Merge branch 'main' into main
This commit is contained in:
commit
4716cfbf12
@ -67,6 +67,7 @@ _✨ 通过标准的 OpenAI API 格式访问所有的大模型,开箱即用
|
||||
+ [x] [OpenAI ChatGPT 系列模型](https://platform.openai.com/docs/guides/gpt/chat-completions-api)(支持 [Azure OpenAI API](https://learn.microsoft.com/en-us/azure/ai-services/openai/reference))
|
||||
+ [x] [Anthropic Claude 系列模型](https://anthropic.com)
|
||||
+ [x] [Google PaLM2/Gemini 系列模型](https://developers.generativeai.google)
|
||||
+ [x] [Mistral 系列模型](https://mistral.ai/)
|
||||
+ [x] [百度文心一言系列模型](https://cloud.baidu.com/doc/WENXINWORKSHOP/index.html)
|
||||
+ [x] [阿里通义千问系列模型](https://help.aliyun.com/document_detail/2400395.html)
|
||||
+ [x] [讯飞星火认知大模型](https://www.xfyun.cn/doc/spark/Web.html)
|
||||
|
@ -66,6 +66,7 @@ const (
|
||||
ChannelTypeMoonshot = 25
|
||||
ChannelTypeBaichuan = 26
|
||||
ChannelTypeMinimax = 27
|
||||
ChannelTypeMistral = 28
|
||||
)
|
||||
|
||||
var ChannelBaseURLs = []string{
|
||||
@ -97,6 +98,7 @@ var ChannelBaseURLs = []string{
|
||||
"https://api.moonshot.cn", // 25
|
||||
"https://api.baichuan-ai.com", // 26
|
||||
"https://api.minimax.chat", // 27
|
||||
"https://api.mistral.ai", // 28
|
||||
}
|
||||
|
||||
const (
|
||||
|
@ -7,29 +7,6 @@ import (
|
||||
"time"
|
||||
)
|
||||
|
||||
var DalleSizeRatios = map[string]map[string]float64{
|
||||
"dall-e-2": {
|
||||
"256x256": 1,
|
||||
"512x512": 1.125,
|
||||
"1024x1024": 1.25,
|
||||
},
|
||||
"dall-e-3": {
|
||||
"1024x1024": 1,
|
||||
"1024x1792": 2,
|
||||
"1792x1024": 2,
|
||||
},
|
||||
}
|
||||
|
||||
var DalleGenerationImageAmounts = map[string][2]int{
|
||||
"dall-e-2": {1, 10},
|
||||
"dall-e-3": {1, 1}, // OpenAI allows n=1 currently.
|
||||
}
|
||||
|
||||
var DalleImagePromptLengthLimitations = map[string]int{
|
||||
"dall-e-2": 1000,
|
||||
"dall-e-3": 4000,
|
||||
}
|
||||
|
||||
const (
|
||||
USD2RMB = 7
|
||||
USD = 500 // $0.002 = 1 -> $1 = 500
|
||||
@ -40,7 +17,6 @@ const (
|
||||
// https://platform.openai.com/docs/models/model-endpoint-compatibility
|
||||
// https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Blfmc9dlf
|
||||
// https://openai.com/pricing
|
||||
// TODO: when a new api is enabled, check the pricing here
|
||||
// 1 === $0.002 / 1K tokens
|
||||
// 1 === ¥0.014 / 1k tokens
|
||||
var ModelRatio = map[string]float64{
|
||||
@ -141,15 +117,29 @@ var ModelRatio = map[string]float64{
|
||||
"abab6-chat": 0.1 * RMB,
|
||||
"abab5.5-chat": 0.015 * RMB,
|
||||
"abab5.5s-chat": 0.005 * RMB,
|
||||
// https://docs.mistral.ai/platform/pricing/
|
||||
"open-mistral-7b": 0.25 / 1000 * USD,
|
||||
"open-mixtral-8x7b": 0.7 / 1000 * USD,
|
||||
"mistral-small-latest": 2.0 / 1000 * USD,
|
||||
"mistral-medium-latest": 2.7 / 1000 * USD,
|
||||
"mistral-large-latest": 8.0 / 1000 * USD,
|
||||
"mistral-embed": 0.1 / 1000 * USD,
|
||||
}
|
||||
|
||||
var CompletionRatio = map[string]float64{}
|
||||
|
||||
var DefaultModelRatio map[string]float64
|
||||
var DefaultCompletionRatio map[string]float64
|
||||
|
||||
func init() {
|
||||
DefaultModelRatio = make(map[string]float64)
|
||||
for k, v := range ModelRatio {
|
||||
DefaultModelRatio[k] = v
