Merge branch 'songquanpeng:main' into main
This commit is contained in:
commit
1b877cbab0
2
.github/workflows/linux-release.yml
vendored
2
.github/workflows/linux-release.yml
vendored
@ -38,7 +38,7 @@ jobs:
|
||||
- name: Build Backend (amd64)
|
||||
run: |
|
||||
go mod download
|
||||
go build -ldflags "-s -w -X 'one-api/common.Version=$(git describe --tags)' -extldflags '-static'" -o one-api
|
||||
go build -ldflags "-s -w -X 'github.com/songquanpeng/one-api/common.Version=$(git describe --tags)' -extldflags '-static'" -o one-api
|
||||
|
||||
- name: Build Backend (arm64)
|
||||
run: |
|
||||
|
2
.github/workflows/macos-release.yml
vendored
2
.github/workflows/macos-release.yml
vendored
@ -38,7 +38,7 @@ jobs:
|
||||
- name: Build Backend
|
||||
run: |
|
||||
go mod download
|
||||
go build -ldflags "-X 'one-api/common.Version=$(git describe --tags)'" -o one-api-macos
|
||||
go build -ldflags "-X 'github.com/songquanpeng/one-api/common.Version=$(git describe --tags)'" -o one-api-macos
|
||||
- name: Release
|
||||
uses: softprops/action-gh-release@v1
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
|
2
.github/workflows/windows-release.yml
vendored
2
.github/workflows/windows-release.yml
vendored
@ -41,7 +41,7 @@ jobs:
|
||||
- name: Build Backend
|
||||
run: |
|
||||
go mod download
|
||||
go build -ldflags "-s -w -X 'one-api/common.Version=$(git describe --tags)'" -o one-api.exe
|
||||
go build -ldflags "-s -w -X 'github.com/songquanpeng/one-api/common.Version=$(git describe --tags)'" -o one-api.exe
|
||||
- name: Release
|
||||
uses: softprops/action-gh-release@v1
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
|
@ -67,6 +67,7 @@ _✨ 通过标准的 OpenAI API 格式访问所有的大模型,开箱即用
|
||||
+ [x] [OpenAI ChatGPT 系列模型](https://platform.openai.com/docs/guides/gpt/chat-completions-api)(支持 [Azure OpenAI API](https://learn.microsoft.com/en-us/azure/ai-services/openai/reference))
|
||||
+ [x] [Anthropic Claude 系列模型](https://anthropic.com)
|
||||
+ [x] [Google PaLM2/Gemini 系列模型](https://developers.generativeai.google)
|
||||
+ [x] [Mistral 系列模型](https://mistral.ai/)
|
||||
+ [x] [百度文心一言系列模型](https://cloud.baidu.com/doc/WENXINWORKSHOP/index.html)
|
||||
+ [x] [阿里通义千问系列模型](https://help.aliyun.com/document_detail/2400395.html)
|
||||
+ [x] [讯飞星火认知大模型](https://www.xfyun.cn/doc/spark/Web.html)
|
||||
@ -74,8 +75,9 @@ _✨ 通过标准的 OpenAI API 格式访问所有的大模型,开箱即用
|
||||
+ [x] [360 智脑](https://ai.360.cn)
|
||||
+ [x] [腾讯混元大模型](https://cloud.tencent.com/document/product/1729)
|
||||
+ [x] [Moonshot AI](https://platform.moonshot.cn/)
|
||||
+ [x] [百川大模型](https://platform.baichuan-ai.com)
|
||||
+ [ ] [字节云雀大模型](https://www.volcengine.com/product/ark) (WIP)
|
||||
+ [ ] [MINIMAX](https://api.minimax.chat/) (WIP)
|
||||
+ [x] [MINIMAX](https://api.minimax.chat/)
|
||||
2. 支持配置镜像以及众多[第三方代理服务](https://iamazing.cn/page/openai-api-third-party-services)。
|
||||
3. 支持通过**负载均衡**的方式访问多个渠道。
|
||||
4. 支持 **stream 模式**,可以通过流式传输实现打字机效果。
|
||||
|
@ -64,6 +64,9 @@ const (
|
||||
ChannelTypeTencent = 23
|
||||
ChannelTypeGemini = 24
|
||||
ChannelTypeMoonshot = 25
|
||||
ChannelTypeBaichuan = 26
|
||||
ChannelTypeMinimax = 27
|
||||
ChannelTypeMistral = 28
|
||||
)
|
||||
|
||||
var ChannelBaseURLs = []string{
|
||||
@ -93,6 +96,9 @@ var ChannelBaseURLs = []string{
|
||||
"https://hunyuan.cloud.tencent.com", // 23
|
||||
"https://generativelanguage.googleapis.com", // 24
|
||||
"https://api.moonshot.cn", // 25
|
||||
"https://api.baichuan-ai.com", // 26
|
||||
"https://api.minimax.chat", // 27
|
||||
"https://api.mistral.ai", // 28
|
||||
}
|
||||
|
||||
const (
|
||||
|
@ -8,12 +8,24 @@ import (
|
||||
"strings"
|
||||
)
|
||||
|
||||
func UnmarshalBodyReusable(c *gin.Context, v any) error {
|
||||
const KeyRequestBody = "key_request_body"
|
||||
|
||||
func GetRequestBody(c *gin.Context) ([]byte, error) {
|
||||
requestBody, _ := c.Get(KeyRequestBody)
|
||||
if requestBody != nil {
|
||||
return requestBody.([]byte), nil
|
||||
}
|
||||
requestBody, err := io.ReadAll(c.Request.Body)
|
||||
if err != nil {
|
||||
return err
|
||||
return nil, err
|
||||
}
|
||||
err = c.Request.Body.Close()
|
||||
_ = c.Request.Body.Close()
|
||||
c.Set(KeyRequestBody, requestBody)
|
||||
return requestBody.([]byte), nil
|
||||
}
|
||||
|
||||
func UnmarshalBodyReusable(c *gin.Context, v any) error {
|
||||
requestBody, err := GetRequestBody(c)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
@ -13,6 +13,7 @@ import (
|
||||
)
|
||||
|
||||
const (
|
||||
loggerDEBUG = "DEBUG"
|
||||
loggerINFO = "INFO"
|
||||
loggerWarn = "WARN"
|
||||
loggerError = "ERR"
|
||||
@ -55,6 +56,10 @@ func SysError(s string) {
|
||||
_, _ = fmt.Fprintf(gin.DefaultErrorWriter, "[SYS] %v | %s \n", t.Format("2006/01/02 - 15:04:05"), s)
|
||||
}
|
||||
|
||||
func Debug(ctx context.Context, msg string) {
|
||||
logHelper(ctx, loggerDEBUG, msg)
|
||||
}
|
||||
|
||||
func Info(ctx context.Context, msg string) {
|
||||
logHelper(ctx, loggerINFO, msg)
|
||||
}
|
||||
@ -67,6 +72,10 @@ func Error(ctx context.Context, msg string) {
|
||||
logHelper(ctx, loggerError, msg)
|
||||
}
|
||||
|
||||
func Debugf(ctx context.Context, format string, a ...any) {
|
||||
Debug(ctx, fmt.Sprintf(format, a...))
