package openai import ( "errors" "fmt" "github.com/pkoukk/tiktoken-go" "github.com/songquanpeng/one-api/common" "github.com/songquanpeng/one-api/common/config" "github.com/songquanpeng/one-api/common/image" "github.com/songquanpeng/one-api/common/logger" "math" "strings" ) // tokenEncoderMap won't grow after initialization var tokenEncoderMap = map[string]*tiktoken.Tiktoken{} var defaultTokenEncoder *tiktoken.Tiktoken func InitTokenEncoders() { logger.SysLog("initializing token encoders") gpt35TokenEncoder, err := tiktoken.EncodingForModel("gpt-3.5-turbo") if err != nil { logger.FatalLog(fmt.Sprintf("failed to get gpt-3.5-turbo token encoder: %s", err.Error())) } defaultTokenEncoder = gpt35TokenEncoder gpt4TokenEncoder, err := tiktoken.EncodingForModel("gpt-4") if err != nil { logger.FatalLog(fmt.Sprintf("failed to get gpt-4 token encoder: %s", err.Error())) } for model := range common.ModelRatio { if strings.HasPrefix(model, "gpt-3.5") { tokenEncoderMap[model] = gpt35TokenEncoder } else if strings.HasPrefix(model, "gpt-4") { tokenEncoderMap[model] = gpt4TokenEncoder } else { tokenEncoderMap[model] = nil } } logger.SysLog("token encoders initialized") } func getTokenEncoder(model string) *tiktoken.Tiktoken { tokenEncoder, ok := tokenEncoderMap[model] if ok && tokenEncoder != nil { return tokenEncoder } if ok { tokenEncoder, err := tiktoken.EncodingForModel(model) if err != nil { logger.SysError(fmt.Sprintf("failed to get token encoder for model %s: %s, using encoder for gpt-3.5-turbo", model, err.Error())) tokenEncoder = defaultTokenEncoder } tokenEncoderMap[model] = tokenEncoder return tokenEncoder } return defaultTokenEncoder } func getTokenNum(tokenEncoder *tiktoken.Tiktoken, text string) int { if config.ApproximateTokenEnabled { return int(float64(len(text)) * 0.38) } return len(tokenEncoder.Encode(text, nil, nil)) } func CountTokenMessages(messages []Message, model string) int { tokenEncoder := getTokenEncoder(model) // Reference: // https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb // https://github.com/pkoukk/tiktoken-go/issues/6 // // Every message follows <|start|>{role/name}\n{content}<|end|>\n var tokensPerMessage int var tokensPerName int if model == "gpt-3.5-turbo-0301" { tokensPerMessage = 4 tokensPerName = -1 // If there's a name, the role is omitted } else { tokensPerMessage = 3 tokensPerName = 1 } tokenNum := 0 for _, message := range messages { tokenNum += tokensPerMessage switch v := message.Content.(type) { case string: tokenNum += getTokenNum(tokenEncoder, v) case []any: for _, it := range v { m := it.(map[string]any) switch m["type"] { case "text": tokenNum += getTokenNum(tokenEncoder, m["text"].(string)) case "image_url": imageUrl, ok := m["image_url"].(map[string]any) if ok { url := imageUrl["url"].(string) detail := "" if imageUrl["detail"] != nil { detail = imageUrl["detail"].(string) } imageTokens, err := countImageTokens(url, detail) if err != nil { logger.SysError("error counting image tokens: " + err.Error()) } else { tokenNum += imageTokens } } } } } tokenNum += getTokenNum(tokenEncoder, message.Role) if message.Name != nil { tokenNum += tokensPerName tokenNum += getTokenNum(tokenEncoder, *message.Name) } } tokenNum += 3 // Every reply is primed with <|start|>assistant<|message|> return tokenNum } const ( lowDetailCost = 85 highDetailCostPerTile = 170 additionalCost = 85 ) // https://platform.openai.com/docs/guides/vision/calculating-costs // https://github.com/openai/openai-cookbook/blob/05e3f9be4c7a2ae7ecf029a7c32065b024730ebe/examples/How_to_count_tokens_with_tiktoken.ipynb func countImageTokens(url string, detail string) (_ int, err error) { var fetchSize = true var width, height int // Reference: https://platform.openai.com/docs/guides/vision/low-or-high-fidelity-image-understanding // detail == "auto" is undocumented on how it works, it just said the model will use the auto setting which will look at the image input size and decide if it should use the low or high setting. // According to the official guide, "low" disable the high-res model, // and only receive low-res 512px x 512px version of the image, indicating // that image is treated as low-res when size is smaller than 512px x 512px, // then we can assume that image size larger than 512px x 512px is treated // as high-res. Then we have the following logic: // if detail == "" || detail == "auto" { // width, height, err = image.GetImageSize(url) // if err != nil { // return 0, err // } // fetchSize = false // // not sure if this is correct // if width > 512 || height > 512 { // detail = "high" // } else { // detail = "low" // } // } // However, in my test, it seems to be always the same as "high". // The following image, which is 125x50, is still treated as high-res, taken // 255 tokens in the response of non-stream chat completion api. // https://upload.wikimedia.org/wikipedia/commons/1/10/18_Infantry_Division_Messina.jpg if detail == "" || detail == "auto" { // assume by test, not sure if this is correct detail = "high" } switch detail { case "low": return lowDetailCost, nil case "high": if fetchSize { width, height, err = image.GetImageSize(url) if err != nil { return 0, err } } if width > 2048 || height > 2048 { // max(width, height) > 2048 ratio := float64(2048) / math.Max(float64(width), float64(height)) width = int(float64(width) * ratio) height = int(float64(height) * ratio) } if width > 768 && height > 768 { // min(width, height) > 768 ratio := float64(768) / math.Min(float64(width), float64(height)) width = int(float64(width) * ratio) height = int(float64(height) * ratio) } numSquares := int(math.Ceil(float64(width)/512) * math.Ceil(float64(height)/512)) result := numSquares*highDetailCostPerTile + additionalCost return result, nil default: return 0, errors.New("invalid detail option") } } func CountTokenInput(input any, model string) int { switch v := input.(type) { case string: return CountTokenText(v, model) case []string: text := "" for _, s := range v { text += s } return CountTokenText(text, model) } return 0 } func CountTokenText(text string, model string) int { tokenEncoder := getTokenEncoder(model) return getTokenNum(tokenEncoder, text) }