|
||||
}
|
||||
DefaultCompletionRatio = make(map[string]float64)
|
||||
for k, v := range CompletionRatio {
|
||||
DefaultCompletionRatio[k] = v
|
||||
}
|
||||
}
|
||||
|
||||
func ModelRatio2JSONString() string {
|
||||
@ -180,8 +170,6 @@ func GetModelRatio(name string) float64 {
|
||||
return ratio
|
||||
}
|
||||
|
||||
var CompletionRatio = map[string]float64{}
|
||||
|
||||
func CompletionRatio2JSONString() string {
|
||||
jsonBytes, err := json.Marshal(CompletionRatio)
|
||||
if err != nil {
|
||||
@ -199,6 +187,9 @@ func GetCompletionRatio(name string) float64 {
|
||||
if ratio, ok := CompletionRatio[name]; ok {
|
||||
return ratio
|
||||
}
|
||||
if ratio, ok := DefaultCompletionRatio[name]; ok {
|
||||
return ratio
|
||||
}
|
||||
if strings.HasPrefix(name, "gpt-3.5") {
|
||||
if strings.HasSuffix(name, "0125") {
|
||||
// https://openai.com/blog/new-embedding-models-and-api-updates
|
||||
@ -231,5 +222,8 @@ func GetCompletionRatio(name string) float64 {
|
||||
if strings.HasPrefix(name, "claude-2") {
|
||||
return 2.965517
|
||||
}
|
||||
if strings.HasPrefix(name, "mistral-") {
|
||||
return 3
|
||||
}
|
||||
return 1
|
||||
}
|
||||
|
8
common/random.go
Normal file
8
common/random.go
Normal file
@ -0,0 +1,8 @@
|
||||
package common
|
||||
|
||||
import "math/rand"
|
||||
|
||||
// RandRange returns a random number between min and max (max is not included)
|
||||
func RandRange(min, max int) int {
|
||||
return min + rand.Intn(max-min)
|
||||
}
|
@ -8,6 +8,7 @@ import (
|
||||
"github.com/songquanpeng/one-api/common"
|
||||
"github.com/songquanpeng/one-api/common/config"
|
||||
"github.com/songquanpeng/one-api/common/logger"
|
||||
"github.com/songquanpeng/one-api/middleware"
|
||||
"github.com/songquanpeng/one-api/model"
|
||||
"github.com/songquanpeng/one-api/relay/constant"
|
||||
"github.com/songquanpeng/one-api/relay/helper"
|
||||
@ -18,6 +19,7 @@ import (
|
||||
"net/http/httptest"
|
||||
"net/url"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
@ -51,6 +53,7 @@ func testChannel(channel *model.Channel) (err error, openaiErr *relaymodel.Error
|
||||
c.Request.Header.Set("Content-Type", "application/json")
|
||||
c.Set("channel", channel.Type)
|
||||
c.Set("base_url", channel.GetBaseURL())
|
||||
middleware.SetupContextForSelectedChannel(c, channel, "")
|
||||
meta := util.GetRelayMeta(c)
|
||||
apiType := constant.ChannelType2APIType(channel.Type)
|
||||
adaptor := helper.GetAdaptor(apiType)
|
||||
@ -59,6 +62,12 @@ func testChannel(channel *model.Channel) (err error, openaiErr *relaymodel.Error
|
||||
}
|
||||
adaptor.Init(meta)
|
||||
modelName := adaptor.GetModelList()[0]
|
||||
if !strings.Contains(channel.Models, modelName) {
|
||||
modelNames := strings.Split(channel.Models, ",")
|
||||
if len(modelNames) > 0 {
|
||||
modelName = modelNames[0]
|
||||
}
|
||||
}
|
||||
request := buildTestRequest()
|
||||
request.Model = modelName
|
||||
meta.OriginModelName, meta.ActualModelName = modelName, modelName
|
||||
|
@ -6,6 +6,7 @@ import (
|
||||
"github.com/songquanpeng/one-api/relay/channel/ai360"
|
||||
"github.com/songquanpeng/one-api/relay/channel/baichuan"