|
||||
}
|
||||
|
||||
func Infof(ctx context.Context, format string, a ...any) {
|
||||
Info(ctx, fmt.Sprintf(format, a...))
|
||||
}
|
||||
|
@ -7,29 +7,6 @@ import (
|
||||
"time"
|
||||
)
|
||||
|
||||
var DalleSizeRatios = map[string]map[string]float64{
|
||||
"dall-e-2": {
|
||||
"256x256": 1,
|
||||
"512x512": 1.125,
|
||||
"1024x1024": 1.25,
|
||||
},
|
||||
"dall-e-3": {
|
||||
"1024x1024": 1,
|
||||
"1024x1792": 2,
|
||||
"1792x1024": 2,
|
||||
},
|
||||
}
|
||||
|
||||
var DalleGenerationImageAmounts = map[string][2]int{
|
||||
"dall-e-2": {1, 10},
|
||||
"dall-e-3": {1, 1}, // OpenAI allows n=1 currently.
|
||||
}
|
||||
|
||||
var DalleImagePromptLengthLimitations = map[string]int{
|
||||
"dall-e-2": 1000,
|
||||
"dall-e-3": 4000,
|
||||
}
|
||||
|
||||
const (
|
||||
USD2RMB = 7
|
||||
USD = 500 // $0.002 = 1 -> $1 = 500
|
||||
@ -40,7 +17,6 @@ const (
|
||||
// https://platform.openai.com/docs/models/model-endpoint-compatibility
|
||||
// https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Blfmc9dlf
|
||||
// https://openai.com/pricing
|
||||
// TODO: when a new api is enabled, check the pricing here
|
||||
// 1 === $0.002 / 1K tokens
|
||||
// 1 === ¥0.014 / 1k tokens
|
||||
var ModelRatio = map[string]float64{
|
||||
@ -94,14 +70,18 @@ var ModelRatio = map[string]float64{
|
||||
"claude-2.0": 5.51, // $11.02 / 1M tokens
|
||||
"claude-2.1": 5.51, // $11.02 / 1M tokens
|
||||
// https://cloud.baidu.com/doc/WENXINWORKSHOP/s/hlrk4akp7
|
||||
"ERNIE-Bot": 0.8572, // ¥0.012 / 1k tokens
|
||||
"ERNIE-Bot-turbo": 0.5715, // ¥0.008 / 1k tokens
|
||||
"ERNIE-Bot-4": 0.12 * RMB, // ¥0.12 / 1k tokens
|
||||
"ERNIE-Bot-8k": 0.024 * RMB,
|
||||
"Embedding-V1": 0.1429, // ¥0.002 / 1k tokens
|
||||
"PaLM-2": 1,
|
||||
"gemini-pro": 1, // $0.00025 / 1k characters -> $0.001 / 1k tokens
|
||||
"gemini-pro-vision": 1, // $0.00025 / 1k characters -> $0.001 / 1k tokens
|
||||
"ERNIE-Bot": 0.8572, // ¥0.012 / 1k tokens
|
||||
"ERNIE-Bot-turbo": 0.5715, // ¥0.008 / 1k tokens
|
||||
"ERNIE-Bot-4": 0.12 * RMB, // ¥0.12 / 1k tokens
|
||||
"ERNIE-Bot-8k": 0.024 * RMB,
|
||||
"Embedding-V1": 0.1429, // ¥0.002 / 1k tokens
|
||||
"PaLM-2": 1,
|
||||
"gemini-pro": 1, // $0.00025 / 1k characters -> $0.001 / 1k tokens
|
||||
"gemini-pro-vision": 1, // $0.00025 / 1k characters -> $0.001 / 1k tokens
|
||||
// https://open.bigmodel.cn/pricing
|
||||
"glm-4": 0.1 * RMB,
|
||||
"glm-4v": 0.1 * RMB,
|
||||
"glm-3-turbo": 0.005 * RMB,
|
||||
"chatglm_turbo": 0.3572, // ¥0.005 / 1k tokens
|
||||
"chatglm_pro": 0.7143, // ¥0.01 / 1k tokens
|
||||
"chatglm_std": 0.3572, // ¥0.005 / 1k tokens
|
||||
@ -127,6 +107,37 @@ var ModelRatio = map[string]float64{
|
||||
"moonshot-v1-8k": 0.012 * RMB,
|
||||
"moonshot-v1-32k": 0.024 * RMB,
|
||||
"moonshot-v1-128k": 0.06 * RMB,
|
||||
// https://platform.baichuan-ai.com/price
|
||||
"Baichuan2-Turbo": 0.008 * RMB,
|
||||
"Baichuan2-Turbo-192k": 0.016 * RMB,
|
||||
"Baichuan2-53B": 0.02 * RMB,
|
||||
// https://api.minimax.chat/document/price
|
||||
"abab6-chat": 0.1 * RMB,
|
||||
"abab5.5-chat": 0.015 * RMB,
|
||||
"abab5.5s-chat": 0.005 * RMB,
|
||||
// https://docs.mistral.ai/platform/pricing/
|
||||
"open-mistral-7b": 0.25 / 1000 * USD,
|
||||
"open-mixtral-8x7b": 0.7 / 1000 * USD,
|
||||
"mistral-small-latest": 2.0 / 1000 * USD,
|
||||
"mistral-medium-latest": 2.7 / 1000 * USD,
|
||||
"mistral-large-latest": 8.0 / 1000 * USD,
|
||||
"mistral-embed": 0.1 / 1000 * USD,
|
||||
}
|
||||
|
||||
var CompletionRatio = map[string]float64{}
|
||||
|
||||
var DefaultModelRatio map[string]float64
|
||||
var DefaultCompletionRatio map[string]float64
|
||||
|
||||
func init() {
|
||||
DefaultModelRatio = make(map[string]float64)
|
||||
for k, v := range ModelRatio {
|
||||
DefaultModelRatio[k] = v
|
||||
}
|
||||
DefaultCompletionRatio = make(map[string]float64)
|
||||
for k, v := range CompletionRatio {
|
||||
DefaultCompletionRatio[k] = v
|
||||
}
|
||||
}
|
||||
|
||||
func ModelRatio2JSONString() string {
|
||||
@ -147,6 +158,9 @@ func GetModelRatio(name string) float64 {
|
||||
name = strings.TrimSuffix(name, "-internet")
|
||||
}
|
||||
ratio, ok := ModelRatio[name]
|
||||
if !ok {
|
||||
ratio, ok = DefaultModelRatio[name]
|
||||
}
|
||||
if !ok {
|
||||
logger.SysError("model ratio not found: " + name)
|
||||
return 30
|
||||
@ -154,8 +168,6 @@ func GetModelRatio(name string) float64 {
|
||||
return ratio
|
||||
}
|
||||
|
||||
var CompletionRatio = map[string]float64{}
|
||||
|
||||
func CompletionRatio2JSONString() string {
|
||||
jsonBytes, err := json.Marshal(CompletionRatio)
|
||||
if err != nil {
|
||||
@ -173,6 +185,9 @@ func GetCompletionRatio(name string) float64 {
|
||||
if ratio, ok := CompletionRatio[name]; ok {
|
||||
return ratio
|
||||
}
|
||||
if ratio, ok := DefaultCompletionRatio[name]; ok {
|
||||
return ratio
|
||||
}
|
||||
if strings.HasPrefix(name, "gpt-3.5") {
|
||||
if strings.HasSuffix(name, "0125") {
|
||||
// https://openai.com/blog/new-embedding-models-and-api-updates
|
||||
@ -205,5 +220,8 @@ func GetCompletionRatio(name string) float64 {
|
||||
if strings.HasPrefix(name, "claude-2") {
|
||||
return 2.965517
|
||||
}
|
||||
