2024-01-14 11:21:03 +00:00
package openai
2023-05-19 01:41:26 +00:00
import (
2023-12-10 11:39:46 +00:00
"errors"
2023-05-19 01:41:26 +00:00
"fmt"
2024-01-14 11:21:03 +00:00
"github.com/pkoukk/tiktoken-go"
2024-01-28 11:38:58 +00:00
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/config"
"github.com/songquanpeng/one-api/common/image"
"github.com/songquanpeng/one-api/common/logger"
2023-12-10 11:39:46 +00:00
"math"
2023-09-29 09:56:11 +00:00
"strings"
2023-05-19 01:41:26 +00:00
)
2023-09-29 09:56:11 +00:00
// tokenEncoderMap won't grow after initialization
2023-05-19 01:41:26 +00:00
var tokenEncoderMap = map [ string ] * tiktoken . Tiktoken { }
2023-09-29 09:56:11 +00:00
var defaultTokenEncoder * tiktoken . Tiktoken
2023-05-19 01:41:26 +00:00
2023-08-26 05:02:02 +00:00
func InitTokenEncoders ( ) {
2024-01-21 15:21:42 +00:00
logger . SysLog ( "initializing token encoders" )
2023-09-29 09:56:11 +00:00
gpt35TokenEncoder , err := tiktoken . EncodingForModel ( "gpt-3.5-turbo" )
2023-08-26 05:02:02 +00:00
if err != nil {
2024-01-21 15:21:42 +00:00
logger . FatalLog ( fmt . Sprintf ( "failed to get gpt-3.5-turbo token encoder: %s" , err . Error ( ) ) )
2023-09-29 09:56:11 +00:00
}
defaultTokenEncoder = gpt35TokenEncoder
gpt4TokenEncoder , err := tiktoken . EncodingForModel ( "gpt-4" )
if err != nil {
2024-01-21 15:21:42 +00:00
logger . FatalLog ( fmt . Sprintf ( "failed to get gpt-4 token encoder: %s" , err . Error ( ) ) )
2023-08-26 05:02:02 +00:00
}
for model , _ := range common . ModelRatio {
2023-09-29 09:56:11 +00:00
if strings . HasPrefix ( model , "gpt-3.5" ) {
tokenEncoderMap [ model ] = gpt35TokenEncoder
} else if strings . HasPrefix ( model , "gpt-4" ) {
tokenEncoderMap [ model ] = gpt4TokenEncoder
} else {
tokenEncoderMap [ model ] = nil
2023-08-26 05:02:02 +00:00
}
}
2024-01-21 15:21:42 +00:00
logger . SysLog ( "token encoders initialized" )
2023-08-26 05:02:02 +00:00
}
2023-05-19 01:41:26 +00:00
func getTokenEncoder ( model string ) * tiktoken . Tiktoken {
2023-09-29 09:56:11 +00:00
tokenEncoder , ok := tokenEncoderMap [ model ]
if ok && tokenEncoder != nil {
2023-05-19 01:41:26 +00:00
return tokenEncoder
}
2023-09-29 09:56:11 +00:00
if ok {
tokenEncoder , err := tiktoken . EncodingForModel ( model )
2023-05-21 03:11:19 +00:00
if err != nil {
2024-01-21 15:21:42 +00:00
logger . SysError ( fmt . Sprintf ( "failed to get token encoder for model %s: %s, using encoder for gpt-3.5-turbo" , model , err . Error ( ) ) )
2023-09-29 09:56:11 +00:00
tokenEncoder = defaultTokenEncoder
2023-05-21 03:11:19 +00:00
}
2023-09-29 09:56:11 +00:00
tokenEncoderMap [ model ] = tokenEncoder
return tokenEncoder
2023-05-19 01:41:26 +00:00
}
2023-09-29 09:56:11 +00:00
return defaultTokenEncoder
2023-05-19 01:41:26 +00:00
}
2023-07-04 11:54:13 +00:00
func getTokenNum ( tokenEncoder * tiktoken . Tiktoken , text string ) int {
2024-01-21 15:21:42 +00:00
if config . ApproximateTokenEnabled {
2023-07-04 11:54:13 +00:00
return int ( float64 ( len ( text ) ) * 0.38 )
}
return len ( tokenEncoder . Encode ( text , nil , nil ) )
}
2024-01-14 11:21:03 +00:00
func CountTokenMessages ( messages [ ] Message , model string ) int {
2023-05-19 01:41:26 +00:00
tokenEncoder := getTokenEncoder ( model )
// Reference:
// https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
// https://github.com/pkoukk/tiktoken-go/issues/6
//
// Every message follows <|start|>{role/name}\n{content}<|end|>\n
var tokensPerMessage int
var tokensPerName int
2023-07-03 01:42:34 +00:00
if model == "gpt-3.5-turbo-0301" {
2023-05-19 01:41:26 +00:00
tokensPerMessage = 4
tokensPerName = - 1 // If there's a name, the role is omitted
} else {
tokensPerMessage = 3
tokensPerName = 1
}
tokenNum := 0
for _ , message := range messages {
tokenNum += tokensPerMessage
2023-12-10 11:39:46 +00:00
switch v := message . Content . ( type ) {
case string :
tokenNum += getTokenNum ( tokenEncoder , v )
case [ ] any :
for _ , it := range v {
m := it . ( map [ string ] any )
switch m [ "type" ] {
case "text" :
tokenNum += getTokenNum ( tokenEncoder , m [ "text" ] . ( string ) )
case "image_url" :
imageUrl , ok := m [ "image_url" ] . ( map [ string ] any )
if ok {