|
||||
"github.com/songquanpeng/one-api/relay/channel/minimax"
|
||||
"github.com/songquanpeng/one-api/relay/channel/mistral"
|
||||
"github.com/songquanpeng/one-api/relay/channel/moonshot"
|
||||
"github.com/songquanpeng/one-api/relay/constant"
|
||||
"github.com/songquanpeng/one-api/relay/helper"
|
||||
@ -122,6 +123,17 @@ func init() {
|
||||
Parent: nil,
|
||||
})
|
||||
}
|
||||
for _, modelName := range mistral.ModelList {
|
||||
openAIModels = append(openAIModels, OpenAIModels{
|
||||
Id: modelName,
|
||||
Object: "model",
|
||||
Created: 1626777600,
|
||||
OwnedBy: "mistralai",
|
||||
Permission: permission,
|
||||
Root: modelName,
|
||||
Parent: nil,
|
||||
})
|
||||
}
|
||||
openAIModelsMap = make(map[string]OpenAIModels)
|
||||
for _, model := range openAIModels {
|
||||
openAIModelsMap[model.Id] = model
|
||||
|
@ -62,7 +62,7 @@ func Relay(c *gin.Context) {
|
||||
retryTimes = 0
|
||||
}
|
||||
for i := retryTimes; i > 0; i-- {
|
||||
channel, err := dbmodel.CacheGetRandomSatisfiedChannel(group, originalModel)
|
||||
channel, err := dbmodel.CacheGetRandomSatisfiedChannel(group, originalModel, i != retryTimes)
|
||||
if err != nil {
|
||||
logger.Errorf(ctx, "CacheGetRandomSatisfiedChannel failed: %w", err)
|
||||
break
|
||||
|
@ -68,7 +68,7 @@ func Distribute() func(c *gin.Context) {
|
||||
}
|
||||
}
|
||||
requestModel = modelRequest.Model
|
||||
channel, err = model.CacheGetRandomSatisfiedChannel(userGroup, modelRequest.Model)
|
||||
channel, err = model.CacheGetRandomSatisfiedChannel(userGroup, modelRequest.Model, false)
|
||||
if err != nil {
|
||||
message := fmt.Sprintf("当前分组 %s 下对于模型 %s 无可用渠道", userGroup, modelRequest.Model)
|
||||
if channel != nil {
|
||||
|
@ -191,7 +191,7 @@ func SyncChannelCache(frequency int) {
|
||||
}
|
||||
}
|
||||
|
||||
func CacheGetRandomSatisfiedChannel(group string, model string) (*Channel, error) {
|
||||
func CacheGetRandomSatisfiedChannel(group string, model string, ignoreFirstPriority bool) (*Channel, error) {
|
||||
if !config.MemoryCacheEnabled {
|
||||
return GetRandomSatisfiedChannel(group, model)
|
||||
}
|
||||
@ -213,5 +213,10 @@ func CacheGetRandomSatisfiedChannel(group string, model string) (*Channel, error
|
||||
}
|
||||
}
|
||||
idx := rand.Intn(endIdx)
|
||||
if ignoreFirstPriority {
|
||||
if endIdx < len(channels) { // which means there are more than one priority
|
||||
idx = common.RandRange(endIdx, len(channels))
|
||||
}
|
||||
}
|
||||
return channels[idx], nil
|
||||
}
|
||||
|
@ -33,6 +33,9 @@ func ConvertRequest(request model.GeneralOpenAIRequest) *ChatRequest {
|
||||
enableSearch = true
|
||||
aliModel = strings.TrimSuffix(aliModel, EnableSearchModelSuffix)
|
||||
}
|
||||
if request.TopP >= 1 {
|
||||
request.TopP = 0.9999
|
||||
}
|
||||
return &ChatRequest{
|
||||
Model: aliModel,
|
||||
Input: Input{
|
||||
@ -42,6 +45,9 @@ func ConvertRequest(request model.GeneralOpenAIRequest) *ChatRequest {
|
||||
EnableSearch: enableSearch,
|
||||
IncrementalOutput: request.Stream,
|
||||
Seed: uint64(request.Seed),
|
||||
MaxTokens: request.MaxTokens,
|
||||
Temperature: request.Temperature,
|