if strings.HasPrefix(name, "mistral-") {
|
||||
return 3
|
||||
}
|
||||
return 1
|
||||
}
|
||||
|
@ -8,6 +8,7 @@ import (
|
||||
"github.com/songquanpeng/one-api/common"
|
||||
"github.com/songquanpeng/one-api/common/config"
|
||||
"github.com/songquanpeng/one-api/common/logger"
|
||||
"github.com/songquanpeng/one-api/middleware"
|
||||
"github.com/songquanpeng/one-api/model"
|
||||
"github.com/songquanpeng/one-api/relay/constant"
|
||||
"github.com/songquanpeng/one-api/relay/helper"
|
||||
@ -51,6 +52,7 @@ func testChannel(channel *model.Channel) (err error, openaiErr *relaymodel.Error
|
||||
c.Request.Header.Set("Content-Type", "application/json")
|
||||
c.Set("channel", channel.Type)
|
||||
c.Set("base_url", channel.GetBaseURL())
|
||||
middleware.SetupContextForSelectedChannel(c, channel, "")
|
||||
meta := util.GetRelayMeta(c)
|
||||
apiType := constant.ChannelType2APIType(channel.Type)
|
||||
adaptor := helper.GetAdaptor(apiType)
|
||||
|
@ -4,6 +4,9 @@ import (
|
||||
"fmt"
|
||||
"github.com/gin-gonic/gin"
|
||||
"github.com/songquanpeng/one-api/relay/channel/ai360"
|
||||
"github.com/songquanpeng/one-api/relay/channel/baichuan"
|
||||
"github.com/songquanpeng/one-api/relay/channel/minimax"
|
||||
"github.com/songquanpeng/one-api/relay/channel/mistral"
|
||||
"github.com/songquanpeng/one-api/relay/channel/moonshot"
|
||||
"github.com/songquanpeng/one-api/relay/constant"
|
||||
"github.com/songquanpeng/one-api/relay/helper"
|
||||
@ -98,6 +101,39 @@ func init() {
|
||||
Parent: nil,
|
||||
})
|
||||
}
|
||||
for _, modelName := range baichuan.ModelList {
|
||||
openAIModels = append(openAIModels, OpenAIModels{
|
||||
Id: modelName,
|
||||
Object: "model",
|
||||
Created: 1626777600,
|
||||
OwnedBy: "baichuan",
|
||||
Permission: permission,
|
||||
Root: modelName,
|
||||
Parent: nil,
|
||||
})
|
||||
}
|
||||
for _, modelName := range minimax.ModelList {
|
||||
openAIModels = append(openAIModels, OpenAIModels{
|
||||
Id: modelName,
|
||||
Object: "model",
|
||||
Created: 1626777600,
|
||||
OwnedBy: "minimax",
|
||||
Permission: permission,
|
||||
Root: modelName,
|
||||
Parent: nil,
|
||||
})
|
||||
}
|
||||
for _, modelName := range mistral.ModelList {
|
||||
openAIModels = append(openAIModels, OpenAIModels{
|
||||
Id: modelName,
|
||||
Object: "model",
|
||||
Created: 1626777600,
|
||||
OwnedBy: "mistralai",
|
||||
Permission: permission,
|
||||
Root: modelName,
|
||||
Parent: nil,
|
||||
})
|
||||
}
|
||||
openAIModelsMap = make(map[string]OpenAIModels)
|
||||
for _, model := range openAIModels {
|
||||
openAIModelsMap[model.Id] = model
|
||||
|
@ -1,9 +1,11 @@
|
||||
package controller
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"fmt"
|
||||
"github.com/gin-gonic/gin"
|
||||
"github.com/songquanpeng/one-api/common"
|
||||
"github.com/songquanpeng/one-api/common/config"
|
||||
"github.com/songquanpeng/one-api/common/helper"
|
||||
"github.com/songquanpeng/one-api/common/logger"
|
||||
@ -13,6 +15,7 @@ import (
|
||||
"github.com/songquanpeng/one-api/relay/controller"
|
||||
"github.com/songquanpeng/one-api/relay/model"
|
||||
"github.com/songquanpeng/one-api/relay/util"
|
||||
"io"
|
||||
"net/http"
|
||||
)
|
||||
|
||||
@ -38,6 +41,10 @@ func relay(c *gin.Context, relayMode int) *model.ErrorWithStatusCode {
|
||||
func Relay(c *gin.Context) {
|
||||
ctx := c.Request.Context()
|
||||
relayMode := constant.Path2RelayMode(c.Request.URL.Path)
|
||||
if config.DebugEnabled {
|
||||
requestBody, _ := common.GetRequestBody(c)
|
||||
logger.Debugf(ctx, "request body: %s", string(requestBody))
|
||||
}
|
||||
bizErr := relay(c, relayMode)
|
||||
if bizErr == nil {
|
||||
return
|
||||
@ -50,8 +57,8 @@ func Relay(c *gin.Context) {
|
||||
go processChannelRelayError(ctx, channelId, channelName, bizErr)
|
||||
requestId := c.GetString(logger.RequestIdKey)
|
||||
retryTimes := config.RetryTimes
|
||||
if !shouldRetry(bizErr.StatusCode) {
|
||||
logger.Errorf(ctx, "relay error happen, but status code is %d, won't retry in this case", bizErr.StatusCode)
|
||||
if !shouldRetry(c, bizErr.StatusCode) {
|
||||
logger.Errorf(ctx, "relay error happen, status code is %d, won't retry in this case", bizErr.StatusCode)
|
||||
retryTimes = 0
|
||||
}
|
||||
for i := retryTimes; i > 0; i-- {
|
||||
@ -65,6 +72,8 @@ func Relay(c *gin.Context) {
|
||||
continue
|
||||
}
|
||||
middleware.SetupContextForSelectedChannel(c, channel, originalModel)
|
||||
requestBody, err := common.GetRequestBody(c)
|
||||
c.Request.Body = io.NopCloser(bytes.NewBuffer(requestBody))
|
||||
bizErr = relay(c, relayMode)
|
||||
if bizErr == nil {
|
||||
return
|
||||
@ -85,7 +94,10 @@ func Relay(c *gin.Context) {
|
||||
}
|
||||
}
|
||||
|
||||
func shouldRetry(statusCode int) bool {
|
||||
func shouldRetry(c *gin.Context, statusCode int) bool {
|
||||
if _, ok := c.Get("specific_channel_id"); ok {
|
||||
return false
|
||||
}
|
||||
if statusCode == http.StatusTooManyRequests {
|
||||
return true
|
||||
}
|
||||
|
7
relay/channel/baichuan/constants.go
Normal file
7
relay/channel/baichuan/constants.go
Normal file
@ -0,0 +1,7 @@
|
||||
package baichuan
|
||||
|
||||
var ModelList = []string{
|
||||
"Baichuan2-Turbo",
