(err, "marshal request")), nil
}
awsResp, err := awsCli.InvokeModelWithResponseStream(c.Request.Context(), awsReq)
if err != nil {
return utils.WrapErr(errors.Wrap(err, "InvokeModelWithResponseStream")), nil
}
stream := awsResp.GetStream()
defer stream.Close()
c.Writer.Header().Set("Content-Type", "text/event-stream")
var usage relaymodel.Usage
c.Stream(func(w io.Writer) bool {
event, ok := <-stream.Events()
if !ok {
c.Render(-1, common.CustomEvent{Data: "data: [DONE]"})
return false
}
switch v := event.(type) {
case *types.ResponseStreamMemberChunk:
var llamaResp StreamResponse
err := json.NewDecoder(bytes.NewReader(v.Value.Bytes)).Decode(&llamaResp)
if err != nil {
logger.SysError("error unmarshalling stream response: " + err.Error())
return false
}
if llamaResp.PromptTokenCount > 0 {
usage.PromptTokens = llamaResp.PromptTokenCount
}
if llamaResp.StopReason == "stop" {
usage.CompletionTokens = llamaResp.GenerationTokenCount
usage.TotalTokens = usage.PromptTokens + usage.CompletionTokens
}
response := StreamResponseLlama2OpenAI(&llamaResp)
response.Id = fmt.Sprintf("chatcmpl-%s", random.GetUUID())
response.Model = c.GetString(ctxkey.OriginalModel)
response.Created = createdTime
jsonStr, err := json.Marshal(response)
if err != nil {
logger.SysError("error marshalling stream response: " + err.Error())
return true
}
c.Render(-1, common.CustomEvent{Data: "data: " + string(jsonStr)})
return true
case *types.UnknownUnionMember:
fmt.Println("unknown tag:", v.Tag)
return false
default:
fmt.Println("union is nil or unknown type")
return false
}
})
return nil, &usage
}
func StreamResponseLlama2OpenAI(llamaResponse *StreamResponse) *openai.ChatCompletionsStreamResponse {
var choice openai.ChatCompletionsStreamResponseChoice
choice.Delta.Content = llamaResponse.Generation
choice.Delta.Role = "assistant"
finishReason := llamaResponse.StopReason
if finishReason != "null" {
choice.FinishReason = &finishReason
}
var openaiResponse openai.ChatCompletionsStreamResponse
openaiResponse.Object = "chat.completion.chunk"
openaiResponse.Choices = []openai.ChatCompletionsStreamResponseChoice{choice}
return &openaiResponse
}