||||
TopP: request.TopP,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
@ -16,6 +16,8 @@ type Parameters struct {
|
||||
Seed uint64 `json:"seed,omitempty"`
|
||||
EnableSearch bool `json:"enable_search,omitempty"`
|
||||
IncrementalOutput bool `json:"incremental_output,omitempty"`
|
||||
MaxTokens int `json:"max_tokens,omitempty"`
|
||||
Temperature float64 `json:"temperature,omitempty"`
|
||||
}
|
||||
|
||||
type ChatRequest struct {
|
||||
|
@ -36,6 +36,8 @@ func (a *Adaptor) GetRequestURL(meta *util.RelayMeta) (string, error) {
|
||||
fullRequestURL = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/bloomz_7b1"
|
||||
case "Embedding-V1":
|
||||
fullRequestURL = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings/embedding-v1"
|
||||
default:
|
||||
fullRequestURL = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/" + meta.ActualModelName
|
||||
}
|
||||
var accessToken string
|
||||
var err error
|
||||
|
@ -1,7 +1,7 @@
|
||||
package gemini
|
||||
|
||||
var ModelList = []string{
|
||||
"gemini-pro",
|
||||
"gemini-pro-vision",
|
||||
"gemini-pro", "gemini-1.0-pro-001",
|
||||
"gemini-pro-vision", "gemini-1.0-pro-vision-001",
|
||||
"embedding-001",
|
||||
}
|
||||
|
10
relay/channel/mistral/constants.go
Normal file
10
relay/channel/mistral/constants.go
Normal file
@ -0,0 +1,10 @@
|
||||
package mistral
|
||||
|
||||
var ModelList = []string{
|
||||
"open-mistral-7b",
|
||||
"open-mixtral-8x7b",
|
||||
"mistral-small-latest",
|
||||
"mistral-medium-latest",
|
||||
"mistral-large-latest",
|
||||
"mistral-embed",
|
||||
}
|
@ -9,6 +9,7 @@ import (
|
||||
"github.com/songquanpeng/one-api/relay/channel/ai360"
|
||||
"github.com/songquanpeng/one-api/relay/channel/baichuan"
|
||||
"github.com/songquanpeng/one-api/relay/channel/minimax"
|
||||
"github.com/songquanpeng/one-api/relay/channel/mistral"
|
||||
"github.com/songquanpeng/one-api/relay/channel/moonshot"
|
||||
"github.com/songquanpeng/one-api/relay/model"
|
||||
"github.com/songquanpeng/one-api/relay/util"
|
||||
@ -94,6 +95,8 @@ func (a *Adaptor) GetModelList() []string {
|
||||
return baichuan.ModelList
|
||||
case common.ChannelTypeMinimax:
|
||||
return minimax.ModelList
|
||||
case common.ChannelTypeMistral:
|
||||
return mistral.ModelList
|
||||
default:
|
||||
return ModelList
|
||||
}
|
||||
@ -111,6 +114,8 @@ func (a *Adaptor) GetChannelName() string {
|
||||
return "baichuan"
|
||||
case common.ChannelTypeMinimax:
|
||||
return "minimax"
|
||||
case common.ChannelTypeMistral:
|
||||
return "mistralai"
|
||||
default:
|
||||
return "openai"
|
||||
}
|
||||
|
24
relay/constant/image.go
Normal file
24
relay/constant/image.go
Normal file
@ -0,0 +1,24 @@
|
||||
package constant
|
||||
|
||||
var DalleSizeRatios = map[string]map[string]float64{
|
||||
"dall-e-2": {
|
||||
"256x256": 1,
|
||||
"512x512": 1.125,
|
||||
"1024x1024": 1.25,
|
||||
},
|
||||
"dall-e-3": {
|
||||
"1024x1024": 1,
|
||||
"1024x1792": 2,
|
||||
"1792x1024": 2,
|
||||
},
|
||||
}
|
||||
|
||||
var DalleGenerationImageAmounts = map[string][2]int{
|
||||
"dall-e-2": {1, 10},
|
||||
"dall-e-3": {1, 1}, // OpenAI allows n=1 currently.