|
||||
"Baichuan2-Turbo-192k",
|
||||
"Baichuan-Text-Embedding",
|
||||
}
|
@ -1,6 +1,6 @@
|
||||
package gemini
|
||||
|
||||
var ModelList = []string{
|
||||
"gemini-pro",
|
||||
"gemini-pro-vision",
|
||||
"gemini-pro", "gemini-1.0-pro-001",
|
||||
"gemini-pro-vision", "gemini-1.0-pro-vision-001",
|
||||
}
|
||||
|
7
relay/channel/minimax/constants.go
Normal file
7
relay/channel/minimax/constants.go
Normal file
@ -0,0 +1,7 @@
|
||||
package minimax
|
||||
|
||||
var ModelList = []string{
|
||||
"abab5.5s-chat",
|
||||
"abab5.5-chat",
|
||||
"abab6-chat",
|
||||
}
|
14
relay/channel/minimax/main.go
Normal file
14
relay/channel/minimax/main.go
Normal file
@ -0,0 +1,14 @@
|
||||
package minimax
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"github.com/songquanpeng/one-api/relay/constant"
|
||||
"github.com/songquanpeng/one-api/relay/util"
|
||||
)
|
||||
|
||||
func GetRequestURL(meta *util.RelayMeta) (string, error) {
|
||||
if meta.Mode == constant.RelayModeChatCompletions {
|
||||
return fmt.Sprintf("%s/v1/text/chatcompletion_v2", meta.BaseURL), nil
|
||||
}
|
||||
return "", fmt.Errorf("unsupported relay mode %d for minimax", meta.Mode)
|
||||
}
|
10
relay/channel/mistral/constants.go
Normal file
10
relay/channel/mistral/constants.go
Normal file
@ -0,0 +1,10 @@
|
||||
package mistral
|
||||
|
||||
var ModelList = []string{
|
||||
"open-mistral-7b",
|
||||
"open-mixtral-8x7b",
|
||||
"mistral-small-latest",
|
||||
"mistral-medium-latest",
|
||||
"mistral-large-latest",
|
||||
"mistral-embed",
|
||||
}
|
@ -7,6 +7,9 @@ import (
|
||||
"github.com/songquanpeng/one-api/common"
|
||||
"github.com/songquanpeng/one-api/relay/channel"
|
||||
"github.com/songquanpeng/one-api/relay/channel/ai360"
|
||||
"github.com/songquanpeng/one-api/relay/channel/baichuan"
|
||||
"github.com/songquanpeng/one-api/relay/channel/minimax"
|
||||
"github.com/songquanpeng/one-api/relay/channel/mistral"
|
||||
"github.com/songquanpeng/one-api/relay/channel/moonshot"
|
||||
"github.com/songquanpeng/one-api/relay/model"
|
||||
"github.com/songquanpeng/one-api/relay/util"
|
||||
@ -24,7 +27,8 @@ func (a *Adaptor) Init(meta *util.RelayMeta) {
|
||||
}
|
||||
|
||||
func (a *Adaptor) GetRequestURL(meta *util.RelayMeta) (string, error) {
|
||||
if meta.ChannelType == common.ChannelTypeAzure {
|
||||
switch meta.ChannelType {
|
||||
case common.ChannelTypeAzure:
|
||||
// https://learn.microsoft.com/en-us/azure/cognitive-services/openai/chatgpt-quickstart?pivots=rest-api&tabs=command-line#rest-api
|
||||
requestURL := strings.Split(meta.RequestURLPath, "?")[0]
|
||||
requestURL = fmt.Sprintf("%s?api-version=%s", requestURL, meta.APIVersion)
|
||||
@ -38,8 +42,11 @@ func (a *Adaptor) GetRequestURL(meta *util.RelayMeta) (string, error) {
|
||||
|
||||
requestURL = fmt.Sprintf("/openai/deployments/%s/%s", model_, task)
|
||||
return util.GetFullRequestURL(meta.BaseURL, requestURL, meta.ChannelType), nil
|
||||
case common.ChannelTypeMinimax:
|
||||
return minimax.GetRequestURL(meta)
|
||||
default:
|
||||
return util.GetFullRequestURL(meta.BaseURL, meta.RequestURLPath, meta.ChannelType), nil
|
||||
}
|
||||
return util.GetFullRequestURL(meta.BaseURL, meta.RequestURLPath, meta.ChannelType), nil
|
||||
}
|
||||
|
||||
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *util.RelayMeta) error {
|
||||
@ -70,7 +77,7 @@ func (a *Adaptor) DoRequest(c *gin.Context, meta *util.RelayMeta, requestBody io
|
||||
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *util.RelayMeta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
|
||||
if meta.IsStream {
|
||||
var responseText string
|
||||
err, responseText = StreamHandler(c, resp, meta.Mode)
|
||||
err, responseText, _ = StreamHandler(c, resp, meta.Mode)
|
||||
usage = ResponseText2Usage(responseText, meta.ActualModelName, meta.PromptTokens)
|
||||
} else {
|
||||
err, usage = Handler(c, resp, meta.PromptTokens, meta.ActualModelName)
|
||||
@ -84,6 +91,12 @@ func (a *Adaptor) GetModelList() []string {
|
||||
return ai360.ModelList
|
||||
case common.ChannelTypeMoonshot:
|
||||
return moonshot.ModelList
|
||||
case common.ChannelTypeBaichuan:
|
||||
return baichuan.ModelList
|
||||
case common.ChannelTypeMinimax:
|
||||
return minimax.ModelList
|
||||
case common.ChannelTypeMistral:
|
||||
return mistral.ModelList
|
||||
default:
|
||||
return ModelList
|
||||
}
|
||||
@ -97,6 +110,12 @@ func (a *Adaptor) GetChannelName() string {
|
||||
return "360"
|
||||
case common.ChannelTypeMoonshot:
|
||||
return "moonshot"
|
||||
case common.ChannelTypeBaichuan:
|
||||
return "baichuan"
|
||||
case common.ChannelTypeMinimax:
|
||||
return "minimax"
|
||||
case common.ChannelTypeMistral:
|
||||
return "mistralai"
|
||||
default:
|
||||
return "openai"
|
||||
}
|
||||
|
@ -14,7 +14,7 @@ import (
|
||||
"strings"
|
||||
)
|
||||
|
||||
func StreamHandler(c *gin.Context, resp *http.Response, relayMode int) (*model.ErrorWithStatusCode, string) {
|
||||
func StreamHandler(c *gin.Context, resp *http.Response, relayMode int) (*model.ErrorWithStatusCode, string, *model.Usage) {
|
||||
responseText := ""
|
||||
scanner := bufio.NewScanner(resp.Body)
|
||||