url := imageUrl [ "url" ] . ( string )
detail := ""
if imageUrl [ "detail" ] != nil {
detail = imageUrl [ "detail" ] . ( string )
}
imageTokens , err := countImageTokens ( url , detail )
if err != nil {
2024-01-21 15:21:42 +00:00
logger . SysError ( "error counting image tokens: " + err . Error ( ) )
2023-12-10 11:39:46 +00:00
} else {
tokenNum += imageTokens
}
}
}
}
}
2023-07-04 11:54:13 +00:00
tokenNum += getTokenNum ( tokenEncoder , message . Role )
2023-05-19 03:07:17 +00:00
if message . Name != nil {
2023-05-19 01:41:26 +00:00
tokenNum += tokensPerName
2023-07-04 11:54:13 +00:00
tokenNum += getTokenNum ( tokenEncoder , * message . Name )
2023-05-19 01:41:26 +00:00
}
}
tokenNum += 3 // Every reply is primed with <|start|>assistant<|message|>
return tokenNum
}
2023-12-10 11:39:46 +00:00
const (
lowDetailCost = 85
highDetailCostPerTile = 170
additionalCost = 85
)
// https://platform.openai.com/docs/guides/vision/calculating-costs
// https://github.com/openai/openai-cookbook/blob/05e3f9be4c7a2ae7ecf029a7c32065b024730ebe/examples/How_to_count_tokens_with_tiktoken.ipynb
func countImageTokens ( url string , detail string ) ( _ int , err error ) {
var fetchSize = true
var width , height int
// Reference: https://platform.openai.com/docs/guides/vision/low-or-high-fidelity-image-understanding
// detail == "auto" is undocumented on how it works, it just said the model will use the auto setting which will look at the image input size and decide if it should use the low or high setting.
// According to the official guide, "low" disable the high-res model,
// and only receive low-res 512px x 512px version of the image, indicating
// that image is treated as low-res when size is smaller than 512px x 512px,
// then we can assume that image size larger than 512px x 512px is treated
// as high-res. Then we have the following logic:
// if detail == "" || detail == "auto" {
// width, height, err = image.GetImageSize(url)
// if err != nil {
// return 0, err
// }
// fetchSize = false
// // not sure if this is correct
// if width > 512 || height > 512 {
// detail = "high"
// } else {
// detail = "low"
// }
// }
// However, in my test, it seems to be always the same as "high".
// The following image, which is 125x50, is still treated as high-res, taken
// 255 tokens in the response of non-stream chat completion api.
// https://upload.wikimedia.org/wikipedia/commons/1/10/18_Infantry_Division_Messina.jpg
if detail == "" || detail == "auto" {
// assume by test, not sure if this is correct
detail = "high"
}
switch detail {
case "low" :
return lowDetailCost , nil
case "high" :
if fetchSize {
width , height , err = image . GetImageSize ( url )
if err != nil {
return 0 , err
}
}
if width > 2048 || height > 2048 { // max(width, height) > 2048
ratio := float64 ( 2048 ) / math . Max ( float64 ( width ) , float64 ( height ) )
width = int ( float64 ( width ) * ratio )
height = int ( float64 ( height ) * ratio )
}
if width > 768 && height > 768 { // min(width, height) > 768
ratio := float64 ( 768 ) / math . Min ( float64 ( width ) , float64 ( height ) )
width = int ( float64 ( width ) * ratio )
height = int ( float64 ( height ) * ratio )
}
numSquares := int ( math . Ceil ( float64 ( width ) / 512 ) * math . Ceil ( float64 ( height ) / 512 ) )
result := numSquares * highDetailCostPerTile + additionalCost
return result , nil
default :
return 0 , errors . New ( "invalid detail option" )
}
}
2024-01-14 11:21:03 +00:00
func CountTokenInput ( input any , model string ) int {
2023-12-10 11:39:46 +00:00
switch v := input . ( type ) {
2023-06-12 08:11:57 +00:00
case string :
2024-01-14 11:21:03 +00:00
return CountTokenText ( v , model )
2023-06-12 08:11:57 +00:00
case [ ] string :
text := ""
2023-12-10 11:39:46 +00:00
for _ , s := range v {
2023-06-12 08:11:57 +00:00
text += s
}
2024-01-14 11:21:03 +00:00
return CountTokenText ( text , model )
2023-06-12 08:11:57 +00:00
}
return 0
}
2024-01-14 11:21:03 +00:00
func CountTokenText ( text string , model string ) int {
2023-05-19 01:41:26 +00:00
tokenEncoder := getTokenEncoder ( model )
2023-07-04 11:54:13 +00:00
return getTokenNum ( tokenEncoder , text )
2023-05-19 01:41:26 +00:00
}