|
||||
}
|
||||
|
||||
var DalleImagePromptLengthLimitations = map[string]int{
|
||||
"dall-e-2": 1000,
|
||||
"dall-e-3": 4000,
|
||||
}
|
@ -36,6 +36,65 @@ func getAndValidateTextRequest(c *gin.Context, relayMode int) (*relaymodel.Gener
|
||||
return textRequest, nil
|
||||
}
|
||||
|
||||
func getImageRequest(c *gin.Context, relayMode int) (*openai.ImageRequest, error) {
|
||||
imageRequest := &openai.ImageRequest{}
|
||||
err := common.UnmarshalBodyReusable(c, imageRequest)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if imageRequest.N == 0 {
|
||||
imageRequest.N = 1
|
||||
}
|
||||
if imageRequest.Size == "" {
|
||||
imageRequest.Size = "1024x1024"
|
||||
}
|
||||
if imageRequest.Model == "" {
|
||||
imageRequest.Model = "dall-e-2"
|
||||
}
|
||||
return imageRequest, nil
|
||||
}
|
||||
|
||||
func validateImageRequest(imageRequest *openai.ImageRequest, meta *util.RelayMeta) *relaymodel.ErrorWithStatusCode {
|
||||
// model validation
|
||||
_, hasValidSize := constant.DalleSizeRatios[imageRequest.Model][imageRequest.Size]
|
||||
if !hasValidSize {
|
||||
return openai.ErrorWrapper(errors.New("size not supported for this image model"), "size_not_supported", http.StatusBadRequest)
|
||||
}
|
||||
// check prompt length
|
||||
if imageRequest.Prompt == "" {
|
||||
return openai.ErrorWrapper(errors.New("prompt is required"), "prompt_missing", http.StatusBadRequest)
|
||||
}
|
||||
if len(imageRequest.Prompt) > constant.DalleImagePromptLengthLimitations[imageRequest.Model] {
|
||||
return openai.ErrorWrapper(errors.New("prompt is too long"), "prompt_too_long", http.StatusBadRequest)
|
||||
}
|
||||
// Number of generated images validation
|
||||
if !isWithinRange(imageRequest.Model, imageRequest.N) {
|
||||
// channel not azure
|
||||
if meta.ChannelType != common.ChannelTypeAzure {
|
||||
return openai.ErrorWrapper(errors.New("invalid value of n"), "n_not_within_range", http.StatusBadRequest)
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func getImageCostRatio(imageRequest *openai.ImageRequest) (float64, error) {
|
||||
if imageRequest == nil {
|
||||
return 0, errors.New("imageRequest is nil")
|
||||
}
|
||||
imageCostRatio, hasValidSize := constant.DalleSizeRatios[imageRequest.Model][imageRequest.Size]
|
||||
if !hasValidSize {
|
||||
return 0, fmt.Errorf("size not supported for this image model: %s", imageRequest.Size)
|
||||
}
|
||||
if imageRequest.Quality == "hd" && imageRequest.Model == "dall-e-3" {
|
||||
if imageRequest.Size == "1024x1024" {
|
||||
imageCostRatio *= 2
|
||||
} else {
|
||||
imageCostRatio *= 1.5
|
||||
}
|
||||
}
|
||||
return imageCostRatio, nil
|
||||
}
|
||||
|
||||
func getPromptTokens(textRequest *relaymodel.GeneralOpenAIRequest, relayMode int) int {
|
||||
switch relayMode {
|
||||
case constant.RelayModeChatCompletions:
|
||||
@ -113,10 +172,8 @@ func postConsumeQuota(ctx context.Context, usage *relaymodel.Usage, meta *util.R
|
||||
if err != nil {
|
||||
logger.Error(ctx, "error update user quota cache: "+err.Error())
|
||||
}
|
||||
if quota != 0 {
|
||||
logContent := fmt.Sprintf("模型倍率 %.2f,分组倍率 %.2f,补全倍率 %.2f", modelRatio, groupRatio, completionRatio)
|
||||
model.RecordConsumeLog(ctx, meta.UserId, meta.ChannelId, promptTokens, completionTokens, textRequest.Model, meta.TokenName, quota, logContent)