scanner.Split(func(data []byte, atEOF bool) (advance int, token []byte, err error) {
|
||||
@ -31,6 +31,7 @@ func StreamHandler(c *gin.Context, resp *http.Response, relayMode int) (*model.E
|
||||
})
|
||||
dataChan := make(chan string)
|
||||
stopChan := make(chan bool)
|
||||
var usage *model.Usage
|
||||
go func() {
|
||||
for scanner.Scan() {
|
||||
data := scanner.Text()
|
||||
@ -54,6 +55,9 @@ func StreamHandler(c *gin.Context, resp *http.Response, relayMode int) (*model.E
|
||||
for _, choice := range streamResponse.Choices {
|
||||
responseText += choice.Delta.Content
|
||||
}
|
||||
if streamResponse.Usage != nil {
|
||||
usage = streamResponse.Usage
|
||||
}
|
||||
case constant.RelayModeCompletions:
|
||||
var streamResponse CompletionsStreamResponse
|
||||
err := json.Unmarshal([]byte(data), &streamResponse)
|
||||
@ -86,9 +90,9 @@ func StreamHandler(c *gin.Context, resp *http.Response, relayMode int) (*model.E
|
||||
})
|
||||
err := resp.Body.Close()
|
||||
if err != nil {
|
||||
return ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), ""
|
||||
return ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), "", nil
|
||||
}
|
||||
return nil, responseText
|
||||
return nil, responseText, usage
|
||||
}
|
||||
|
||||
func Handler(c *gin.Context, resp *http.Response, promptTokens int, modelName string) (*model.ErrorWithStatusCode, *model.Usage) {
|
||||
|
@ -132,6 +132,7 @@ type ChatCompletionsStreamResponse struct {
|
||||
Created int64 `json:"created"`
|
||||
Model string `json:"model"`
|
||||
Choices []ChatCompletionsStreamResponseChoice `json:"choices"`
|
||||
Usage *model.Usage `json:"usage"`
|
||||
}
|
||||
|
||||
type CompletionsStreamResponse struct {
|
||||
|
@ -81,6 +81,7 @@ func responseTencent2OpenAI(response *ChatResponse) *openai.TextResponse {
|
||||
|
||||
func streamResponseTencent2OpenAI(TencentResponse *ChatResponse) *openai.ChatCompletionsStreamResponse {
|
||||
response := openai.ChatCompletionsStreamResponse{
|
||||
Id: fmt.Sprintf("chatcmpl-%s", helper.GetUUID()),
|
||||
Object: "chat.completion.chunk",
|
||||
Created: helper.GetTimestamp(),
|
||||
Model: "tencent-hunyuan",
|
||||
|
@ -5,20 +5,35 @@ import (
|
||||
"fmt"
|
||||
"github.com/gin-gonic/gin"
|
||||
"github.com/songquanpeng/one-api/relay/channel"
|
||||
"github.com/songquanpeng/one-api/relay/channel/openai"
|
||||
"github.com/songquanpeng/one-api/relay/model"
|
||||
"github.com/songquanpeng/one-api/relay/util"
|
||||
"io"
|
||||
"net/http"
|
||||
"strings"
|
||||
)
|
||||
|
||||
type Adaptor struct {
|
||||
APIVersion string
|
||||
}
|
||||
|
||||
func (a *Adaptor) Init(meta *util.RelayMeta) {
|
||||
|
||||
}
|
||||
|
||||
func (a *Adaptor) SetVersionByModeName(modelName string) {
|
||||
if strings.HasPrefix(modelName, "glm-") {
|
||||
a.APIVersion = "v4"
|
||||
} else {
|
||||
a.APIVersion = "v3"
|
||||
}
|
||||
}
|
||||
|
||||
func (a *Adaptor) GetRequestURL(meta *util.RelayMeta) (string, error) {
|
||||
a.SetVersionByModeName(meta.ActualModelName)
|
||||
if a.APIVersion == "v4" {
|
||||
return fmt.Sprintf("%s/api/paas/v4/chat/completions", meta.BaseURL), nil
|
||||
}
|
||||
method := "invoke"
|
||||
if meta.IsStream {
|
||||
method = "sse-invoke"
|
||||
@ -37,6 +52,13 @@ func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.G
|
||||
if request == nil {
|
||||
return nil, errors.New("request is nil")
|
||||
}
|
||||
if request.TopP >= 1 {
|
||||
request.TopP = 0.99
|
||||
}
|
||||
a.SetVersionByModeName(request.Model)
|
||||
if a.APIVersion == "v4" {
|
||||
return request, nil
|
||||
}
|
||||
return ConvertRequest(*request), nil
|
||||
}
|
||||
|
||||
@ -44,7 +66,19 @@ func (a *Adaptor) DoRequest(c *gin.Context, meta *util.RelayMeta, requestBody io
|
||||
return channel.DoRequestHelper(a, c, meta, requestBody)
|
||||
}
|
||||
|
||||
func (a *Adaptor) DoResponseV4(c *gin.Context, resp *http.Response, meta *util.RelayMeta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
|
||||
if meta.IsStream {
|
||||
err, _, usage = openai.StreamHandler(c, resp, meta.Mode)
|
||||
} else {
|
||||
err, usage = openai.Handler(c, resp, meta.PromptTokens, meta.ActualModelName)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *util.RelayMeta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
|
||||
if a.APIVersion == "v4" {
|
||||
return a.DoResponseV4(c, resp, meta)
|
||||
}
|
||||
if meta.IsStream {
|
||||
err, usage = StreamHandler(c, resp)
|
||||
} else {
|
||||
|
@ -2,4 +2,5 @@ package zhipu
|
||||
|
||||
var ModelList = []string{
|
||||
"chatglm_turbo", "chatglm_pro", "chatglm_std", "chatglm_lite",
|
||||
"glm-4", "glm-4v", "glm-3-turbo",
|
||||
}
|
||||
|
24
relay/constant/image.go
Normal file
24
relay/constant/image.go
Normal file
@ -0,0 +1,24 @@
|
||||
package constant
|
||||
|
||||
var DalleSizeRatios = map[string]map[string]float64{
|
||||
"dall-e-2": {
|
||||
"256x256": 1,
|
||||
"512x512": 1.125,
|
||||
"1024x1024": 1.25,
|
||||
},
|
||||
"dall-e-3": {
|
||||
"1024x1024": 1,
|
||||
"1024x1792": 2,
|
||||
"1792x1024": 2,
|
||||
},
|
||||
}
|
||||
|
||||
var DalleGenerationImageAmounts = map[string][2]int{
|
||||
"dall-e-2": {1, 10},
|
||||
"dall-e-3": {1, 1}, // OpenAI allows n=1 currently.
|
||||
}
|
||||
|
||||
var DalleImagePromptLengthLimitations = map[string]int{
|
||||
"dall-e-2": 1000,
|
||||
"dall-e-3": 4000,
|
||||
}
|
@ -36,6 +36,65 @@ func getAndValidateTextRequest(c *gin.Context, relayMode int) (*relaymodel.Gener
|
||||
return textRequest, nil
|
||||
}
|
||||
|
||||
func getImageRequest(c *gin.Context, relayMode int) (*openai.ImageRequest, error) {
|
||||
imageRequest := &openai.ImageRequest{}
|
||||
err := common.UnmarshalBodyReusable(c, imageRequest)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if imageRequest.N == 0 {
|
||||
imageRequest.N = 1
|
||||
}
|
||||
if imageRequest.Size == "" {
|
||||
imageRequest.Size = "1024x1024"
|
||||
}
|
||||
if imageRequest.Model == "" {
|
||||
imageRequest.Model = "dall-e-2"
|
||||
}
|
||||
return imageRequest, nil
|
||||
}
|
||||
|
||||
func validateImageRequest(imageRequest *openai.ImageRequest, meta *util.RelayMeta) *relaymodel.ErrorWithStatusCode {
|
||||
// model validation
|
||||
_, hasValidSize := constant.DalleSizeRatios[imageRequest.Model][imageRequest.Size]
|
||||
if !hasValidSize {
|
||||
return openai.ErrorWrapper(errors.New("size not supported for this image model"), "size_not_supported", http.StatusBadRequest)
|
||||
}
|
||||
// check prompt length
|
||||
if imageRequest.Prompt == "" {
|
||||
return openai.ErrorWrapper(errors.New("prompt is required"), "prompt_missing", http.StatusBadRequest)
|
||||
}
|
||||
if len(imageRequest.Prompt) > constant.DalleImagePromptLengthLimitations[imageRequest.Model] {
|
||||
return openai.ErrorWrapper(errors.New("prompt is too long"), "prompt_too_long", http.StatusBadRequest)
|
||||
}
|
||||
// Number of generated images validation
|
||||
if !isWithinRange(imageRequest.Model, imageRequest.N) {
|
||||
// channel not azure
|
||||
if meta.ChannelType != common.ChannelTypeAzure {
|
||||
return openai.ErrorWrapper(errors.New("invalid value of n"), "n_not_within_range", http.StatusBadRequest)
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func getImageCostRatio(imageRequest *openai.ImageRequest) (float64, error) {
|
||||
if imageRequest == nil {
|
||||
return 0, errors.New("imageRequest is nil")
|
||||
}
|
||||
imageCostRatio, hasValidSize := constant.DalleSizeRatios[imageRequest.Model][imageRequest.Size]
|
||||
if !hasValidSize {
|
||||
return 0, fmt.Errorf("size not supported for this image model: %s", imageRequest.Size)
|
||||
}
|
||||
if imageRequest.Quality == "hd" && imageRequest.Model == "dall-e-3" {
|
||||
if imageRequest.Size == "1024x1024" {
|
||||
imageCostRatio *= 2
|
||||
} else {
|
||||
imageCostRatio *= 1.5
|
||||
}
|
||||
}
|
||||
return imageCostRatio, nil
|
||||
}
|
||||
|
||||
func getPromptTokens(textRequest *relaymodel.GeneralOpenAIRequest, relayMode int) int {
|
||||
switch relayMode {
|
||||
case constant.RelayModeChatCompletions:
|
||||
@ -113,10 +172,8 @@ func postConsumeQuota(ctx context.Context, usage *relaymodel.Usage, meta *util.R
|
||||
if err != nil {
|
||||
logger.Error(ctx, "error update user quota cache: "+err.Error())
|
||||
}
|
||||
if quota != 0 {
|
||||
logContent := fmt.Sprintf("模型倍率 %.2f,分组倍率 %.2f,补全倍率 %.2f", modelRatio, groupRatio, completionRatio)
|
||||
model.RecordConsumeLog(ctx, meta.UserId, meta.ChannelId, promptTokens, completionTokens, textRequest.Model, meta.TokenName, quota, logContent)
|
||||
model.UpdateUserUsedQuotaAndRequestCount(meta.UserId, quota)
|
||||
model.UpdateChannelUsedQuota(meta.ChannelId, quota)
|
||||
}
|
||||
logContent := fmt.Sprintf("模型倍率 %.2f,分组倍率 %.2f,补全倍率 %.2f", modelRatio, groupRatio, completionRatio)
|
||||
model.RecordConsumeLog(ctx, meta.UserId, meta.ChannelId, promptTokens, completionTokens, textRequest.Model, meta.TokenName, quota, logContent)
|
||||
model.UpdateUserUsedQuotaAndRequestCount(meta.UserId, quota)
|
||||
model.UpdateChannelUsedQuota(meta.ChannelId, quota)
|
||||
}
|
||||
|
@ -10,6 +10,7 @@ import (
|
||||
"github.com/songquanpeng/one-api/common/logger"
|
||||
"github.com/songquanpeng/one-api/model"
|
||||
"github.com/songquanpeng/one-api/relay/channel/openai"
|
||||
"github.com/songquanpeng/one-api/relay/constant"
|
||||
relaymodel "github.com/songquanpeng/one-api/relay/model"
|
||||
"github.com/songquanpeng/one-api/relay/util"
|
||||
"io"
|
||||
@ -20,120 +21,65 @@ import (
|
||||
)
|
||||
|
||||
func isWithinRange(element string, value int) bool {
|
||||
if _, ok := common.DalleGenerationImageAmounts[element]; !ok {
|
||||
if _, ok := constant.DalleGenerationImageAmounts[element]; !ok {
|
||||
return false
|
||||
}
|
||||
min := common.DalleGenerationImageAmounts[element][0]
|
||||
max := common.DalleGenerationImageAmounts[element][1]
|
||||
min := constant.DalleGenerationImageAmounts[element][0]
|
||||
max := constant.DalleGenerationImageAmounts[element][1]
|
||||
|
||||
return value >= min && value <= max
|
||||
}
|
||||
|
||||
func RelayImageHelper(c *gin.Context, relayMode int) *relaymodel.ErrorWithStatusCode {
|
||||
imageModel := "dall-e-2"
|
||||
imageSize := "1024x1024"
|
||||
|
||||
tokenId := c.GetInt("token_id")
|
||||
channelType := c.GetInt("channel")
|
||||
channelId := c.GetInt("channel_id")
|
||||
userId := c.GetInt("id")
|
||||
group := c.GetString("group")
|
||||
|
||||
var imageRequest openai.ImageRequest
|
||||
err := common.UnmarshalBodyReusable(c, &imageRequest)
|
||||
ctx := c.Request.Context()
|
||||
meta := util.GetRelayMeta(c)
|
||||
imageRequest, err := getImageRequest(c, meta.Mode)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "bind_request_body_failed", http.StatusBadRequest)
|
||||
}
|
||||
|
||||
if imageRequest.N == 0 {
|
||||
imageRequest.N = 1
|
||||
}
|
||||
|
||||
// Size validation
|
||||
if imageRequest.Size != "" {