|
||||
model.UpdateUserUsedQuotaAndRequestCount(meta.UserId, quota)
|
||||
model.UpdateChannelUsedQuota(meta.ChannelId, quota)
|
||||
}
|
||||
}
|
||||
|
@ -10,6 +10,7 @@ import (
|
||||
"github.com/songquanpeng/one-api/common/logger"
|
||||
"github.com/songquanpeng/one-api/model"
|
||||
"github.com/songquanpeng/one-api/relay/channel/openai"
|
||||
"github.com/songquanpeng/one-api/relay/constant"
|
||||
relaymodel "github.com/songquanpeng/one-api/relay/model"
|
||||
"github.com/songquanpeng/one-api/relay/util"
|
||||
"io"
|
||||
@ -20,120 +21,65 @@ import (
|
||||
)
|
||||
|
||||
func isWithinRange(element string, value int) bool {
|
||||
if _, ok := common.DalleGenerationImageAmounts[element]; !ok {
|
||||
if _, ok := constant.DalleGenerationImageAmounts[element]; !ok {
|
||||
return false
|
||||
}
|
||||
min := common.DalleGenerationImageAmounts[element][0]
|
||||
max := common.DalleGenerationImageAmounts[element][1]
|
||||
min := constant.DalleGenerationImageAmounts[element][0]
|
||||
max := constant.DalleGenerationImageAmounts[element][1]
|
||||
|
||||
return value >= min && value <= max
|
||||
}
|
||||
|
||||
func RelayImageHelper(c *gin.Context, relayMode int) *relaymodel.ErrorWithStatusCode {
|
||||
imageModel := "dall-e-2"
|
||||
imageSize := "1024x1024"
|
||||
|
||||
tokenId := c.GetInt("token_id")
|
||||
channelType := c.GetInt("channel")
|
||||
channelId := c.GetInt("channel_id")
|
||||
userId := c.GetInt("id")
|
||||
group := c.GetString("group")
|
||||
|
||||
var imageRequest openai.ImageRequest
|
||||
err := common.UnmarshalBodyReusable(c, &imageRequest)
|
||||
ctx := c.Request.Context()
|
||||
meta := util.GetRelayMeta(c)
|
||||
imageRequest, err := getImageRequest(c, meta.Mode)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "bind_request_body_failed", http.StatusBadRequest)
|
||||
}
|
||||
|
||||
if imageRequest.N == 0 {
|
||||
imageRequest.N = 1
|
||||
}
|
||||
|
||||
// Size validation
|
||||
if imageRequest.Size != "" {
|
||||
imageSize = imageRequest.Size
|
||||
}
|
||||
|
||||
// Model validation
|
||||
if imageRequest.Model != "" {
|
||||
imageModel = imageRequest.Model
|
||||
}
|
||||
|
||||
imageCostRatio, hasValidSize := common.DalleSizeRatios[imageModel][imageSize]
|
||||
|
||||
// Check if model is supported
|
||||
if hasValidSize {
|
||||
if imageRequest.Quality == "hd" && imageModel == "dall-e-3" {
|
||||
if imageSize == "1024x1024" {
|
||||
imageCostRatio *= 2
|
||||
} else {
|
||||
imageCostRatio *= 1.5
|
||||
}
|
||||
}
|
||||
} else {
|
||||
return openai.ErrorWrapper(errors.New("size not supported for this image model"), "size_not_supported", http.StatusBadRequest)
|
||||
}
|
||||
|
||||
// Prompt validation
|
||||
if imageRequest.Prompt == "" {
|
||||
return openai.ErrorWrapper(errors.New("prompt is required"), "prompt_missing", http.StatusBadRequest)
|
||||
}
|
||||
|
||||
// Check prompt length
|
||||
if len(imageRequest.Prompt) > common.DalleImagePromptLengthLimitations[imageModel] {
|
||||
return openai.ErrorWrapper(errors.New("prompt is too long"), "prompt_too_long", http.StatusBadRequest)
|
||||
}
|
||||
|
||||
// Number of generated images validation
|
||||
if !isWithinRange(imageModel, imageRequest.N) {
|
||||
// channel not azure
|
||||
if channelType != common.ChannelTypeAzure {
|
||||