|
||||
imageSize = imageRequest.Size
|
||||
}
|
||||
|
||||
// Model validation
|
||||
if imageRequest.Model != "" {
|
||||
imageModel = imageRequest.Model
|
||||
}
|
||||
|
||||
imageCostRatio, hasValidSize := common.DalleSizeRatios[imageModel][imageSize]
|
||||
|
||||
// Check if model is supported
|
||||
if hasValidSize {
|
||||
if imageRequest.Quality == "hd" && imageModel == "dall-e-3" {
|
||||
if imageSize == "1024x1024" {
|
||||
imageCostRatio *= 2
|
||||
} else {
|
||||
imageCostRatio *= 1.5
|
||||
}
|
||||
}
|
||||
} else {
|
||||
return openai.ErrorWrapper(errors.New("size not supported for this image model"), "size_not_supported", http.StatusBadRequest)
|
||||
}
|
||||
|
||||
// Prompt validation
|
||||
if imageRequest.Prompt == "" {
|
||||
return openai.ErrorWrapper(errors.New("prompt is required"), "prompt_missing", http.StatusBadRequest)
|
||||
}
|
||||
|
||||
// Check prompt length
|
||||
if len(imageRequest.Prompt) > common.DalleImagePromptLengthLimitations[imageModel] {
|
||||
return openai.ErrorWrapper(errors.New("prompt is too long"), "prompt_too_long", http.StatusBadRequest)
|
||||
}
|
||||
|
||||
// Number of generated images validation
|
||||
if !isWithinRange(imageModel, imageRequest.N) {
|
||||
// channel not azure
|
||||
if channelType != common.ChannelTypeAzure {
|
||||
return openai.ErrorWrapper(errors.New("invalid value of n"), "n_not_within_range", http.StatusBadRequest)
|
||||
}
|
||||
logger.Errorf(ctx, "getImageRequest failed: %s", err.Error())
|
||||
return openai.ErrorWrapper(err, "invalid_image_request", http.StatusBadRequest)
|
||||
}
|
||||
|
||||
// map model name
|
||||
modelMapping := c.GetString("model_mapping")
|
||||
isModelMapped := false
|
||||
if modelMapping != "" {
|
||||
modelMap := make(map[string]string)
|
||||
err := json.Unmarshal([]byte(modelMapping), &modelMap)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "unmarshal_model_mapping_failed", http.StatusInternalServerError)
|
||||
}
|
||||
if modelMap[imageModel] != "" {
|
||||
imageModel = modelMap[imageModel]
|
||||
isModelMapped = true
|
||||
}
|
||||
var isModelMapped bool
|
||||
meta.OriginModelName = imageRequest.Model
|
||||
imageRequest.Model, isModelMapped = util.GetMappedModelName(imageRequest.Model, meta.ModelMapping)
|
||||
meta.ActualModelName = imageRequest.Model
|
||||
|
||||
// model validation
|
||||
bizErr := validateImageRequest(imageRequest, meta)
|
||||
if bizErr != nil {
|
||||
return bizErr
|
||||
}
|
||||
baseURL := common.ChannelBaseURLs[channelType]
|
||||
|
||||
imageCostRatio, err := getImageCostRatio(imageRequest)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "get_image_cost_ratio_failed", http.StatusInternalServerError)
|
||||
}
|
||||
|
||||
requestURL := c.Request.URL.String()
|
||||
if c.GetString("base_url") != "" {
|
||||
baseURL = c.GetString("base_url")
|
||||
}
|
||||
fullRequestURL := util.GetFullRequestURL(baseURL, requestURL, channelType)
|
||||
if channelType == common.ChannelTypeAzure {
|
||||
fullRequestURL := util.GetFullRequestURL(meta.BaseURL, requestURL, meta.ChannelType)
|
||||
if meta.ChannelType == common.ChannelTypeAzure {
|
||||
// https://learn.microsoft.com/en-us/azure/ai-services/openai/dall-e-quickstart?tabs=dalle3%2Ccommand-line&pivots=rest-api
|
||||
apiVersion := util.GetAzureAPIVersion(c)
|
||||
// https://{resource_name}.openai.azure.com/openai/deployments/dall-e-3/images/generations?api-version=2023-06-01-preview
|
||||
fullRequestURL = fmt.Sprintf("%s/openai/deployments/%s/images/generations?api-version=%s", baseURL, imageModel, apiVersion)
|
||||
fullRequestURL = fmt.Sprintf("%s/openai/deployments/%s/images/generations?api-version=%s", meta.BaseURL, imageRequest.Model, apiVersion)
|
||||
}
|
||||
|
||||
var requestBody io.Reader
|
||||
if isModelMapped || channelType == common.ChannelTypeAzure { // make Azure channel request body
|
||||
if isModelMapped || meta.ChannelType == common.ChannelTypeAzure { // make Azure channel request body
|
||||
jsonStr, err := json.Marshal(imageRequest)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "marshal_text_request_failed", http.StatusInternalServerError)
|
||||
return openai.ErrorWrapper(err, "marshal_image_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
requestBody = bytes.NewBuffer(jsonStr)
|
||||
} else {
|
||||
requestBody = c.Request.Body
|
||||
}
|
||||
|
||||
modelRatio := common.GetModelRatio(imageModel)
|
||||
groupRatio := common.GetGroupRatio(group)
|
||||
modelRatio := common.GetModelRatio(imageRequest.Model)
|
||||
groupRatio := common.GetGroupRatio(meta.Group)
|
||||
ratio := modelRatio * groupRatio
|
||||
userQuota, err := model.CacheGetUserQuota(userId)
|
||||
userQuota, err := model.CacheGetUserQuota(meta.UserId)
|
||||
|
||||
quota := int(ratio*imageCostRatio*1000) * imageRequest.N
|
||||
|
||||
@ -146,7 +92,7 @@ func RelayImageHelper(c *gin.Context, relayMode int) *relaymodel.ErrorWithStatus
|
||||
return openai.ErrorWrapper(err, "new_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
token := c.Request.Header.Get("Authorization")
|
||||
if channelType == common.ChannelTypeAzure { // Azure authentication
|
||||
if meta.ChannelType == common.ChannelTypeAzure { // Azure authentication
|
||||
token = strings.TrimPrefix(token, "Bearer ")
|
||||
req.Header.Set("api-key", token)
|
||||
} else {
|
||||
@ -169,25 +115,25 @@ func RelayImageHelper(c *gin.Context, relayMode int) *relaymodel.ErrorWithStatus
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "close_request_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
var textResponse openai.ImageResponse
|
||||
var imageResponse openai.ImageResponse
|
||||
|
||||
defer func(ctx context.Context) {
|
||||
if resp.StatusCode != http.StatusOK {
|
||||
return
|
||||
}
|
||||
err := model.PostConsumeTokenQuota(tokenId, quota)
|
||||
err := model.PostConsumeTokenQuota(meta.TokenId, quota)
|
||||
if err != nil {
|
||||
logger.SysError("error consuming token remain quota: " + err.Error())
|
||||
}
|
||||
err = model.CacheUpdateUserQuota(userId)
|
||||
err = model.CacheUpdateUserQuota(meta.UserId)
|
||||
if err != nil {
|
||||
logger.SysError("error update user quota cache: " + err.Error())
|
||||
}
|
||||
if quota != 0 {
|
||||
tokenName := c.GetString("token_name")
|
||||
logContent := fmt.Sprintf("模型倍率 %.2f,分组倍率 %.2f", modelRatio, groupRatio)
|
||||
model.RecordConsumeLog(ctx, userId, channelId, 0, 0, imageModel, tokenName, quota, logContent)
|
||||
model.UpdateUserUsedQuotaAndRequestCount(userId, quota)
|
||||
model.RecordConsumeLog(ctx, meta.UserId, meta.ChannelId, 0, 0, imageRequest.Model, tokenName, quota, logContent)
|
||||
model.UpdateUserUsedQuotaAndRequestCount(meta.UserId, quota)
|
||||
channelId := c.GetInt("channel_id")
|
||||
model.UpdateChannelUsedQuota(channelId, quota)
|
||||
}
|
||||
@ -202,7 +148,7 @@ func RelayImageHelper(c *gin.Context, relayMode int) *relaymodel.ErrorWithStatus
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
err = json.Unmarshal(responseBody, &textResponse)
|
||||
err = json.Unmarshal(responseBody, &imageResponse)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
|
@ -55,7 +55,8 @@ func RelayTextHelper(c *gin.Context) *model.ErrorWithStatusCode {
|
||||
var requestBody io.Reader
|
||||
if meta.APIType == constant.APITypeOpenAI {
|
||||
// no need to convert request for openai
|
||||
if isModelMapped {
|
||||
shouldResetRequestBody := isModelMapped || meta.ChannelType == common.ChannelTypeBaichuan // frequency_penalty 0 is not acceptable for baichuan
|
||||
if shouldResetRequestBody {
|
||||
jsonStr, err := json.Marshal(textRequest)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "json_marshal_failed", http.StatusInternalServerError)
|
||||
|
@ -29,6 +29,12 @@ export const CHANNEL_OPTIONS = {
|
||||
value: 24,
|
||||
color: 'orange'
|
||||
},
|
||||
28: {
|
||||
key: 28,
|
||||
text: 'Mistral AI',
|
||||
value: 28,
|
||||
color: 'orange'
|
||||
},
|
||||
15: {
|
||||
key: 15,
|
||||
text: '百度文心千帆',
|
||||
@ -71,6 +77,18 @@ export const CHANNEL_OPTIONS = {
|
||||
value: 23,
|
||||
color: 'default'
|
||||
},
|
||||
26: {
|
||||
key: 26,
|
||||
text: '百川大模型',
|
||||
value: 26,
|
||||
color: 'default'
|
||||
},
|
||||
27: {
|
||||
key: 27,
|
||||
text: 'MiniMax',
|
||||
value: 27,
|
||||
color: 'default'
|
||||
},
|
||||
8: {
|
||||
key: 8,
|
||||
text: '自定义渠道',
|
||||
|
@ -67,7 +67,7 @@ const typeConfig = {
|
||||
},
|
||||
16: {
|
||||
input: {
|
||||
models: ["chatglm_turbo", "chatglm_pro", "chatglm_std", "chatglm_lite"],
|
||||
models: ["glm-4", "glm-4v", "glm-3-turbo", "chatglm_turbo", "chatglm_pro", "chatglm_std", "chatglm_lite"],
|
||||
},
|
||||
modelGroup: "zhipu",
|
||||
},
|
||||
@ -145,6 +145,24 @@ const typeConfig = {
|
||||
},
|
||||
modelGroup: "google gemini",
|
||||
},
|
||||
25: {
|
||||
input: {
|
||||
models: ['moonshot-v1-8k', 'moonshot-v1-32k', 'moonshot-v1-128k'],
|
||||
},
|
||||
modelGroup: "moonshot",
|
||||
},
|
||||
26: {
|
||||
input: {
|
||||
models: ['Baichuan2-Turbo', 'Baichuan2-Turbo-192k', 'Baichuan-Text-Embedding'],
|
||||
},
|
||||
modelGroup: "baichuan",
|
||||
},
|
||||
27: {
|
||||
input: {
|
||||
models: ['abab5.5s-chat', 'abab5.5-chat', 'abab6-chat'],
|
||||
},
|
||||
modelGroup: "minimax",
|
||||
},
|
||||
};
|
||||
|
||||
export { defaultConfig, typeConfig };
|
||||
|
@ -4,6 +4,7 @@ export const CHANNEL_OPTIONS = [
|
||||
{ key: 3, text: 'Azure OpenAI', value: 3, color: 'olive' },
|
||||
{ key: 11, text: 'Google PaLM2', value: 11, color: 'orange' },
|
||||
{ key: 24, text: 'Google Gemini', value: 24, color: 'orange' },
|
||||
{ key: 28, text: 'Mistral AI', value: 28, color: 'orange' },
|
||||
{ key: 15, text: '百度文心千帆', value: 15, color: 'blue' },
|
||||
{ key: 17, text: '阿里通义千问', value: 17, color: 'orange' },
|
||||
{ key: 18, text: '讯飞星火认知', value: 18, color: 'blue' },
|
||||
@ -11,6 +12,8 @@ export const CHANNEL_OPTIONS = [
|
||||
{ key: 19, text: '360 智脑', value: 19, color: 'blue' },
|
||||
{ key: 25, text: 'Moonshot AI', value: 25, color: 'black' },
|
||||
{ key: 23, text: '腾讯混元', value: 23, color: 'teal' },
|
||||
{ key: 26, text: '百川大模型', value: 26, color: 'orange' },
|
||||
{ key: 27, text: 'MiniMax', value: 27, color: 'red' },
|
||||
{ key: 8, text: '自定义渠道', value: 8, color: 'pink' },
|
||||
{ key: 22, text: '知识库:FastGPT', value: 22, color: 'blue' },
|
||||
{ key: 21, text: '知识库:AI Proxy', value: 21, color: 'purple' },
|
||||
|
@ -79,7 +79,7 @@ const EditChannel = () => {
|
||||
localModels = [...localModels, ...withInternetVersion];
|
||||
break;
|
||||
case 16:
|
||||
localModels = ['chatglm_turbo', 'chatglm_pro', 'chatglm_std', 'chatglm_lite'];
|
||||
localModels = ["glm-4", "glm-4v", "glm-3-turbo",'chatglm_turbo', 'chatglm_pro', 'chatglm_std', 'chatglm_lite'];
|
||||
break;
|
||||
case 18:
|
||||
localModels = [
|
||||
@ -102,6 +102,12 @@ const EditChannel = () => {
|
||||
case 25:
|
||||
localModels = ['moonshot-v1-8k', 'moonshot-v1-32k', 'moonshot-v1-128k'];
|
||||
break;
|
||||
case 26:
|
||||
localModels = ['Baichuan2-Turbo', 'Baichuan2-Turbo-192k', 'Baichuan-Text-Embedding'];
|
||||
break;
|
||||
case 27:
|
||||
localModels = ['abab5.5s-chat', 'abab5.5-chat', 'abab6-chat'];
|
||||
break;
|
||||
}
|
||||
setInputs((inputs) => ({ ...inputs, models: localModels }));
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user