return openai.ErrorWrapper(errors.New("invalid value of n"), "n_not_within_range", http.StatusBadRequest)
|
||||
}
|
||||
logger.Errorf(ctx, "getImageRequest failed: %s", err.Error())
|
||||
return openai.ErrorWrapper(err, "invalid_image_request", http.StatusBadRequest)
|
||||
}
|
||||
|
||||
// map model name
|
||||
modelMapping := c.GetString("model_mapping")
|
||||
isModelMapped := false
|
||||
if modelMapping != "" {
|
||||
modelMap := make(map[string]string)
|
||||
err := json.Unmarshal([]byte(modelMapping), &modelMap)
|
||||
var isModelMapped bool
|
||||
meta.OriginModelName = imageRequest.Model
|
||||
imageRequest.Model, isModelMapped = util.GetMappedModelName(imageRequest.Model, meta.ModelMapping)
|
||||
meta.ActualModelName = imageRequest.Model
|
||||
|
||||
// model validation
|
||||
bizErr := validateImageRequest(imageRequest, meta)
|
||||
if bizErr != nil {
|
||||
return bizErr
|
||||
}
|
||||
|
||||
imageCostRatio, err := getImageCostRatio(imageRequest)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "unmarshal_model_mapping_failed", http.StatusInternalServerError)
|
||||
return openai.ErrorWrapper(err, "get_image_cost_ratio_failed", http.StatusInternalServerError)
|
||||
}
|
||||
if modelMap[imageModel] != "" {
|
||||
imageModel = modelMap[imageModel]
|
||||
isModelMapped = true
|
||||
}
|
||||
}
|
||||
baseURL := common.ChannelBaseURLs[channelType]
|
||||
|
||||
requestURL := c.Request.URL.String()
|
||||
if c.GetString("base_url") != "" {
|
||||
baseURL = c.GetString("base_url")
|
||||
}
|
||||
fullRequestURL := util.GetFullRequestURL(baseURL, requestURL, channelType)
|
||||
if channelType == common.ChannelTypeAzure {
|
||||
fullRequestURL := util.GetFullRequestURL(meta.BaseURL, requestURL, meta.ChannelType)
|
||||
if meta.ChannelType == common.ChannelTypeAzure {
|
||||
// https://learn.microsoft.com/en-us/azure/ai-services/openai/dall-e-quickstart?tabs=dalle3%2Ccommand-line&pivots=rest-api
|
||||
apiVersion := util.GetAzureAPIVersion(c)
|
||||
// https://{resource_name}.openai.azure.com/openai/deployments/dall-e-3/images/generations?api-version=2023-06-01-preview
|
||||
fullRequestURL = fmt.Sprintf("%s/openai/deployments/%s/images/generations?api-version=%s", baseURL, imageModel, apiVersion)
|
||||
fullRequestURL = fmt.Sprintf("%s/openai/deployments/%s/images/generations?api-version=%s", meta.BaseURL, imageRequest.Model, apiVersion)
|
||||
}
|
||||
|
||||
var requestBody io.Reader
|
||||
if isModelMapped || channelType == common.ChannelTypeAzure { // make Azure channel request body
|
||||
if isModelMapped || meta.ChannelType == common.ChannelTypeAzure { // make Azure channel request body
|
||||
jsonStr, err := json.Marshal(imageRequest)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "marshal_text_request_failed", http.StatusInternalServerError)
|
||||
return openai.ErrorWrapper(err, "marshal_image_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
requestBody = bytes.NewBuffer(jsonStr)
|
||||
} else {
|
||||
requestBody = c.Request.Body
|
||||
}
|
||||
|
||||
modelRatio := common.GetModelRatio(imageModel)
|
||||
groupRatio := common.GetGroupRatio(group)
|
||||
modelRatio := common.GetModelRatio(imageRequest.Model)
|
||||
groupRatio := common.GetGroupRatio(meta.Group)
|
||||
ratio := modelRatio * groupRatio
|
||||
userQuota, err := model.CacheGetUserQuota(userId)
|
||||
userQuota, err := model.CacheGetUserQuota(meta.UserId)
|
||||
|
||||
quota := int(ratio*imageCostRatio*1000) * imageRequest.N
|
||||
|
||||
@ -146,7 +92,7 @@ func RelayImageHelper(c *gin.Context, relayMode int) *relaymodel.ErrorWithStatus
|
||||
return openai.ErrorWrapper(err, "new_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
token := c.Request.Header.Get("Authorization")
|
||||
if channelType == common.ChannelTypeAzure { // Azure authentication
|
||||
if meta.ChannelType == common.ChannelTypeAzure { // Azure authentication
|
||||
token = strings.TrimPrefix(token, "Bearer ")
|
||||
req.Header.Set("api-key", token)
|
||||
} else {
|
||||
@ -169,25 +115,25 @@ func RelayImageHelper(c *gin.Context, relayMode int) *relaymodel.ErrorWithStatus
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "close_request_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
var textResponse openai.ImageResponse
|
||||
var imageResponse openai.ImageResponse
|
||||
|
||||
defer func(ctx context.Context) {
|
||||
if resp.StatusCode != http.StatusOK {
|
||||
return
|
||||
}
|
||||
err := model.PostConsumeTokenQuota(tokenId, quota)
|
||||
err := model.PostConsumeTokenQuota(meta.TokenId, quota)
|
||||
if err != nil {
|
||||
logger.SysError("error consuming token remain quota: " + err.Error())
|
||||
}
|
||||
err = model.CacheUpdateUserQuota(userId)
|
||||
err = model.CacheUpdateUserQuota(meta.UserId)
|
||||
if err != nil {
|
||||
logger.SysError("error update user quota cache: " + err.Error())
|
||||
}
|
||||
if quota != 0 {
|
||||
tokenName := c.GetString("token_name")
|
||||
logContent := fmt.Sprintf("模型倍率 %.2f,分组倍率 %.2f", modelRatio, groupRatio)
|
||||
model.RecordConsumeLog(ctx, userId, channelId, 0, 0, imageModel, tokenName, quota, logContent)
|
||||
model.UpdateUserUsedQuotaAndRequestCount(userId, quota)
|
||||
model.RecordConsumeLog(ctx, meta.UserId, meta.ChannelId, 0, 0, imageRequest.Model, tokenName, quota, logContent)
|
||||
model.UpdateUserUsedQuotaAndRequestCount(meta.UserId, quota)
|
||||
channelId := c.GetInt("channel_id")
|
||||
model.UpdateChannelUsedQuota(channelId, quota)
|
||||
}
|
||||
@ -202,7 +148,7 @@ func RelayImageHelper(c *gin.Context, relayMode int) *relaymodel.ErrorWithStatus
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
err = json.Unmarshal(responseBody, &textResponse)
|
||||
err = json.Unmarshal(responseBody, &imageResponse)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
|
@ -29,6 +29,12 @@ export const CHANNEL_OPTIONS = {
|
||||
value: 24,
|
||||
color: 'orange'
|
||||
},
|
||||
28: {
|
||||
key: 28,
|
||||
text: 'Mistral AI',
|
||||
value: 28,
|
||||
color: 'orange'
|
||||
},
|
||||
15: {
|
||||
key: 15,
|
||||
text: '百度文心千帆',
|
||||
|
@ -4,6 +4,7 @@ export const CHANNEL_OPTIONS = [
|
||||
{ key: 3, text: 'Azure OpenAI', value: 3, color: 'olive' },
|
||||
{ key: 11, text: 'Google PaLM2', value: 11, color: 'orange' },
|
||||
{ key: 24, text: 'Google Gemini', value: 24, color: 'orange' },
|
||||
{ key: 28, text: 'Mistral AI', value: 28, color: 'orange' },
|
||||
{ key: 15, text: '百度文心千帆', value: 15, color: 'blue' },
|
||||
{ key: 17, text: '阿里通义千问', value: 17, color: 'orange' },
|
||||
{ key: 18, text: '讯飞星火认知', value: 18, color: 'blue' },
|
||||
|
Loading…
Reference in New Issue
Block a user